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ABSTRACT
Recommending personalized content to users is a long-standing

challenge to many online services including Facebook, Yahoo,

Linkedin and Twi�er. Traditional recommendation models such as

latent factor models and feature-based models are usually trained

for all users and optimize an “average” experience for them, yield-

ing sub-optimal solutions. Although multi-task learning provides

an opportunity to learn personalized models per user, learning al-

gorithms are usually tailored to speci�c models (e.g., generalized

linear model, matrix factorization and etc.), creating obstacles for a

uni�ed engineering interface, which is important for large Internet

companies. In this paper, we present an empirical framework to

learn user-speci�c personal models for content recommendation by

utilizing gradient information from a global model. Our proposed

method can potentially bene�t any model that can be optimized

through gradients, o�ering a lightweight yet generic alternative to

conventional multi-task learning algorithms for user personaliza-

tion. We demonstrate the e�ectiveness of the proposed framework

by incorporating it in three popular machine learning algorithms

including logistic regression, gradient boosting decision tree and

matrix factorization. Our extensive empirical evaluation shows that

the proposed framework can signi�cantly improve the e�ciency

of personalized recommendation in real-world datasets.

CCS CONCEPTS
•Information systems → Personalization; Recommender
systems;

1 INTRODUCTION
Personalized content recommendation plays a key role in online

services such as Yahoo, Facebook, LinkedIn and Twi�er. User en-

gagements are primarily driven by how content/items are tailored

to their personal preferences and interests. In the simplest se�ing,
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Figure 1: An example of global and personalmodels. Le��g-
ure showcases the nDCG score of users from global (y-axis)
and personal (x-axis) models. (Right: MAP score).

when only user-item interactions are available, traditional collab-
orative �ltering (CF) methods are usually utilized to produce rec-

ommendations. State-of-the-art matrix factorization-based CF mod-

els (MF) assume that each user has his/her own latent factors and

the recommendation score for a particular user-item pair is a dot-

product between user- and item-factors, leading to the e�ect of

personalization. In more complex se�ings, when richer informa-

tion or features are available, a common practice is to resort to the

paradigm of learning to rank (LtR) where a feature vector of each

user-item interaction is constructed and a regression/classi�cation

model is learned from a large amount of historical interaction data

to predict recommendation scores [17]. A wide range of predictive

models can be used for LtR, including logistic regression [12, 31]

(LogReg), gradient boosting decision tree [11, 13] (GBDT) and Lamb-

daMART [8]. In order to achieve personalization in the LtR se�ing,

heavy feature engineering that characterizes user preferences and

interests is usually required and few challenges still remain:

• Alleviate “average” experience for users. Although both

MF and LtR frameworks provide mechanisms to obtain personal-

ization, they cannot easily leverage individual’s data and o�er a

unique experience for each user. For LtR, a particular model is

commonly optimized based on a global objective function. It is

therefore an “average” model for everyone and remains suboptimal

for individual users [7]. In addition, a global model may be biased

to features that are frequent across all interaction data, while an

individual user may never have interacted with those features in

the past. For MF, while user factors capture user preferences to some

degree, item factors are global as one item only has the same set of

latent features for all users. �us, similar to LtR, item factors for

a particular item are heavily in�uenced by how many users have

interacted with it. If a user happens to interact with a popular item,



the user factors might be “polluted” by the item factors despite of

his/her own peculiar preferences. In other words, traditional MF is

also a global model.

To demonstrate this e�ect, we compare the performance of a

global model and personal models in terms of normalized Dis-

counted Cumulative Gain (nDCG) and Mean-Average-Precision

(MAP), on a dataset from a popular online service, shown in Figure 1.

All models are logistic regression, optimizing Click-�rough-Rate

(CTR). �e global model is trained on all users’ data where personal

models are trained on individuals’ own data. Each point on the �g-

ure represents a user where X-axis and Y-axis represent nDCG/MAP

scores of personal models and a global model respectively. �e �g-

ure shows that personal models exhibit be�er performance than

global models for most users (72.3% and 73.6% points are in the

lower triangle area for nDCG and MAP score). For a small por-

tion of users, the global model tends to have be�er performance.

�is observation motivates us to explore the possibility of building

personal models by borrowing information from a global model.

• Generic empirical frameworks for di�erent models.
Multi-task learning (MTL) algorithms have been exploited to tackle

the issue mentioned above. Under the context of recommendation,

to name a few recent e�orts, Generalized Linear Mixed Models [34]

and Distributed Personalization [25] are proposed to train a global

model and personal models simultaneously. Although these ap-

proaches provide opportunities for personalization, they are tied

to a particular form of model, in this case, linear model, and the

proposed learning (e.g., neighborhood-based collaborative �lter-

ing [26], variational inference [27] and etc). Similarly, under the

context of information retrieval, MTL have been explored for speci�c

models (e.g., linear model [32] and tree-based boosting method [10])

while no generic framework exists for a wide range of models.

