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Abstract

We present an active data mining mechanism for quali-
tative analysis of spatial datasets, integrating identifica-
tion and analysis of structures in spatial data with tar-
geted collection of additional samples. The mechanism
is designed around the spatial aggregation language
(SAL) for qualitative spatial reasoning, and seeks to un-
cover high-level spatial structures from only a sparse set
of samples. This approach is important for applications
in domains such as aircraft design, wireless system simu-
lation, fluid dynamics, and sensor networks. The mech-
anism employs Gaussian processes, a formal mathemat-
ical model for reasoning about spatial data, in order to
build surrogate models from sparse data, reason about
the uncertainty of estimation at unsampled points, and
formulate objective criteria for closing-the-loop between
data collection and data analysis. It optimizes sample
selection using entropy-based functionals defined over
spatial aggregates instead of the traditional approach
of sampling to minimize estimated variance. We ap-
ply this mechanism on a global optimization benchmark
comprising a testbank of 2D functions, as well as on
data from wireless system simulations. The results re-
veal that the proposed sampling strategy makes more
judicious use of data points by selecting locations that
clarify high-level structures in data, rather than choos-
ing points that merely improve quality of function ap-
proximation.

Introduction

Many scientific and engineering applications require
analysis of spatial datasets derived from computer sim-
ulations or field data, e.g., wireless system simulations,
aircraft design configuration spaces, fluid dynamics sim-
ulations, and sensor network optimization. While a
wealth of data is potentially available in these domains,
there is significant cost and time involved in conducting
simulations or setting up experimental apparatus. Thus
in practice, these applications require qualitative spatial
analysis and reasoning, providing high-level interpreta-
tions of a sparse set of data. Based on an initial, possi-
bly imperfect, analysis, additional data can be collected
to clarify ambiguities. Since the computational scientist
has control over where data can be collected, it is pru-
dent to focus data collection in only those regions that
are deemed important to support a high-level analysis
objective. Multiple rounds of analysis and sampling can
be conducted in this fashion.

As a concrete example, consider the characterization
of WCDMA (wideband code-division multiple access)
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Figure 1: Analyzing configuration spaces from wireless sys-
tem simulations. The shaded region denotes the largest por-
tion of the configuration space where we can claim, with con-
fidence at least 99%, that the average bit error rate (BER) is
acceptable for voice-based system usage.

wireless system configurations for a given indoor envi-
ronment. A configuration comprises many adjustable
parameters, and the goal of wireless system characteri-
zation is to assess the relationship between these param-
eters and performance metrics such as BER (bit error
rate), a measure of the number of bits transmitted in er-
ror using the system. When a wireless engineer designs a
system for a given indoor environment, he or she sets an
acceptable performance criterion for BER (e.g., 10−3 for
a system designed to carry voice traffic, stricter thresh-
olds for data traffic) and seeks a region in the configu-
ration space that can satisfy this criterion (see Fig. 1).
To collect the data necessary for analyzing configura-
tion spaces, the engineer either performs a costly Monte
Carlo simulation (where a model of radio propagation in
the wireless channel is embedded inside a system-wide
model encapsulating wireless protocols and communica-
tions standards), or installs channel sounding equipment
and system instrumentation in the environment, and ac-
tually enacts usage scenarios. In either approach, it is
not feasible to first organize a voluminous body of data
and subsequently analyze the collected dataset. It is
thus imperative that we interleave data collection and
data analysis and focus sampling at only those locations
that maximize well-defined notions of relevance and util-
ity. Importantly, we will not need to sample the entire
configuration space, only enough so as to identify and
characterize a region with acceptable confidence.

In this paper, we develop an active mining mech-
anism based on the spatial aggregation language
(SAL; [Bailey-Kellogg et al., 1996]), a generic frame-
work for qualitative spatial reasoning, and Gaussian pro-
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Figure 2: SAL uncovers multi-level spatial aggregates by em-
ploying a small set of operators (a spatial reasoning “vocabu-
lary”) utilizing suitable domain knowledge. Basic bottom-up
flow: computations on spatial objects within an abstraction
level are localized within neighborhoods; equivalence classes
are formed from neighboring, similar objects; classes of equiv-
alent objects are redescribed into higher-level objects for pro-
cessing at the next level of abstraction.

cesses (GPs; [Williams, 1998]), a powerful unifying the-
ory for approximating and reasoning about datasets.
SAL uncovers successive multi-level aggregates of spa-
tial data, and Gaussian processes provide the ‘glue’ that
enables us to perform active mining on these aggregates.
In particular, they aid in (i) creation of surrogate mod-
els from data using a sparse set of samples (for cheap
generation of dense approximate datasets), (ii) reason-
ing about the uncertainty of estimation at unsampled
points, and (iii) formulation of objective criteria for ac-
tive data collection. This approach enables us to de-
sign sampling strategies that bridge higher-level quality
metrics of spatial structures (e.g., entropy) with lower-
level considerations of data samples (e.g., locations and
fidelity).

