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Abstract

Rapidly increasing volumes of news feeds from diverse data
sources, such as online newspapers, Twitter and online blogs
are proving to be extremely valuable resources in helping an-
ticipate, detect, and forecast outbreaks of rare diseases.This
paper presentsSourceSeer, a novel algorithmic framework
that combines spatio-temporal topic models with source-
based anomaly detection techniques to effectively forecast
the emergence and progression of infectious rare diseases.
SourceSeer is capable of discovering the location focus
of each source allowing sources to be used as experts with
varying degrees of authoritativeness. To fuse the individ-
ual source predictions into a final outbreak prediction we
employ a multiplicative weights algorithm taking into ac-
count the accuracy of each source. We evaluate the perfor-
mance ofSourceSeer using incidence data for hantavirus
syndromes in multiple countries of Latin America provided
by HealthMap over a timespan of fifteen months. We demon-
strate thatSourceSeer makes predictions of increased ac-
curacy compared to several baselines and is capable of fore-
casting disease outbreaks in a timely manner even when no
outbreaks were previously reported.

1 Introduction

There has been a growing interest in developing statistical
models for detecting infectious disease outbreaks to enable
effective control measures to be taken in a sufficiently timely
fashion. Most early approaches relied on highly specialized
data, including medical records or environmental time se-
ries [28, 29]. Recently, however, there has been a grow-
ing interest in monitoring disease outbreaks using publicly
available data on the Web, including news articles [5, 13],
blogs [6], search engine logs [9] and micro-blogging ser-
vices, such as Twitter [7, 16, 17]. Due to their volume, ease
of availability, and citizen participation, suchopen source in-
dicatorshave been shown to be effective at monitoring dis-
ease emergence and progression. Most prior work focuses on
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detecting outbreaks of common diseases, such as influenza,
by discovering temporal patterns over predefined groups of
keywords. However, many infectious diseases arerare with
only a few incidences being reported in open sources. Fore-
casting outbreaks of rare diseases raises several challenges.
We use a real-world scenario to illustrate these challenges.

1.1 ChallengesWe focus on Hantavirus, a rare infectious
disease. We examine incidences in Latin America analyzing
a corpus of public news articles from 798 different sources
(source here refers to the publisher of the article) referring to
multiple diseases over a timespan of 15 months.

The first challenge is that keyword based techniques
have significant limitations at forecasting outbreaks of rare
diseases, such as hantavirus. As incidences are rare, disease
related keywords may be scarce over time or totally unavail-
able in the available past data. Therefore, it is difficult for
keyword-based techniques to identify temporal patterns and
predict new outbreaks in a timely manner. Next, we provide
evidence on why keyword based techniques can be ineffec-
tive and present a detailed evaluation in Section 5.

EXAMPLE 1. We focus on Chile, Argentina, Brazil and
Uruguay. No incidences were reported in other countries.
We compare the number of mentions over time for the set of
hantavirus specific keywords{“hanta”, “hantavirus”, “roe-
dores”, “ratones”, “cardiopulmonar”} and the actual time-
line of hantavirus incidences for each country. The actual
hantavirus incidences were extracted by a third-party gold
standard (Section 4). Figure 1(a) shows the timeline of han-
tavirus incidences in the four countries, while Figure 1(b)
and Figure 1(c) show the timeline of word mentions for the
aforementioned keyword set. There are cases where despite
having an increased number of hantavirus incidences the
number of keyword mentions is low. Also, the two timelines
are not aligned with spikes in the keyword timeline appearing
with a delay after spikes in the actual incidences timeline.

The second challenge is that different data sources may
exhibit different delays at reporting rare disease incidences,
and using their data for predicting outbreaks may lead to
predictions of significantly different accuracies.
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Figure 1: Timeline of hantavirus outbreaks from January 2013 to March 2014 for Chile, Argentina, Brazil and Uruguay.

EXAMPLE 2. For the previous scenario, we consider using
each data source in isolation for predicting hantavirus out-
breaks in Chile, Argentina, Brazil and Uruguay. Figure 2
shows the source accuracy histograms for Chile and Brazil.
As shown, the accuracy levels of different data sources vary
significantly. Similar results were observed for Argentina
and Uruguay but omitted due to space limitations. The model
used for predicting outbreaks is described in Section 4.