•Distributedmodel learning and less access of global data.
Even if most MTL formalisms involve di�erent �avors of personal-

level modeling, learning algorithms to solve these problems are

usually global, meaning that learning algorithms need to access all

data during the training, unless sophisticated distributed learning

systems are utilized [25]. �is is particularly a hurdle for the mobile

era where user interaction data is gathered naturally on their mobile

devices. For a global model, it requires such data being transmi�ed

to the server-side and to re-train the model there, accruing non-

trivial communication costs. On the other hand, personal models

can be trained and immediately used on mobile devices, without

transmi�ing data or model updates to devices, resulting in be�er

user experiences with less communication burden.

In this paper, we propose a generic empirical framework to ad-

dress the aforementioned challenges of learning personal models.

�e proposed framework provides a lightweight yet e�ective al-

ternative to MTL for personalization. �e framework is generic

to a wide variety of machine learning models where we demon-

strate three instantiations, LogReg, GBDT, and MF, in this paper. Any

learning algorithms relying on gradient information can potentially

utilize this framework. �us, the proposed approach o�ers a sys-

tematic solution to build personal models, not tackling the problem

just for a particular model. �e central idea of the method is to

allow each personal model to leverage information from a global

model, to a certain extent, based on the richness of each user’s own

data. We also show parallel learning procedures that enable us to

train personal models at scale. Our contributions in this paper can

be summarized as follows:

• We present a novel generic empirical framework for building

personal models by leveraging a global model through gradient

adaptation, o�ering a more general personalization approach

than MTL.

• We demonstrate three di�erent instantiations of the framework:

LogReg, GBDT, and MF, with detailed optimization procedures for

building personal models.

• We provide an e�cient learning paradigm by exploiting a parallel

computing scheme for building large number of personal models.

• �rough extensive experiments with a variety of datasets, we

show the e�ectiveness of our framework for improving content

recommendation performance.

2 RELATEDWORK
We provide a brief overview of state-of-the-art approaches [3, 30]

for content recommendation systems as well as MTL for personal-

ization.

Generalized Linear Models: One simple way to build a large-

scale content recommendation system is to use generalized linear

models to predict responses (e.g., clicks, ratings and etc.) for each

user-item feature vector. Recent work [34] demonstrated how to

achieve it in an industrial scale. Similar models are used in online

advertising as well [2]. Note that, as these models induce global

optimization problems, special learning algorithms like ADMM,

with sophisticated communication schemes are proposed to solve

them.

Tree Boosting: GBDT [13, 14] has been proven e�ective in many

machine learning applications. Together with LambdaMART, tree

boosting methods show state-of-the-art performance on many

LtR and recommendation tasks [6, 8, 35]. Recently, methods [11]

are developed to learn global tree models on large-scale datasets.

Matrix Factorization: MF-based models are widely used for

recommendation [19] and assume that there exists a latent vec-

tor associated with each user and each item. Also, user and item

bias terms are exploited in the optimization [15]. Regression-based

LFM [1] and Factorization Machines [28] further extended MF to

incorporate arbitrary user and item features. In most cases, gra-

dient descent techniques or alternating least squares (ALS) can be

applied to solve the optimization problems. Recent work [7] pro-

posed a customized matrix factorization objective for improved

recommendations.

Personalization/Multi-Task Learning: �e importance of a

personalized application extends to many �elds such as social net-

works [20, 22] and ranking system [29] while social network has

also been incorporated in personalization [9]. It is necessary for sug-

gesting relevant/interesting results for users and making distributed

computation e�cient in mobile side, such as Distributed Matrix

Factorization [16]. MTL algorithms have been extensively studied to

tackle the problem of personalization in both information retrieval

(IR) and recommender systems (RecSys). Here, we highlight a few

representative papers. In IR, MTL-style linear ranking model [32]

(including feature-hashing methods [33]) and tree-based boosting

ranking models [10, 18]) have been proposed to adapt global ranking
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models to user speci�c ones. In RecSys, early work [26] formu-

lated a MTL based solution for neighborhood-based collaborative

�ltering methods. Recommending items to users based on expert
opinions has also been explored [4]. However, most MTL algorithms

need to solve global optimization problems. Our propose frame-

work di�ers from MTL in that personal models can be optimized

independently from a global objective function. Also, the generic

framework accepts di�erent objective functions.

Curriculum Learning [5] is proposed to solve progressively

harder problems, supplying the training examples in a meaning-

ful order may actually lead to improved performance and be�er

convergence. In comparison to Curriculum Learning, our proposed

framework focus on e�cient learning for personal recommendation

models without reordering. It is general and �exible to tailor to

di�erent model formalisms.

3 THE PROPOSED FRAMEWORK
A global model is usually learned through an optimization process

from all users’ data, lacking any personalization. On the contrary,

personal models are learned from individuals’ data, under the risk

of not having enough data to learn stable models. We want to

balance these two tradeo�s and design a learning paradigm that

adaptively transfers global knowledge to personal models. Figure 2

provides an overview of our framework, that is based on two gen-

eral assumptions. First, we assume that both the global model and
personal models share the same structure of objective functions. �is

assumption is already satis�ed by two extreme cases mentioned

above. In addition, this assumption also implies that both the global

model and personal models can share the same optimization pro-

cess, which is agnostic to the framework described below. �is

is a signi�cant advantage over other similar methods such as MTL
where optimization algorithms are revised towards more compli-

cated objective functions. Secondly, we assume the model can be
optimized through gradient methods. �is assumption covers a wide

range of models including LogReg, GBDT and deep learning models.