Spatial Aggregation Language
The Spatial Aggregation Language
(SAL) [Bailey-Kellogg et al., 1996] supports struc-
ture discovery in spatial datasets through a small set of
generic operators, parameterized with domain-specific
knowledge, on uniform data types. These operators and
data types mediate increasingly abstract descriptions
of the input data (see Fig. 2) to form higher-level
abstractions and mine patterns. The primitives in
SAL are contiguous regions of space called spatial
objects; the compounds are (possibly structured) col-
lections of spatial objects; the abstraction mechanisms
connect collections at one level of abstraction with
single objects at a higher level. This vocabulary
has proved effective for expressing the mechanisms
required to uncover multi-level structures in spatial
datasets in applications ranging from diffusion-reaction
morphogenesis [Ordóñez and Zhao, 2000] to decentral-
ized control design [Bailey-Kellogg and Zhao, 2001],
to matrix perturbation analy-
sis [Bailey-Kellogg and Ramakrishnan, 2004].
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Figure 3: de Boor’s ‘pocket’ function in 2D, depicting con-
tours around basins of local minima.

SAL Pocket Finder
Let us consider a specific qualitative spatial reasoning
task motivated by the wireless study — determining
the number and locations of pockets, or basins of local
minima, in a vector field. Fig. 3 illustrates four pock-
ets in a field defined by Carl de Boor’s function in 2D
(from [Ramakrishnan and Bailey-Kellogg, 2002]). This
function is a well-known benchmark for global optimiza-
tion (esp. in high dimensions), but we focus here on a
somewhat different objective of characterizing the high-
level structure of the field. The algorithmic encoding of
the calculus definition of local minima suggests that the
four pockets in Fig. 3 can be identified via convergent
flows in the gradient underlying the vector field. Let us
assume we are given a dense set of samples covering the
region of interest. Fig. 4 illustrates an example of key
spatial aggregation operations:

(a) Establish the input field, here by calculating the gra-
dient field (normalized, since we’re interested only in
direction in order to detect convergence).

(b) Localize computation with a neighborhood graph, so
that only spatially proximate objects are compared.
Here, an 8-adjacency neighborhood graph is employed,
which results in somewhat ‘blocky’ streamlines but
fast computation.

(c)–(f) Use a series of local computations to find equivalence
classes of neighboring objects with similar features.
Here, we systematically eliminate all neighborhood
graph edges but those whose directions best match the
vector direction at both endpoints. ‘Forward neigh-
bor’ computation compares graph edge direction with
the average of the vector directions, and keeps only
those that are similar enough (implemented as a co-
sine angle similarity threshold). ‘Best forward neigh-
bor’ at junction points then selects from among these
neighbors, by a third metric combining similarity in
direction with closeness in point location. Backward
calculations are analogous, but deal with the prede-
cessor along a streamline rather than the successor.

(g) Move up a level in the spatial object hierarchy by re-
describing equivalence classes into more abstract ob-
jects. Here, connected vectors are abstracted into
curve objects, which have both a reduced representa-
tion and additional semantic properties (e.g. curvature
is well-defined).

(h) Apply the same mechanism — aggregate, classify, and
redescribe — at the new level, using the exact same
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Figure 4: Example steps in SAL pocket finder based on vector field analysis of de Boor’s function. (a) Input vector field.
(b) 8-adjacency neighborhood graph. (c) Forward neighbors. (d) Best forward neighbors. (e) Ngraph transposed from best
forward neighbors. (f) Best backward neighbors. (g) Resulting adjacencies redescribed as curves. (h) Higher-level aggregation
and classification of curves whose flows converge. When the vector field is the gradient of a pocket function, these are the
pockets.

operators but with different metrics. Here, curves are
grouped into coherent pockets with convergent flow.
Neighborhood (not shown) is derived from neighbor-
hood of constituent vectors, and equivalence tests di-
rection of flow for convergence.