1.2 Contributions Motivated by these examples we study
the problem of forecasting disease rare outbreaks across dif-
ferent locations by analyzing a dynamic corpus of publicly
available news articles updated at fixed intervals. We in-
troduceSourceSeer, a novel rare disease outbreak forecast
framework that consists of two major components: (a) anal-
ysis of past data to detect disease spatio-temporal patterns
and (b) prediction of future outbreaks.
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Figure 2: Source accuracy histograms for Chile and Brazil.

Since analyzing keyword mentions over time is not suf-
ficient to discover the temporal patterns rare disease out-
breaks may exhibit, we use topic models to discover the word
co-occurrence patterns in the available news articles in an
automated fashion. We model data sources asevolving doc-
umentsover time, and introduce a new spatio-temporal topic
model (Section 3) that explicitly models time and location
jointly with word mentions. To exploit the fact that different
sources exhibit different levels of accuracy when predicting
rare disease outbreaks, we combine the proposed topic mod-
els with source-based anomaly detection techniques consid-
ering each source as an individual expert and fuse the indi-
vidual source predictions in a single final prediction. We use
anomaly detection techniques since for many locations no
outbreaks may be reported in the available news articles, and
hence, detecting unknown patterns is crucial.

The specific contributions of our approach are:

• Effectiveness:SourceSeer operates on large collections
of news articles and can clearly rare disease topics and
their corresponding spatio-temporal patterns.

• Diversity: Our model enables rare-disease forecasting
for a diverse set of locations with significantly different
outbreak patterns under a unified scheme.

• Accuracy:As we illustrate in an extensive experimental
evaluation, considering the spatial focus and accuracy of
each data source offers improved accuracy in forecasting
disease outbreaks as opposed to analyzing the input of all
sources for a specific location in a collective manner.

• Forecasting instead of detecting:SourceSeer is able to
forecast outbreaks several days before they occur with a
significantlead-timeover reporting in news media.

2 Forecasting Disease Outbreaks With Many Sources

We assume a continuously updated collection of time-
stamped event articles from a collection of data sourceS,
referring to a set of locationsL, and containing words from
a vocabularyV . We consider a discretization of time and
assume that new data entries are added in batches over in-
tervals of fixed time. For example, these time intervals may
correspond to a specific day or week. For the remainder of
the paper we consider a time granularity of one week, de-
fined as the 7-day period from Sunday to Saturday referred
to as anepidemiological week, or epi-weekfor short.

We assume an input over a fixed discretized time win-
dow up to time pointT including data entries associated with
a single time point in{1, . . . , T }. It is convenient to convert
this input to a collection of tuples of the form(source, loca-
tion, word, time point; count)where the count corresponds
to the total number a specific word was mentioned in all ar-
ticles associated with the source, location and time point in
the tuple. For example, a tuple (“www.biobiochile.cl”, (“Los
Lagos”, “Chile”), “hanta”, “28”; 35) means that the word
“hanta” was mentioned 35 times in all articles referring to
the state of Los Lagos in Chile over the epi-week 28 pro-
vided by source “www.biobiochile.cl”.

Given a time pointT , we partition the data across
different sources inS and view each sources ∈ S as atime-
evolving documentconsisting of a collectionNs of time-
stamped tuples, each associated with a certainlatent topic.



Finally, letX denote the set of all tuple collectionsNs for
all sourcess ∈ S until time pointT . Assuming a set of
tuple collectionsX that get updated with time, our goal is to
predict potential disease outbreaks for all locations present
in the input data for the future time pointT + 1. Finally,
we assume access to a gold-standard report (GSR) providing
ground truth information for disease outbreaks at locations
in L for time pointst ≺ T .

3 Spatio-temporal Topic Models

The first component ofSourceSeer deals with the topic and
pattern discovery problem. We introduce a topic model that
explicitly models time and location, jointly with the word
co-occurrence patterns over news articles from multiple data
sources. This is done by incorporating both spatial and tem-
poral component into the basic Latent Dirichlet Allocation
(LDA) framework [4].

Our proposed spatio-temporal topic model uses location
and topic specific distributions to model the generation of
words and timestamps. Topic discovery is influenced not
only by word co-occurrences, but also spatial and temporal
information. Our notation is summarized in Table 1, and
the graphical model representation of the model is shown in
Figure 3. The generative process for the word and time point
of each entry corresponding to an observed location is:

Table 1: Notation used in this paper.