Note that, our framework does not assume any explicit relation-

ships between global model parameters and personal ones, di�ering

from basic framework of MTL algorithms. �is is the key aspect for

our proposed approach that allows it to be applicable to multiple

learning paradigms.

Algorithm 3.1 Coordination Algorithm

1: input: C (#Groups), ( |D0 |, |D1 |, ..., |DU |), д
(0) ,д(1) , ...,д(T )

2: output: f (u, |Du |) → tu
3: procedure Scheduler
4: t1, ..., tu , ..., t |U | = 0,u ∈ U
5: d0,d1, ...,dU = log |D0 |, log |D1 |, ..., log |DU |

6: Sort (d0,d1, ...,dU ) in non-ascending order.

7: dmax = max(d0,d1, ...,dU )
8: dmin = min(d0,d1, ...,dU )

9: s = dmax−dmin

C
10: for u ∈ U do
11: for i ∈ [1,C] do
12: if du ∈ [dmin + i ∗ s,dmin + (i + 1) ∗ s] then
13: pu =

i
C ; tu = bT ∗ pu c; break

return {tu },u ∈ U

During the training process for the global model, gradients at

each iteration are saved and transferred to a coordinator for later

personal adaptation. �e coordinator maintains a mapping between

users and gradients. When training a personal model for a given

user, we initialize it based on a version of global model and a portion

of global gradients that correspond to the training data speci�c to

the user. �en, the personal model extends the training procedure

solely based on its own data. �e overall learning paradigm is

described as follows:

θ̃u = θ
(0) − η1

tu−1∑
t=1

д(t ) (θ ) − η2

T∑
t=tu

д(t ) (θu )

where θ represents the model parameter, u is the index for one

user. In this paradigm, personal models adapt global knowledge

by leveraging global gradients, while tailoring themselves to their

individual characteristics by concentrating on their own data.

Each user u owns his/her dataDu . �e adaptive personalization

can be formulated as a learning process, which takes global model

gradients and user’s data for training a personal model:

(G,Du )
adaptation

−−−−−−−−−→Mu
where G = (д0,д1, ...,дT ) is a series of gradients for updating

the global model, and Mu is the personal model for user u. In

the adaptation process, based on user’s own dataset Du , personal

models can be learned locally and in parallel. More importantly,

users who have insu�cient data can still train their models based on

global parameters. �e generic strategy of our proposed framework

is summarized as follows:

(1) Given a dataset ofU users, we learn the global model based

on a gradient-based learning algorithm until the iteration T , and

save global gradients from each iteration into G = (д0,д1, ...,дT ).
(2) For each user u inU , adaptively distribute a sub-sequence

(д0:tu
) from global gradients G based on his/her data Du .

(3) For each user we locally train a personal model based on

the user’s data and the adapted global gradients. �is step can be

implemented in parallel for large-scale data.

Adaptation Mechanism: Assuming, a global model trained

with T iterations; for each iteration, model parameters are updated

along the opposite direction of their gradient. �e gradients are

calculated using all the instances in the training set (DT r
). If an



Algorithm 3.2 Adaptive Personal LogReg

1: input: D = (xui ,yui ), xui ∈ RK ,yui ∈ {1, 0},u ∈ U
2: output: W̃ = {wu },u ∈ U
3: procedure AP-LogReg(D,W)

4: (д(0) ,д(1) , ...,д(T ) ) ← Global Training . Eq.1

5: HashTable A[u] = tu ← Scheduler (D) . Alg. 3.1

6: W̃ = {}
7: Distribute global gradients g(0:T )

8: for user u ∈ U do . Parallel Computing

9: Fetch adapted gradients split tu from A

10: w̃u ← LocalTraining(Du ,д
(0:tu )

) . Eq.3

11: W̃ = W̃ ∪ w̃u
return W̃

individual has watched a large amount of speci�c types of movies,

it is more reasonable for the system to recommend personalized

movie selections than to recommend popular movies that have

been watched by other users. However, given a new user without

su�cient historical data, it is safe for the system to recommend

well known popular items.

It is di�cult to determine a good adaptation locally since the

local models for users do not have global knowledge of other users.

Under this assumption, a centralized coordinator is designed for dis-

tributing global gradients to individual users. Each user is assigned

an iteration split tu given the data distribution across all users.

�e linear mapping of users data size |Du | to tu helps coordinate

users. For instance, given C groups of users, the linear mapping

adaptation sorts user by their data size in descending order. �en

according to the group index, it assigns di�erent subsequences of

global gradients to di�erent groups such as tu = bT ∗
τu
C c where τu

is the group index for user u. For the group with the largest dataset,

our method assigns early gradients such as д0:1
to this group. �e

detailed description of the adaptation is presented in Algorithm 3.1.