Localized computations are integral to SAL, as aggre-
gates are identified by grouping “close-enough, similar-
enough” spatial objects. When data is scarce, we can
achieve locality by approximating values on a denser field
than that provided as input. In particular, we can con-
struct a surrogate model — a cheap-to-compute substi-
tute for a complex function — that serves as an approx-
imation to the underlying field with the given samples.
We can then use this approximation to generate a dense
field of data (e.g., on a uniform grid). One way to build
surrogate models relies on Gaussian processes.

Gaussian Processes
Gaussian processes (GPs) are a modeling mechanism
with origins in spatial statistics, particularly krig-
ing [Journel and Huijbregts, 1992]. In contrast to global
approximation techniques such as least-squares fitting,
GPs are local approximation techniques, akin to nearest-
neighbor procedures. In contrast to function approxi-
mation techniques that place a prior on the form of the
function, GP modeling techniques place a prior on the
covariance structures underlying the data.

The basic idea in GPs is to model a given dataset as
a realization of a stochastic process. Formally, a GP is a
set of random variables any finite subset of which have
a (multivariate) normal distribution. For our purposes,
we can think of these variables as spatially distributed
(scalar) response variables ti, one for each 2D location
xi = [xi1, xi2] where we have collected a data sample. In

our vector field analysis application, ti denotes the mod-
eled response, i.e., the value of de Boor’s function at xi.
Given a dataset D = {xi, ti}, i = 1 . . . n, and a new data
point xn+1, a GP can be used to model the posterior
P (tn+1|D, xn+1) (which would also be a Gaussian). This
is essentially what many Bayesian modeling techniques
do (e.g., least squares approximation with normally dis-
tributed noise) but it is the specifics of how the posterior
is modeled that make GPs distinct as a class of modeling
techniques.

To make a prediction of tn+1 at a point xn+1, GPs
place greater reliance on ti’s from nearby points. This
reliance is specified in the form of a covariance prior for
the process and will be central to how we embed SAL in
a broader GP framework:

Cov(ti, tj) = α exp

(
−1

2

2∑
k=1

ak(xik − xjk)2
)

(1)

Intuitively, this function captures the notion that re-
sponse variables at nearby points must have high cor-
relation. The reader will note that this idea of influ-
ence decaying with distance has an immediate parallel
to how SAL programs localize computations. In Eq. 1,
α is an overall scaling term whereas a1, a2 define the
length scales for the two dimensions. However, this prior
(or even its posterior) does not directly allow us to de-
termine tj from ti, since the structure only captures the
covariance; predictions of a response variable for new
sample locations are thus conditionally dependent on the
measured response variables and their sample locations.
Hence, we must first estimate the covariance parameters
(a1, a2, and α) from D and then use these parameters
along with D to predict tn+1 at xn+1. Since the joint dis-
tribution of the response variables P (t1, t2, · · · , tn+1) is



modeled Gaussian (a mean of zero is often assumed), we
can develop the posterior of any desired response vari-
able in terms of its covariances with other points. Specif-
ically, for the covariance formulation above, an estimate
of tn+1 can be given by:

t̂n+1 = kT Cov−1
n [t1, t2, · · · , tn]T (2)

where our uncertainty in this estimate would be:

σ2
t̂n+1

= k − kT Cov−1
n k (3)

Here, kT represents the n-vector of covariances with the
new data point:

kT = [Cov(x1,xn+1) , · · · , Cov(xn,xn+1)]

and k is the (n + 1, n + 1) entry of Covn+1. Eqs. 2
and 3, together, give us both an approximation at any
given point and an uncertainty in this approximation;
they will serve as the basic building blocks for closing-
the-loop between data modeling and higher level analysis
functionality.

Learning a GP
Learning the GP parameters θ = (a1, a2, α) can be un-
dertaken in the maximum likelihood (ML) and maximum
a posteriori (MAP) frameworks, or in the true Bayesian
setting where we obtain a distribution over values. The
log-likelihood for the parameters is given by:

L = log P (t1, t2, · · · , tn|x1,x2, · · · ,xn, θ)

= c + log P (θ)− n

2
log(2π)− 1

2
log | Covn |

−1
2
[t1, t2, · · · , tn] Cov−1

n [t1, t2, · · · , tn]T (4)

To optimize for the parameters, we can compute partial
derivatives of the log-likelihood, for use with a conjugate
gradient algorithm that operates in the three-space of θ
parameters. For larger numbers of parameters, we can
resort to the use of Markov Chain Monte Carlo (MCMC)
methods [Neal, 1997].