Symbol Description
K Number of topics
S Number of sources
V Number of words
T Number of discrete time-points
L Number of locations
Ns Number of entries in each sources
θl Topic multinomial distr. for locationl
φz Word multinomial distr. for topicz
ξz Time point multinomial distr. for topicz
zsi Topic of theith entry from sources
lsi Location of theith entry from sources
wsi Word of theith entry from sources
tsi Time point of theith entry from sources

STAT generative process

1. DrawK multinomialsφz ∼ Dir(β) for each topicz
2. DrawK multinomialsξz ∼ Dir(γ) for each topicz
3. DrawL multinomialsθl ∼ Dir(α) for each locationl
4. For each sources ∈ S and entryi ∈ Ns with lsi:

(a) Draw a topiczsi from the multinomialθlsi
(b) Draw a wordwsi from multinomialφzsi

(c) Draw a time-pointtsi from multinomialξzsi

Each source entry is associated with a locationlsi ∈
L and we consider a distributionθlsi over topics that is
randomly sampled from a Dirichlet with parameterα. To

generate each entryi ∈ Ns for sources, first, a topiczsi is
chosen from the topic distributionθlsi , and then, a wordwsi

and time-pointtsi are generated by randomly sampling from
the topic-specific multinomial distributionsφzsi andξzsi . In
our experiment we assume a fixed number of topicsK.
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Figure 3: The proposed spatio-temporal topic model.

We use Gibbs sampling to perform approximate infer-
ence. Using a Dirichlet conjugate prior for the multino-
mial distributions allows us to easily integrate outθ, φ and
ξ. To estimate the model parameters, we calculate the con-
ditional probability distributionPr(zsi|w, t, l, z−si, α, β, γ)
wherez−si represents the topic assignments for all entries in
s except thei-th entry. We have:

Pr(zsi|w, t, l,z−si;α, β, γ) ∝
n
k,−(s,i)
wsi

+ βwsi∑V

r=1 n
k,−(s,i)
r + βr

·
m

k,−(s,i)
tsi

+ γtsi∑T

t=1 m
k,−(s,i)
t + γt

·
o
k,−(s,i)
lsi

+ αlsi
∑L

l=1 o
k,−(s,i)
l + αl

(3.1)

wherenz
r denotes the number of times wordr was associated

with topic z across all sources and entries,mz
t denotes the

number of times time-pointt was associated with topicz
across all sources,ozl denotes the number of times location
l was associated with topicz across all sources and their
entries, and−si in the superscript indicates that the current
example has been excluded by the count summations. The
derivation of the Gibbs sampling algorithm is provided in
the supplementary material [19]. Once the sampler has
converged, the parameters forθ, φ, andξ are estimated as:

θl,z =
ozl + αl∑K

z=1 o
z
l + αl

φz,v =
nz
l + αl∑V

v=1 n
z
v + βv

(3.2)

ξl,z =
mz

t + αl∑T

t=1 m
z
t + γt

For each entry in a set of event collectionX we assign
a hidden topicz according to Equation (3.1), and update the
appropriate counts. After the sampling, we compute the dis-
tributionsθ, ξ andφ according to equation Equation (3.2).



4 Source-based Disease Outbreak Prediction

The second component ofSourceSeer is responsible for
forecasting outbreaks at a future time pointt for each of the
locations present inX . At a high-level, for each location
l, we extract an individualized prediction from each source
that is relevant tol and fuse the individual predictions
using weighted majority voting. We learn the corresponding
weights using a multiplicative weights update algorithm.

4.1 Predicting Disease Outbreaks with a Single Source
Detecting an anomaly in the content of sources for location
l, requires reasoning about the relevance of the source’s con-
tent to the discovered disease topics. We view this problem
as an instantiation of thedocument classification[24] prob-
lem and show how the relevance between the content of a
source and a topic can be measured usingcosine similarity.

For each topicz ∈ K, we have a distributionφz

over all words in the vocabularyV . Following a similar
approach to Matsubara et al. [15], we extract the average
occurrence ratēxw for each wordw ∈ V across all entries
and construct anaverage representative documentfor each
topic z ∈ Z, characterized by a vectorFz that contains the
expected occurrence frequency of each wordw ∈ V given
the topic. We define thew-th entry ofFz corresponding to
word w asFz , w = x̄w · φz,w. Similarly, given a source
s, a locationl and a time pointt, the content of a source
is described with a word frequency vectorFs,l,t. Given the
vectorsFz andFs,l,t we define the relevance of the content
of sources for locationl at timet to topicz as:

(4.3) Relevance(s, z; l, t) = CosineSimilarity(Fs,l,t, Fz)

where the cosine similarity of two vectorsA andB is:

(4.4) CosineSimilarity(A,B) = (A ·B)/(‖A‖‖B‖)

We want to predict disease outbreaks at future time
points when the content of each source is not available to
us. Therefore, given a sources, a locationl and a future
time point t, we estimate the entries ofFs,l,t considering
the expected frequency of each word. LetF̂s,l,t[w] denote
the expected frequency for wordw ∈ V . To compute
the expected frequencŷFs,l,t[w], we need to consider the
conditional probability of sources mentioning wordw at a
future time pointt, denoted byPr(t|s, w), the conditional
probability of sources publishing wordw in an article
related to the locationl, denoted byPr(w|s, l), and the
probability of wordw being generated by any topicz ∈ K,
given locationl and time pointt. We have that:

(4.5) F̂s,l,t[w] = x̄w ·Pr(t|s, w) ·Pr(w|s, l) ·
∑

z∈K

φz,w ·θl,z ·ξz,t

wherex̄w denotes the average rate of occurrences of wordw
in X , andφz,w, θl,z, andξz,t, can be retrieved by the output
of the topic model component ofSourceSeer. Given the

historical data, we estimate the probabilityPr(w|s, l) with
its maximum likelihood as:

(4.6) Pr(w|s, l) =
nw,s,l∑

w∈V
nw,s,l

wherenw,s,l denotes the number of mentions of wordw from
sources in locationl. Notice thatξz,t, i.e., the probability of
topicz being prominent at timet, andPr(t|s, w) correspond
to future time points and need to be estimated.

According to the problem description in Section 2,
the available historical data spans up to time pointt − 1.
Thus, we estimate the probability of the source mentioning
a particular wordw at a future timet by considering the
weighted average occurrence rate of wordw in the source:

(4.7) Pr(t|s, w) =

∑t−1
τ=1

1
t−τ

I(τ, s, w)
∑t−1

τ=1
1

t−τ

where I(s, τ, w) is an indicator variable equal to one if
sources mentioned wordw at least once at timeτ , and
zero otherwise. To estimate the probabilityξz,t with z ∈
{1, 2, . . . ,K}, we use the values of distributionξz, ∀z ∈ K
corresponding to past time points. In particular, we use an
autoregressive model over the values of topicz for then pre-
vious time intervals, denoted byξz,t−1, ξz,t−2, . . . , ξz,t−n:

(4.8) ξz,t = a1 · ξz,t−1 + a2 · ξz,t−2 + · · ·+ an · ξz,t−n

where a1, a2, ....., an are the regression coefficients. We
compute the source-topic relevance for each source-location
and topic combination using the aforementioned techniques.

Since rare disease incidences are scarce over time, the
source-topic relevance values for a rare disease topic willbe
low for most time points and high only for few time points
corresponding to an outbreak. Thus, high relevance values
for a rare disease topic, can be viewed as anomalous points,
and anomaly detection techniques can be used.

We use one-class SVMs [22] (OCSVM) to clas-
sify the source-topic relevance values as anomalous or
not. OCSVMs have successfully been used in a vari-
ety of anomaly detection tasks [14, 10, 23]. Furthermore,
OCSVMs present superior performance compared to other
anomaly detection techniques, such as Nearest Neighbor
classification, in scenarios where a small number of anoma-
lous example is available [12]. Finally, OCSVMs do not
make any assumptions on the distribution of the data points.

To predict outbreaks for a future time pointt, we
train a separate OCSVM for each source-location pair
(s, l) using the source-topic relevance values for all time
points up to t − 1 as training data. The training en-
try for a time point t′ ≺ t corresponds to a vector<
Relevance(s, z1; l, t

′),Relevance(s, z2; l, t
′), · · · > contain-

ing the relevance values for all topicsz1, z2, . . . that are rel-
evant to the rare disease under consideration.

4.2 Fusing Multiple Predictions To forecast an outbreak
for a specific location, we fuse the predictions of all sources



into a single prediction for each locationl ∈ L at time t.
We use a weighted majority voting algorithm based on the
multiplicative weights update framework[2].