3.1 Methods
We instantiate the proposed framework to three machine learning

models, LogReg, GBDT, and MF, which are widely used for content

recommendation. We shall point out that each of these models have

individual characteristics, which di�erentiate it from the others.

However, the way we extend these models to their personal versions

remains consistent. �e demonstration of these three formulations

allows us to justify the e�ectiveness of our proposed framework

for learning personal models.

•Adaptive Logistic Regression. Generalized linear models,

such as LogReg, have been exploited in forecasting users’ click

events (clicking on advertisements or news articles) [23, 24]. In the

LogReg method, the probability of an instance xui being positive is

estimated by a logistic function, which is ŷui = σ (wT
u xui ). And it

optimizes the log-likelihood with instances as:

min

w
L(w) =

N∑
d=1

f (w) + λr (w) (1)

where f (w) is the negative log likelihood function, r (w) is a regular-

ization function and λ is the coe�cient. In our framework, besides

Algorithm 3.3 Adaptive Personal GBDT

1: input: D = (xui ,yui ), xui ∈ RK ,yui ∈ {1, 0},u ∈ U
2: Output: {H }
3: procedure AP-GBDT(D)

4: Initialize the global tree h0

5: (h(0) ,h(1) , ...,h(T )
)← Global Training . Eq.6

6: HashTable A[u] = tu ← Scheduler(D) . Alg. 3.1

7: H = {}

8: Distribute global gradient trees h(0:T )
to users

9: for user u ∈ U do . Parallel Computing

10: Fetch adapted gradients split tu from A

11: F̃u ← LocalTraining (Du ,h
(0:tu ) ) . Eq.7

12: H = H ∪ F̃u
returnH

a global parameter w, each user has his/her own local model wu .

First, we train a global model for all users and save gradients at

each iterations as G = (д(0) ,д(1) , ...,д(T ) ). �en we initialize each

user’s parameter by an adaptive global model as, using SGD:

w̃(0)
u = w(0) − η1

tu−1∑
t=1

д(t ) (w) (2)

where each user has a di�erent adaptive tu . In this case, users with

more examples start with an early global parameter (less global

gradient descents) and users with less examples start with a relative

late global parameter (more global gradient descents). And we

update the personal model parameters:

w̃(T )
u = w̃(0)

u − η2

T−tu∑
t=1

д(t ) (wu ) (3)

Using L2 regularization in Eq. 1, Eq. 3 is expanded as:

w̃(T )
u = w(0) − η1

tu−1∑
t=1

N∑
d

∂ f

∂w
− η2

T∑
t=tu

Nu∑
j

∂ f

∂wu

− η1λ

tu−1∑
t=1

w − η2λ
T∑

t=tu

wu (4)

With the above updating rule, it is easy to prove that the adaptive

personal method based on gradients is a special case of a general

multi-task learning (MTL-LogReg) formula for users as follows:

L′(wu ) =

Nu∑
j

f (yuj , ŷuj ) +
λ1

2

| |wu −w| |2 +
λ2

2

| |wu | |
2

(5)

Our application is not limited to only multi-task learning problem.

It also �ts other algorithms such as Gradient Boosting Decision

Tree.

•Adaptive Gradient Boosting Decision Tree. Tree boosting

has been shown to give state-of-the-art results on many standard

classi�cation benchmarks [21]. Unlike LogReg and MF methods,

training of Gradient Boosting Decision Tree (GBDT) �ts a regres-

sion tree h for the residual which is the gradient descent of the

loss function. We initialize the estimate as F (x ) =
∑U
u=1

∑Nu
j=1

yj
N .

During each iteration t in stochastic gradient descent, we calculate

the gradient descent −д(x j ) = yj − F (x j ) and a regression tree ht is

��ed to −д(x j ). In this case, we get F t = F t−1+ρh(t−1)
. �e global



objective function for GBDT is de�ned as an additive format:

L(t ) =
N∑
d

l (yd , F
(t−1)
d + ρh(t ) ) + Ω(h(t ) )

=

N∑
d

l (yd , F
(0)
d + ρh

(0:t ) ) + Ω(h(t ) ) (6)

where l () refers to the loss function such as least square loss, or

logistic loss. We apply square loss in our experiment. Global gradi-

ent boosting trees are assumed to have more complicated structure

than local trees because the global feature space is sparse. In or-

der to avoid over��ing for each user, we add more constraints on

the local tree ��ing in the regularization part than the global tree

regularization.

For adaption, we initialize each user’s regression tree from the

global regression tree as F̃
(0)
u and for each personal model, we train

the local GBDT as

F̃
(0)
u = F (0) + ρh(0:tu ) , F̃

(T )
u = F̃

(0)
u + ρh

(tu :T )
u (7)

Basically, the global GBDT adapted to a user h(0:tu )
generates an

initial score for each instance in the user’s data. Based on the initial

score, the personal GBDT extends training regression trees to �t

its own data. �rough the adaptation, adaptive GBDT balances the

global tree and local trees and also avoids tree combination with

di�erent structures.