Active Data Mining Strategies
The preceding section showed two important uses of GPs
for spatial reasoning: designing a surrogate function for
generating a dense surrogate field (via Eq. 2), and as-
sessing uncertainties in our estimates of the function at
unsampled points (using Eq. 3). We are now ready to
formulate objective criteria for active data selection, a
pre-cursor to active mining.

Variance Reducing Designs
A simple strategy for sampling is to target locations to
reduce our uncertainty in modeling, i.e., select the loca-
tion that minimizes the posterior generalized variance of
the function. This approach can be seen as optimizing
sample selection for the functional:

ΦV =
1
2

log
[

∂t

∂θ

]
H−1

[
∂t

∂θ

]T

(5)

where
[

∂t
∂θ

]
is the (row) vector of sensitivities w.r.t. each

GP parameter computed at a sample location, and H is
the Hessian (second order partial derivatives) of t, again
w.r.t. the parameters. A straightforward derivation will
show that optimizing ΦV suggests a location whose ‘error
bars’ σ2 are highest.

To implement this strategy, we can adopt either a
block design (optimize for K locations simultaneously),
or apply it sequentially to determine one extra sampling
location at a time. Fig. 5 shows the use of the sequential
sampling strategy for the pocket function of Fig. 3 and
concomitant results from pocket analysis of the surro-
gate model data. At each step, we determine the best
sample location (from among unsampled locations on a
regular grid of 21 × 21), build the GP model from the
data collected thus far, and apply our SAL-based vec-
tor aggregation mechanism to the gradient field derived
from the function values.

The initial design has one point in the center of each
quadrant, and one at the center. Not surprisingly, we
find a significant number (16) of basins in the gradient
field. The next four points added are actually at the
corners; this is because estimated variances are typically
high toward the boundaries of an interpolation region.
As MacKay points out [MacKay, 1992], such a metric
has a tendency to ‘repeatedly gather data at the edges
of the input space.’ The emphasis on overall quality of
function approximation more than data analysis is evi-
dent from the fact that it takes over 30 points before the
SAL pocket finder can infer that there are four pockets.
In further experiments not reported here, we have found
that pushing the initial points outward (or inward) does
not have any appreciable effect on future samplings, and
the variance-based metric favors the outer envelope of
the design space.

Entropy-Based Functionals

To develop a better active mining strategy, notice that
our goal is the identification of regions defined by con-
vergent flows. If we view the SAL program as an in-
formation processor that maps a data field into a class
field (defined over the same underlying space), then the
utility of sampling in a region is directly related to our
inferential capabilities about the corresponding region in
the class field. Intuitively, we should be more interested
in samples that tell us something about the boundary
between regions than those that capture the insides of
a region, even though the latter might have high vari-
ance in its current estimate. Repeatedly sampling func-
tion values inside an already classified and abstracted
region is not as useful as sampling to clarify an emerg-
ing boundary classification. This means that we must
bridge high-level information about pockets from SAL
into a preference of where to collect data.

An idea that suggests itself is to adopt variance-based
design, but instead of minimizing the entropy of the data
distribution, minimize the entropy of the class distribu-
tion as revealed by the SAL pocket finder. By positing
a class distribution at each point, based on the class
labels occupied by neighboring points, we achieve our
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Figure 5: Variance-based sampling. (top row) initial design of 5 points, followed by snapshots taken at later stages (9, 13,
and 31 points). Old sample locations are shown with red circles and new locations are shown with blue diamonds. (middle
row) GP model fits to the given samples. (bottom row) Number of pockets identified by SAL pocket finder.

goal of ranking locations along region boundaries higher.
While this basic strategy appears reasonable, it will re-
peatedly gather information at the region boundaries,
just as variance-based design repeatedly focuses on the
edges. So a point with high entropy is a good location
to sample only as long as the variance surrounding it is
sufficiently high. As our confidence in the data value in-
creases, our preference for this location should decrease
even if the class entropy remains large (as it will, if it
lies on a boundary). This suggests using class entropy
to define a distribution PE(x) over points, and using that
distribution to scale the variance-based design criterion:

ΦE =
1
2

∑
x

PE(x) log
[

∂t

∂θ

]
H−1

[
∂t

∂θ

]T

(6)

The expression inside the summation contains the same
terms as in Eq. 5 but is now evaluated across the design
space and scaled by the amount of interest in location x:

PE(xi) ∝
∑

x∈N (xi)

P (C(x)) log P (C(x)) (7)

where N (xi) is a neighborhood around xi, C(x) denotes
the (flow) class of point x as inferred by the SAL al-
gorithm, and P (C(x)) denotes the probability of en-
countering this class in the neighborhood. The propor-
tionality constant in Eq. 7 must be set to ensure that∑

PE = 1. Formal characterization of this criterion
(i.e., its convergence properties) is difficult since PE(x)
changes during every iteration of data analysis, and we
do not have a model of how PE(x) varies across sam-
plings. Operationally, to apply this criterion, we can
identify the location that gives the highest information
gain, given that we are intending to make a measurement
at that location. Fig. 6 shows a design that optimizes
ΦE and successfully reveals all four pockets with only 11
points.
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Figure 6: Entropy-based sampling. This strategy picks
six additional points, in various quadrants so that the SAL
pocket finder identifies four pockets (not shown) when a GP
model is constructed using the given points.

Computational Considerations
In addition to data collection costs, the other primary
costs to implementing the active mining mechanisms in-
volve the nested optimizations and the necessary matrix
computations. There are two optimizations per round of
data collection: a multi-dimensional optimization over
θ to fit the surrogate model, and a 2D optimization
over x to identify the next sample point. To reduce
the computational complexity in building the surrogate
model, we adopt the public domain Netlab scaled con-
jugate gradient algorithm [Nabney, 2002] which runs in
O(|D| · |θ|) time. While this algorithm avoids having
to work with the Hessian explicitly, the active sample
selection step requires the computation of the Hessian
inverse, which takes O(|D| · |θ|2 + |θ|3) time. To re-
duce the cost of optimization, we use a discrete lattice
search or hill climbing, restricting our attention to lo-
cations over a uniform grid. If the number of locations
on the grid is |G|, then each round of active mining, for
either variance-based or entropy-based data collection,
requires O(|G| · |θ|2 + |G|2 · |θ|) time, plus the cost of
computing the inverse Hessian.

Experimental Results
We now present empirical results demonstrating the ef-
fectiveness of our active mining strategy on both syn-



thetic and real datasets. For evaluation, we consider
classes of problems for which the ‘right’ answer is known,
and pose questions such as: ‘starting from an initial grid,
how many samples does it take to mine the right num-
ber of higher-level structures?’ The answer gives us an
indication of how aggressive the sampling strategy is, its
stability (i.e., once mined, does it continue to mine the
patterns?), and comparisons with the other strategy. In
this paper, we employed the Netlab suite of algorithms
for GP modeling. Netlab supports a covariance formu-
lation similar to Eq. 1, along with a bias term that over-
comes our earlier assumption of zero mean. In addition,
the model includes a noise term that can capture uncer-
tainties in individual measurements; while this is not re-
quired for the deterministic functions considered here, it
ensures that the numerical computation doesn’t become
unstable. All GP parameters are given a relatively broad
Gaussian prior. A surrogate model was fit on a regularly
spaced grid (more below), with a limit of 100 iterations
for conjugate gradient search. The parameters for the
SAL pocket finder were set as follows: 8-adjacency neigh-
borhood graph (in step (b)), 0.75 cosine-angle for vector
similarity (in step (c)), and 0.1 distance penalty metric
in combining distance with direction (in step (d)). The
standard variance-based sampling has no adjustable pa-
rameters; a fixed 8-adjacency neighborhood was utilized
for defining P (x) in entropy-based sampling. Optimiza-
tion for ΦV and ΦE was conducted over the same grid
as the domain of the surrogate function.