Given time t in the future, we focus on a locationl
and view each sources ∈ S as an expert providing a
predictionds ∈ [−1, 1] with the value−1 corresponding to
the emergence of an outbreak and1 otherwise. We assign
a weightws to each source, and given the predictions of all
sources, we predict yes/no for an outbreak at locationl by
taking the majority vote

∑
s∈S ws · ds. We learn weightsws

using the multiplicative weights algorithm shown in Alg. 1.

Algorithm 1 Multiplicative Weights Update for Sources

1: Input: Sl: set of sources for locationl; Dl: training points;RSl
:

source-topic relevance dictionary for sources inSl and points inDl;
OSl

: one-class SVMs forSl; ǫ: discount factor
2: Output: W: weights for sources inSl

3: Initialize all weightsW to 1
4: for all d ∈ Dl do
5: for all s ∈ Sl do
6: /*Extract the expert’s vote*/
7: v ← OSl

[s].predict(RSl
[s][d])

8: if v is wrongthen
9: Wk ←Wk · exp(−ǫ) /* Decrease the weight */

10: else
11: Wk ←Wk · exp(ǫ) /* Increase the weight */
12: Normalize the weights to sum up to1.0
13: return W

Consider a locationl. To construct the necessary input
for the multiplicative weights update algorithm, we: (i)
identify the set of sourcesSl relevant to locationl, i.e.,
sources that have published for locationl, and (ii) construct
the set of training pointsDl by considering the reported
outbreaks in GSR (Section 2) for locationl and the disease
under consideration. We populateDl with tuples of the form
(timepoint, outbreak) for all historical time points up to the
latest time point present both inX and GSR and set the value
of outbreak to −1 if an actual outbreak was reported and1
otherwise. Finally, we use the past source-topic relevance
values for the sources inSl and the training points inDl.

Given the input described above, the algorithm proceeds
in an iterative fashion updating the weights of the sources
considering the accuracy of their predictions. More pre-
cisely, the algorithm iterates over all training points inDl

(Ln. 4). At each iteration, it examines all available sources
(Ln. 5) and extracts their prediction corresponding to a spe-
cific training point from the past (Ln. 6-7). If the expert
is mistaken, it’s corresponding weight is reduced in a multi-
plicative fashion (Ln. 9), otherwise its weight is increased
(Ln. 11). Finally, the algorithm outputs the normalized
weights, which are later used to fuse the individual source
predictions for future time points. The process is repeatedas
more ground-truth data are becoming available in GSR.

Finally, we associate each outbreak prediction for loca-
tion l with a confidence score. Let S be the set of relevant
sources for locationl andS−1 be the subset of sources pre-

dicting an outbreak. Moreover, letal(s) be the overallac-
curacyof a sources ∈ Sl considering its past predictions
for locationl. The accuracy of sources is defined over the

available past time window asal(s) =
# correct predictions

#total prediction
and corresponds to the probability ofs giving a correct pre-
diction. Combining the above, the confidence score is:

(4.9) ConfScore=
∏

s∈S
−1

al(s) ·
∏

s∈Sl\S−1

(1− al(s))

Given the confidence score of each outbreak prediction, one
can use a threshold mechanism to select the final outbreak
predictions, and balance the trade-off between precision and
recall as we discuss in Section 5. In particular, one can
select to report an outbreak prediction only if it is in the95%
confidence interval. Fusing the predictions of individual
sources, we predictif a disease outbreak will happen during a
specific epi-week. To predict the exact day of the incidence,
we adopt a standard relative date within the epi-week to be
the date at which the rare disease incidence will occur, and
tune it using cross-validation.

5 Experimental Evaluation

We evaluate the proposed framework using real-world data
focusing on Hantavirus outbreaks in Latin America.

5.1 Experimental Setup We first provide a description of
our experimental setup.
Data: We use a dataset corresponding to a corpus of public
health-related news articles extracted from HealthMap [8],
a prominent online aggregator of news articles and tweets
for disease outbreak monitoring and real-time surveillance
of emerging public health threats. Since, we focus on coun-
tries in Latin America the vocabulary we consider consists
of Spanish and Portuguese words and does not contain only
disease related words. Traditional IR pre-processing such
as stop-word removal and term frequency modeling is per-
formed over a fixed vocabulary of words. The dictionary
contains words that are either commonly associated with dis-
eases (e.g.,“contagious”) or words associated with a specific
disease (e.g.,“rodents”,“hanta” for hantavirus). Finally, each
article is associated with a data source and a location corre-
sponding to a country-state pair.