•Adaptive Matrix Factorization. O�-the-shelf algorithms for

recommendation systems, such as Matrix Factorization (MF), have

been widely applied in various applications such as movies, music,

and products. MF assumes each user and item is represented by a

global latent vector qu and pi respectively. �e global objective

function is de�ned as:

min

q∗,p∗,b∗

∑
u,i

(rui − µ − bu − bi − qTu pi )

+ λ( | |qu | |2 + | |pi | |2 + b2

u + b
2

i ) (8)

where rui is the rating score of user u on item i , µ is the global

average rating score for current item, bu and bi are bias variables

for user u and item i .
�is optimization problem can be solved by gradient descent

technique. For a given training instance rui , we modify the param-

eters by moving in the opposite direction of the gradient, yielding:

eui = qTu pi + µ + bu + bi − rui (9)

д(qu ) = euipi + λqu , д(pi ) = euiqu + λpi (10)

д(bu ) = eui + λbu , д(bi ) = eui + λbi (11)

Observing the SGD solution, the user latent vectors help improve

personalization in recommendation. �e learning process for updat-

ing qu is shaped by the global item vector pi (Eq.�). Furthermore,

the item latent vector is shaped by other users (Eq.10).

For our proposed adaptive learning paradigm, we update the

personal user latent models (̃qu , b̃u ) by their own dataset and adap-

tively use global gradients д(qu ),д(pi ) to each user.

q̃(0)u = q(0)u − η1

tu∑
t=0

д(t ) (qu ), q̃
(T )
u = q̃(0)u − η2

T−tu∑
t=0

д(t ) (̃qu ) (12)

b̃
(0)
u = b

(0)
u − η1

tu∑
k=0

д(t ) (bu ), b̃
(T )
u = b̃

(0)
u − η2

T−tu∑
t=0

д(t ) (b̃u ) (13)

Algorithm 3.4 Adaptive Personal MF

1: input: D = (u, i, r ),u ∈ U ,v ∈ V, r ∈ R+

2: output: {Q̃, b̃}
3: procedure AP-MF(D)

4: (P(0) , P(1) , ..., P(T ) )← Global Training . Eq.8

5: (Q(0) ,Q(1) , ...,Q(T ) ) ← Global Training . Eq.8

6: HashTable A[u] = tu ← Scheduler(D) . Alg. 3.1

7: Q̃ = {}, b̃ = {}
8: Distribute global gradients д(qu ) (0:T ) ,д(P) (0:T )

9: for user u ∈ U do . Parallel Computing

10: Fetch adapted gradients split tu from A

11: q̃u , b̃u ← LocalTraining (Du ,д(q) (0:tu ) ,д(P))
12: . Eq.12, 13

13: Q̃ = Q̃ ∪ q̃u , b̃ = b̃ ∪ b̃u
return (Q̃, b̃)

In the global training, we observe that each user latent vector

qu and item latent vector pi are in�uenced by global instances. In

other words, they are in�uenced by other users’ ratings. Both user

and item latent vectors are learned and updated through multiple

iterations.

In the adaptive personal training, we trace back to an early user

latent vector q̃(0)u which means we adapt global gradientsд(0:tu ) (qu )
and we �x the global item latent vectors p(t )i . �en we update the

user latent vector q̃u by its own dataset which means the user latent

vector is less in�uenced by the global items and more in�uenced

by its personal rating instances.

In the MF experiment, user and item latent vectors are not easy

to be learned if only local data is been exploited. In this case,

for comparison, we setup a situation for local-MF that a global MF
model is �rst trained for t iterations and then we send its learned

parameters to all users. Local models at user level are initialized

by the same global information but they keep updating their user

latent vectors locally for multiple runs till convergence.

3.2 Properties
We point out a few properties of the proposed framework in order

to understand its usefulness.

•Generality: �e framework is generic to a variety of ma-

chine learning models that can be optimized by gradient-based

approaches. Although in the following of the paper our discussion

is limited within three use cases, it is straightforward to apply this

framework to other models with only a few con�guration changes.

•Extensibility: �e framework is extensible to be used for more

sophisticated use cases. First, it is straightforward to extend our

framework to incorporate di�erent gradient computation, such as

the gradient from a single example or from a mini-batch. Second,

it is convenient to extend this framework to the online learning

se�ing, for which we can maintain a window (with �xed size)

of gradients from the global model, rather than keeping all the

gradients as in the o�ine se�ing. Note that in this paper, we focus

our presentation and experimentation on the o�ine se�ing, while

leaving the implementation of this framework for online learning

to future work.



Table 1: Dataset Statistics
News Portal

# users 54845

# features 351 Movie Ratings
# click events 2,378,918 Net�ix Movielens

# view events 26,916,620 # users 478920 1721

avg # click events per user 43 # items 17766 3331

avg # events per user 534 sparsity 0.00942 0.039

•Scalability: In this framework, the training process of a per-

sonal model for one user is independent of all the other users. As

such, we can deploy the training process for all the users in an em-

barassingly parallel manner, making our framework highly scalable.