Synthetic Datasets

For the synthetic benchmark, we adopted the suite
of test functions from [Gaviano et al., 2003], an ACM
TOMS algorithm to readily generate classes of func-
tions with known local and global minima. The algo-
rithm systematically distorts a convex quadratic func-
tion with cubic or quintic polynomials to yield continu-
ously differentiable (D-type) and twice continuously dif-
ferentiable (D2-type) functions over the closed interval
[−1, 1]2. Since our active mining proceeds by discrete
search over a pre-defined grid, we evaluated the gen-
erated functions over a regular 21 × 21 grid in [−1, 1]2
(|G| = 441) and used these function values as the ‘oracle’
that is queried by the active mining mechanism. We ver-
ified whether in each instance, the SAL pocket finder is
able to resolve all pockets when given a complete 21×21
dataset. This is necessary because the radii of the basins
of attraction interact with the spacing of the sampling
grid, and hence influence the number of samples avail-
able for aggregation by the SAL pocket finder. We found
that the pocket finder is able to resolve only those gener-
ated functions that have up to 7 local minima; functions
with more (e.g., 8–12) local minima use only a handful of
points (typically 3–9) to represent some of their pockets,
too few to be aggregated into a flow class under the SAL
pocket finder’s parameter settings. Hence, we pruned
the automatically generated functions by requiring that
that each local minimum have at least 12 samples per
pocket, when sampled over the 21× 21 grid. This yields
a collection of 43 functions (21 D-type and 22 D2-type),
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Figure 7: Example test functions with 4, 5, 6, and 7 pockets.
Note that the viewpoint chosen makes visible only some of
the pockets.
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Figure 8: Pocket analysis performance on a 7-pocket func-
tion: (top) variance-based and (bottom) entropy-based sam-
pling; (left) number of pockets found and (right) negative
log-likelihood.
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Figure 9: Overall pocket analysis performance (fraction of
cases correctly identified) with increasing number of samples,
for (left) D-type and (right) D2-type functions.

with numbers of pockets ranging from 4 to 7. Fig. 7
depicts some of these functions.

Both algorithms were initially seeded with a 52 design,
comprising 25 points (about 5% of the design space of
441 points). Sampling was conducted for an additional
100 sample values (a total of 125 points, or about 25% of
the design space). We reasoned that this is a good inter-



val over which to monitor the performance of the sam-
pling strategies, as even a regularly spaced grid covering
25% of the design space would mine the pockets cor-
rectly! Fig. 8 reveals the results for a 7-pocket function
from our benchmark. Both sampling strategies system-
atically reduce the (negative) log likelihood (as estimated
from the GP model parameters) but variance-based sam-
pling shows more oscillatory behavior w.r.t. the number
of pockets identified. On close inspection, we found that
this strategy goes through stages where adjacent pockets
are periodically re-grouped around sample values (which
are mostly at the boundaries), causing rapid fluctuations
in the SAL pocket finder’s output. We say that this
strategy is more prone to ‘being surprised.’ The number
of pockets stabilizes around 7 only toward the end of the
data collection interval. In contrast, the entropy-based
sampling first identifies the seven pockets with 68 points,
and proceeds to stabilize beyond this point. Similar re-
sults have been observed with other test functions.

Next, we analyzed the performance of both algorithms
across all 43 test functions. We tested for what frac-
tion of the datasets the analysis was correct by, and
stayed correct following, a given number of rounds of
sampling. Our hypothesis was that the D2-type func-
tions, being smoother, are more easily modeled using
GPs and should lend themselves to more aggressive sam-
pling strategies. In addition, the entropy-based sampling
strategy should be more effective w.r.t. number of rounds
than the variance-based sampling. Fig. 9 shows that this
is indeed the case.

Analysis of Wireless Configuration Spaces

Our second application involves characterization of con-
figuration spaces of wireless system designs (see again
Fig. 1). The goal is to understand the joint influence
of selected configuration parameters on system perfor-
mance. This can be achieved by identifying spatial ag-
gregates in the configuration space, aggregating low level
simulation data (typically multiple samples per configu-
ration point) into regions of constrained shape. In par-
ticular, the setup in Fig. 1 is from a study designed to
evaluate the performance of STTD (space-time transmit
diversity) wireless systems, where the base station uses
two transmitter antennas separated by a small distance,
in an attempt to improve received signal strength. In this
application, the aim is to assess how the power imbal-
ance between the two branches impacts the performance
(measured by bit error rate, BER) of the simulated sys-
tem, across a range of signal-to-noise ratios (SNRs).
When the signal components are significant compared
to the noise components, and when the SNR ratios of
the two branches are comparable, then it is well known
that the system would yield high quality of BER perfor-
mance. What is not so clear is how the performance
will degrade as the SNRs move apart. Posed in the
spatial aggregation framework, this objective translates
into identifying and characterizing (in terms of width,
or power imbalance) the pocket in the central portion of
the configuration space. Identifying and characterizing
other pockets is not as important, since some of them
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Figure 10: Estimates of BER performance in a space of
wireless system configurations.
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Figure 11: Performance of active mining strategies on wire-
less simulation data, characterizing width of the main pocket
in Fig. 10 with increasing numbers of samples.