When predicting for an epi-weekt we use historical
(weekly) data from June 2012 up to the previous week
t − 1 to discover the topics using the model presented in
Section 3 and estimate the source-topic relevance values for
t at each available location. As we progress to prediction
for forthcoming weeks, we gather the estimated source-
topic relevance values corresponding to past weeks and align
them with the gold standard report (Section 4.1) to form the
necessary training points for the OCSVMs. We evaluate the
performance of our proposed techniques from January 2013
to March 2014. The size of the input data varies over time, as



new articles are added every epi-week. The number of words
ranges from 20,908 to 48,700, the number of locations from
74 to 144 and the number of data sources from 381 to 798.
GSR: We make use of a gold standard report (GSR) which
gives ground truth determinations of whether a disease inci-
dence (hantavirus) happened in a given location. The GSR
is determined by analysts of MITRE1 considering multiple
news sources and studying bulletins issued by health report-
ing organizations such as ProMED [1].
Models: We evaluate the following models:

• SourceSeer: Our source-based framework introduced
in Sections 3 and 4 coupled with a thresholding mecha-
nism where for a week and country accepts only the pre-
dictions with confidence scores (Equation (4.9)) in the
top-k percentile of all prediction scores for that country.

• LocSeer: A variation ofSourceSeer that uses the topic
model component to identify disease related topics but
integrates this with alocation-onlyanomaly detection ap-
proach. We follow an approach similar to the one in-
troduced in Section 4.1. For each location we calculate
the location-topic relevance values for future time points
and use an OCSVM to detect anomalous points. To cal-
culate the location-topic relevance, we estimate each en-
try of the location’s word frequency vector aŝFl,t[w] =
x̄w Pr(t|l, w)

∑
z∈K φz,w · θl,z · ξz,t, wherePr(t|l, w)

is defined similarly to Equation (4.7). Intuitively,Loc-
Seer integrates news articles from multiple data sources
ignoring the accuracy of individual sources. We use a
thresholding mechanism similar to that ofSourceSeer
considering the accuracy of each state-based OCSVM.

• KeyWord: A keywordbased prediction technique that
monitors the mentions of the Hantavirus related key-
word set{“hanta”, “hantavirus”, “roedores”, “ratones”,
“cardiopulmonar”} and uses an OCSVM to predict fu-
ture outbreaks based on past mentions of words. This
word-set reflects the fact that Hantaviruses have almost
entirely been linked to human contact with rodent excre-
ment and their symptoms affect the heart and the lungs.

• BRM: A base rate modelthat assumes a fixed rate
for the occurrence of rare disease outbreaks for each
location and for each month. To determine this rate,
the model extracts the average frequency of outbreak
occurrences reported over a past time window of four
months. BRM reports disease outbreaks for that location
at a frequency equal to the extracted rate. Alerting
dates are assigned to the beginning of each month while
event dates are assigned uniformly at random to a day
within the corresponding month. We take the average
performance over 25 independent runs.

1The Mitre Corporation is a not-for-profit company that operates multi-
ple federally funded research and development centers.

All models are implemented in Python and the evalua-
tion is performed on an Intel(R) Xeon(R) CPU E7- 4870
@2.40GHz/64bit/1TB machine.
Parameter Setup:The OCSVM parameters are tuned using
leave-one-out cross-validation. For the topic model, we set
the parameters of the Dirichlet priors toα = 2/K, β = 0.01
and γ = 0.01 where K is the number of topics. We
evaluated the topic model withK = {8, 12, 15} and found
thatK = 12 results in more meaningful topics.
Metrics: We adopt five key measures of performance. Given
our predictions, we compute the precision, recall and F1-
score at a country level, grouping together prediction for
locations in the same country. We also compute an average
warning quality for each country. Each prediction for a
location in the country under consideration is assigned a
quality scoreQ = 4

3
(1+ aloc + adate), wherealoc andadate

denote the location and date accuracy of the prediction. To
calculatealoc we use a two-level topology, considering the
country, and state corresponding to the location of a warning.
A partial score of0.5 is assigned to a warning if it matches
the country of an outbreak correctly and an additional score
of 0.5 is assigned if the warning matches the state correctly.
The date specific accuracyadate is calculated as:

(5.10) adate = 1−
min(|predicted date− actual date|, 7)

7

Finally, we consider the lead time of our predictions, which
is calculated as the time between the date of alerting and the
actual date of reporting the outbreak (not the incidence date
of the outbreak). Notice that lead time is different from the
date accuracy described above.
Mapping Warnings to Events: Since there could be multi-
ple events (and/or alerts) in a given month, a strategy is nec-
essary to map events to alerts. We conduct a maximum bi-
partite matching between events and alerts where (i) an edge
exists if the alert was issued prior to the reporting date of the
event, (ii) the weight on the edge denotes the quality score.