�is is useful in the case of mobile device users where the training

of personal models can happen on the client side. �e training pro-

cedure of a global model can be in batch-mode and o�ine while the

training procedure of personal models is parallelizable and online.

�e proposed framework is more �exible than conventional

MTL algorithms. First, we do not explicit de�ne relationships be-

tween global model parameters and personal ones. Second, our

approach is straightforward and easy to implement for a wide range

of use cases whereas MTL is usually tied to a speci�c model formal-

ism.

4 EXPERIMENTAL EVALUATION
In this section, we conduct a series of experiments to evaluate

the e�ectiveness of the proposed framework for improving per-

sonal models for content recommendation. We �rst describe the

experimental se�ings including the datasets, evaluation metrics

and protocols. �en, we demonstrate the performance of our frame-

work for learning adaptive personal models for LogReg, GBDT, and

MF.

4.1 Datasets
�e datasets used in our experiments are based on two di�erent

domains. One dataset was collected from a main-stream news por-

tal site, which serves news feeds to millions of users. We sampled

the event logs from one month in 2016 with user id and article

id anonymized. Key statistics of this dataset are presented in Ta-

ble 1. In this dataset, each example represents an event that a user

clicked a news article, or a user viewed but not clicked an article.

Note that we take the user click action as a positive label, and

the view-but-not-click action as a negative label. Also note that

each event is associated with a feature vector. Since this dataset is

suitable for ranking content items, we use this dataset to evaluate

the LogReg and GBDT-based personal models, which are the major

ranking models in real-world applications.

To evaluate the personal models for MF, we use the datasets

from the movie domain, i.e., MovieLens 1M dataset and Net�ix

dataset, which are conventional benchmark datasets in the research

community of recommender systems. �e statistics of the two

datasets are summarized in Table 1.

4.2 Comparative Approaches
We summarize the objective functions for the comparison methods

in Table 2. Global models are trained on all users’ data. Local

models are learned locally on per user’s data. MTL represents the

approach that users models are averaged by a global parameter.

Note that for local-MF, the user vector and item vector are learned

globally. We initialize each user model by a trained global model

(̃qu , p̃i , b̃u , b̃i ) and then we train a localized MF model per user by

only using each user’s data. �e result is evaluated per user.

4.3 Protocol and Metrics
In our experiments, each dataset is split into a training set and a

test set. Speci�cally, for each user we randomly select 80% of his

data points to be used in the training set, and leave the rest 20%

into the test set. We also use a small fraction of the training set as a

validation set to tune the parameters involved in di�erent models.

Since LogReg and GBDT are speci�cally used as ranking models

on the news dataset, we adopt the standard ranking metrics from

the information retrieval community, i.e., Mean Average Precision

(MAP), Mean Reciprocal Rank (MRR), Area Under Curve (AUC),

and normalized Discounted Cumulative Gain (nDCG), to evaluate

their ranking performance. For evaluating MF-related models on

the MovieLens and Net�ix datasets, we adopt conventional metrics

(as used in the Net�ix Prize competition and other public contests),

Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE).

In addition to the overall performance, we particularly focus on

the performance for di�erent user groups in order to understand

the e�ectiveness of personal models. On the news dataset, we

divide users into seven groups based on their data size, indexed

from group 1 (smallest) to group 7 (largest). For example, users in

group 1 have data points in range (0, 10) and users in group 7 have

the range of (3162, 20000). For the MovieLens and Net�ix datasets,

we sample and then cluster users into �ve groups and the group

with the largest data points in the range of (200,∞).

4.4 Results
�rough the experimental evaluation, we aim to address the follow-

ing speci�c research questions: 1) Can we learn personal models

from the proposed framework to improve recommendation perfor-

mance over the global-, local- model and the personalized MTL-

models (Sec.4.2)? 2) Can we learn personal models that are adap-

tive to the characteristics of individual users? 3) Is the proposed

framework generally e�ective for content recommendation across

di�erent models and use cases?

4.4.1 Evaluation for Logistic Regression.

Performance Across User Groups. Figure 3 shows the AUC,

MRR, MAP and nDCG (averaging across users) scores on test dataset

for di�erent LogReg models with varying training epochs. �e

proposed adaptive LogReg models achieve higher scores on AUC,

MAP, MRR, and nDCG with relatively fewer epochs. In terms

averaged AUC, MAP, MRR, and nDCG scores across groups, global

LogReg models perform the worst compared to other methods.

Performance with Changing # of Training Samples. We

compare the performance in terms of AUC score for MTL-

LogReg (Eq. 5) and Adaptive-LogReg with # of training samples

from 20% to 100% in Figure 4a. Adaptive-LogReg performs be�er

than Global-LogReg, Local-LogReg, and MTL-LogReg in AUC.