will actually contain suboptimal configurations.
We adopt an experimental methodology similar

to that in the previous case studies, and cre-
ated an ‘oracle’ from the simulation data described
in [Verstak et al., 2002]. Fig. 10 demonstrates that the
dataset is quite noisy, especially when the SNR values
are low. The design of the oracle, surrogate model build-
ing, and sample selection all employ a 55× 55 grid over
the configuration space (SNR levels ranging from 3dB to
58dB for each antenna). Both variance-based sampling
and entropy-based sampling were initialized using a 112

design (about 4% of the configuration space). Sampling
was conducted for an additional 650 points, yielding a
total of 771 points (25% of the design space, as with the
earlier studies). For each round of active mining, we de-
termined the majority class occupied by points having
equal SNR and determined the maximum width of this
class. This measure was periodically tracked across the
rounds of data collection. Fig. 11 shows how the sam-
pling strategies fare compared to the correct estimate of
12dB, as reported in [Verstak et al., 2002] by applying
an analysis algorithm over the entire dataset. Entropy-
based sampling once again selects data that systemati-
cally clarify the nature of the pockets, and cause a pro-
gressive widening of the trough in the middle. However,
it doesn’t identify the ideal width of 12dB (within the
given samples). We reason that this is because the GP
model has difficulty approximating the steep edge of the
basin. Variance-based sampling fares worse and demon-
strates a slower growth of width across samples. This
application highlights the utility of our framework for
analyzing both qualitative and quantitative properties
of spatial aggregates. This work thus helps improve the



efficiency of wireless system characterization by mining
the essential attributes of good designs using an economy
of simulations.

Discussion

This paper has presented a novel integration of ap-
proaches from three areas, namely qualitative spatial
reasoning, probabilistic modeling using GPs, and ac-
tive data mining. The marriage of Gaussian processes
and SAL is a natural one at many levels. First, by fo-
cusing on covariance structures rather than value ap-
proximation, the modeling of qualitative characteris-
tics via GPs mirrors the mining of spatial aggregates
in SAL. Both GPs and SAL share the traits of local-
ity of computations, weak priors on data characteris-
tics, and capability to model a wide range of high-
level phenomena. Second, the sound statistical basis
of GPs supports a rigorous way to integrate qualita-
tive and quantitative modeling of spatial datasets. Fi-
nally, the multi-level nature of SAL is elegantly captured
in the compositional structure of covariance functions.
Earlier work [Bailey-Kellogg and Ramakrishnan, 2001]
used ambiguity in SAL’s computations to formu-
late indicator random variables that focus sampling
at given points, but sample selection was driven
by the quality of function approximation. Subse-
quently [Ramakrishnan and Bailey-Kellogg, 2003], we
focused on how GPs can model SAL’s localized computa-
tions, but did not integrate the two in order to perform
active mining. This paper represents a logical culmi-
nation of this research and demonstrates a mechanism
that makes judicious use of limited data by combining
the strengths of GPs (for spatial modeling) with SAL
(for identifying high-level structures).

There are several possible extensions to the work pre-
sented here. First, our assumption of sampling over a
defined grid can be relaxed and the scope of active min-
ing can be expanded to include subsampling. Second,
the modeling of vector fields using GPs warrants further
investigation, in particular to address the issue of how
to model data fields given only (or also) derivative infor-
mation or when the underlying function is not smooth
or differentiable. Other investigators have done related
work in this area [Cornford et al., 1998]. Third, we as-
sume here that the model (of flow classes) posited by
SAL is correct, and use this information to drive the
sampling. To overcome this assumption, we must create
a probabilistic model of SAL’s computations (including
uncertainty and non-determinism in aggregation proce-
dures) and integrate this model with the GP model for
the data fields. These and similar ideas will help es-
tablish the many ways in which mathematical models of
data approximation can be integrated with qualitative
analysis algorithms.
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