4.4.2 Evaluation for Gradient Boosting Decision Tree.



Table 2: Objective functions for di�erent methods.
Model LogReg GBDT MF
Global

∑N
d=1

f (w) + λ | |w| |2
2

∑N
d l (yd , F

(0)
d + ρh

(0:t ) ) + Ω(h(t ) )
∑
u,i (rui − µ − bu − bi − qTu pi ) + λ( | |qu | |2 + | |pi | |2 + b2

u + b
2

i )

Local

∑Nu
j=1

f (wu ) + λ | |wu | |
2

2

∑Nu
j l (yj , F

(0)
j + ρh

(0:t ) ) + Ω(h(t ) )
∑
i ∈Nu (rui − µ − b̃u − b̃i − q̃

T
u p̃i ) + λ( | |̃qu | |2 + | |̃pi | |2 + b̃2

u + b̃
2

i )

MTL

∑Nu
j f (wu ) +

λ1

2
| |wu −w| |2 +

λ2

2
| |wu | |

2
- global+λ2[(qu − q)2 + (pi − p)2 + (bu −Au )

2 + (bi −Ai )
2
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Figure 3: AUC, MAP, MRR and nDCG scores of LogRegmod-
els with X-axis as the epochs in the SGD algorithm.

 0.52
 0.54
 0.56
 0.58

 0.6
 0.62
 0.64
 0.66
 0.68

 0.7

 0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

AU
C

 s
co

re

% of training samples

Global-LogReg
Local-LogReg
MTL-LogReg

Adaptive-LogReg

(a) LogReg

 0.6
 0.61
 0.62
 0.63
 0.64
 0.65
 0.66
 0.67
 0.68

 0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

AU
C

 s
co

re

% of training samples

Global-GBDT
Local-GBDT

Adaptive-GBDT

(b) GBDT

Figure 4: Comparison of Global, Local, and Adaptivemodels
with varying # of training examples.

Performance Across User Groups. Given the space limitation,

we only show the MAP score for the groups of users with least

data and most data for GBDT models in Figure 5. We observe that

adaptive-GBDT outperform both global and local GBDT models in

terms of MAP for all groups of users.

Performance with Changing # of Training Samples. We

compare the performance in terms of AUC score for Global-GBDT,

Local-GBDT, and Adaptive-GBDT with # of training samples from 20%

to 100% in Figure 4b. On average of AUC, Adaptive-GBDT performs

be�er than other methods. We also observe that with the increase

of training samples, GBDT based methods tend to perform be�er

while LogReg methods achieve relatively stable scores.

Overall Comparison of LogReg and GBDT. In Table 3, we

show the average MAP, MRR, and AUC scores across users with

respect to di�erent iterations for logistic regression adaptation

and GBDT. Global-LogReg is not shown here because it performs
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Figure 5: MAP Comparison of Group 1 (least) and Group 7
(most) for GBDT methods.

the worst as in Fig. 4a. With relatively less iterations, adaptive

method outperforms global, local, and MTL in terms of all metrics.

Speci�cally, for AUC score, adaptive-LogReg achieves 4.4% and 2.9%

rise compared to the best MTL and local-LogReg models. Adaptive-

GBDT outperforms the best globa-GBDT by 1.6% with p-value (=0.003)

from a paired t-test experiment.

4.4.3 Evaluation for Matrix Factorization.

Overall Comparison. In Table 4, we show the average RMSE

and MAE scores across groups of users with respect to di�erent

values of K (the dimension of latent vectors). In this experiment,

global-MF denotes the baseline MF algorithm on the rating data of

all users. However, it is not natural to train a local model for each

user since the latent vectors q, p are updated using a global dataset.

�us we use a di�erent se�ing as “Local” to denote that we train

a global MF model and save the global user latent vectors for each

iteration (U(0)
to U(T )

) until it converges. �en we use the last

model parameter U(T )
to initialize each user model for a localized

training process. “Adaptive” indicates the proposed method in the

algorithm in Section 3. MTL-MF model is a generalized MTL method

on MF. We introduce global parameters (p, q and global bias) and

regularize the user parameters to be close to global parameter as

in the LogReg models. With respect to di�erent choices of K (5,

10, 20), adaptive-MF achieves the best performance (lowest RMSE

and MAE values) compared to global-MF, local-MF, and MTL-MF.

It outperforms global-MF, local-MF, and MTL-MF by 3.7%, 0.8% and

1.4% (p-values are 0.008, 0.04, 0.002 from paired t-tests) in terms of

RMSE(K=5). MTL-MF did not show good performance when ratings

on items have a large variance. �e model forced the learned item

vectors to be similar to the global one.

Performance Across User Groups. Figure 6 shows the quartile

analysis of the group level RMSE and MAE for di�erent MF models

and for two datasets. We group users in descending order based

on their dataset sizes. Comparing to global-MF, both local and

adaptive-MF achieve be�er predictive performance in terms of these

two metrics.



Table 3: Performance comparison based onMAP, MRR, AUC and nDCG for LogReg and GBDT. Each value is calculated from the
average of 10 runs with standard deviation.

MTL-LogReg Global-GBDT
T MAP MRR AUC nDCG #Trees MAP MRR AUC nDCG

20 0.1937(8e-5) 0.3493(4e-4) 0.6226(8e-5) 0.5341(8e-5) 20 0.2094(1e-3) 0.3617(2e-3) 0.6290(1e-3) 0.5329(6e-4)

50 0.2096(4e-5) 0.3834(2e-4) 0.6376(8e-5) 0.5493(4e-5) 50 0.2137(1e-3) 0.3726(1e-3) 0.6341(1e-3) 0.5372(6e-4)

100 0.2104(5e-6) 0.4059(6e-5) 0.6417(9e-7) 0.5512(5e-6) 100 0.2150(8e-3) 0.3769(1e-3) 0.6356(8e-4) 0.5392(6e-4)

200 0.2132(1e-6) 0.4089(7e-5) 0.6459(2e-6) 0.5538(3e-6) 200 0.2161(5e-4) 0.3848(1e-3) 0.6412(6e-4) 0.5415(5e-4)

Local-LogReg Local-GBDT
T MAP MRR AUC nDCG #Trees MAP MRR AUC nDCG

20 0.2221(1e-3) 0.3681(6e-3) 0.6469(8e-4) 0.5443(1e-3) 20 0.2262(2e-3) 0.4510(5e-3) 0.6344(3e-3) 0.5604(2e-3)

50 0.2289(2e-3) 0.3890(4e-3) 0.6521(1e-3) 0.5485(1e-3) 50 0.2319(2e-3) 0.4446(4e-3) 0.6505(2e-3) 0.5651(2e-3)

100 0.2308(1e-3) 0.3938(4e-3) 0.6543(9e-4) 0.5504(1e-3) 100 0.2328(1e-3) 0.4465(5e-3) 0.6558(2e-3) 0.5651(2e-3)

200 0.2294(1e-3) 0.3959(2e-3) 0.6555(8e-4) 0.5495(1e-3) 200 0.2322(2e-3) 0.4431(2e-3) 0.6566(1e-3) 0.5649(1e-3)

Adaptive-LogReg Adaptive-GBDT
T MAP MRR AUC nDCG #Trees MAP MRR AUC nDCG

20+50 0.2343(3e-4) 0.3919(5e-4) 0.6633(8e-5) 0.5542(2e-4) 20+50 0.2343(2e-3) 0.4474(4e-3) 0.6555(2e-3) 0.5661(2e-3)

50+50 0.2353(1e-3) 0.4013(8e-3) 0.6623(7e-4) 0.5559(1e-3) 50+50 0.2325(2e-3) 0.4472(1e-4) 0.6561(8e-4) 0.5666(6e-4)

10+200 0.2454(5e-5) 0.4160(4e-4) 0.6744(5e-5) 0.5643(4e-5) 10+100 0.2329(2e-3) 0.4423(3e-3) 0.6587(1e-3) 0.5650(3e-3)

Table 4: Performance comparison based on RMSE, MAE for
MF. NF refers to Net�ix and ML refers to MovieLens.

NF Global-MF Local-MF MTL-MF Adaptive-MF
K RMSE MAE RMSE MAE RMSE MAE RMSE MAE

5 0.9343 0.7336 0.907 0.7012 0.9119 0.7148 0.8991 0.6988
10 0.9215 0.7168 0.8997 0.6933 0.9328 0.7245 0.8912 0.6910
20 0.9218 0.7166 0.8999 0.6920 0.9208 0.7144 0.8907 0.6892
ML Global-MF Local-MF MTL-MF Adaptive-MF
K RMSE MAE RMSE MAE RMSE MAE RMSE MAE

5 0.9309 0.7338 0.9254 0.7283 0.9337 0.7365 0.9188 0.724
10 0.9337 0.7357 0.9253 0.7269 0.9352 0.7401 0.9178 0.7223
20 0.9348 0.7386 0.9263 0.7285 0.9475 0.751 0.9184 0.7236

4.4.4 Summary. Based on all the experimental results across

three di�erent applications, we do observe that the proposed frame-

work allows us to e�ectively and e�ciently build personal models

that lead to improved recommendation performance over either

the global model or the local model. �is observation con�rms a

positive answer to our �rst research question. Based on the results

across di�erent user groups in each scenario, we also observe that

the proposed framework can adaptively learn personal models by

exploiting the global gradients according to individual’s character-

istic. �is observation allows us to answer our second research

question a�rmatively. Finally, as our experiments demonstrate

the usefulness of our framework across a wide scope, in terms of

both model classes and application domains, it provides a solid evi-

dence for us to give a positive answer to our third and last research

question.

5 CONCLUSION
In this paper we sought to improve users’ experience in personal

recommendation where users have varying amount of historical

data. We presented a general purpose framework for learning

personal models based on adapting the popular gradient descent

optimization techniques. We instantiate our proposed framework
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Figure 6: RMSE andMAE scoreswith respect toGlobal, Local
and Adaptive MFmodels across 5 groups of users.

with three di�erent algorithms and provide training procedures

for each of the cases. �rough extensive empirical evaluation, we

demonstrate the strengths of our proposed framework in terms

of predictive performance on real world datasets. In the future,

we plan to implement an online learning framework for learning

personal models through gradient adaptation. Also, we are inter-

ested in studying the e�ects of adaptive learning rates for users in

personal models.
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