5.2 How effective is the proposed topic model in discov-
ering disease topics and their spatio-temporal patterns?
The HealthMap corpus contains mentions to both common
and rare diseases over multiple countries in Latin America.
The most prevalent diseases mentioned in the dataset are
avian flu (i.e., type h5n1), dengue fever, swine flu (i.e., h1n1
flu), the hantavirus pulmonary syndrome (HPS) and the han-
tavirus hemorrhagic fever with renal syndrome (HFRS) [11].

We evaluate the topics discovered by our topic model.
Six out of the twelve topics are related to the diseases men-
tioned above, while the rest are background topics related
to non-disease aspects of the news articles. We focus only
on the disease related topics. To evaluate the disease topics,
we consider a vocabulary of 184 health-related words. For
each topic, we examine the most likely words based on the
health-related vocabulary and their per-topic probabilities.

Table 2 shows three topics related to hantavirus and their
most likely words based on the health-related vocabulary.



Table 2: Three discovered topics that are related to hantavirus. The
top words with their probability in each topic are shown.

HPS HFRS Hanta Transmission
virus 0.0468 vacuna 0.0057 paciente 0.0220
epidemia 0.0443 campos 0.0031 transmissor 0.0133
enfermos 0.0066 provincial 0.0028 lixo 0.0099
hanta 0.0068 hantavirus 0.0024 criaderos 0.0088
viral 0.0038 tosse 0.0022 respiratorias 0.0061
territorio 0.0027 nariz 0.0019 manos 0.0056
pneumonia 0.0014 estornudar 0.0011 boca 0.0047
sangre 0.0014 abdominal 0.0008 rural 0.0038
ratones 0.0006 lluvia 0.0008 musculares 0.0028
cardiopulmonar 0.0002 renal 0.0005 roedores 0.0022

The first topic refers to the HPS syndrome with words such
as “pneumonia”, “sangre” (blood), and “cardiopulmonar”
being ranked higher. We see that the proposed topic model
is able to retrieve the correlation between words “hanta”
and “ratones” (mice) successfully. The second topic fo-
cuses on the HFRS syndrome with words as “nariz” (nose),
“estornudar” (sneeze), “renal” being more prevalent. Fi-
nally, the third topic focuses on the hantavirus transmission
routes with words as “lixo” (garbage), “criaderos” (breed-
ing places), “manos” (hands) and “roedores” (rodents) being
ranked higher than others. According to Jonsson et al. [11]
HPS is the main syndrome observed in the Americas while
HFRS cases are mainly observed in Eurasia. Thus, observing
the HFRS topic seems unexpected. However, after analyzing
the actual articles in our corpus, we found that articles re-
porting hantavirus incidents usually mention both hantavirus
syndromes for informational purposes. The top words for
the other disease topics are provided in the supplementary
material [19] due to space limitations.

Next, we examine the temporal patterns discovered for
the hantavirus topics. Given a time point, we define the
prominence of a topic as the temporal distribution value for
that topic at that time point. The prominence histograms are
shown in Figure 4. The HFRS topic shows small fluctuations
across time. However, the HPS topic follows a trend similar
to that of the hantavirus incidence timeline (Figure 1(a)).
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Figure 4: The topic prominence timeline for HPS and HFRS.

Finally, we examine the correlations between the dis-
covered topics and the countries in Latin America under con-
sideration. Figure 5 shows the prominence of each topic
for Brazil, Chile, Uruguay and Argentina. As expected, we
observe that in Chile, HPS and HFRS are more prominent,
while in Brazil Dengue topic is prominent as Brazil is prone
to dengue outbreaks throughout the year.
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Figure 5: The country specific topic prominence for different
diseases averaged over states.

5.3 How efficient is SourceSeer at forecasting disease
outbreaks? We evaluate the performance of the various dis-
ease outbreak forecasting algorithms focusing on hantavirus
incidences at the country level considering the predicted out-
breaks for Argentina, Chile, Uruguay and Brazil. We ap-
ply BSR, KeyWord, SourceSeer andLocSeer. We eval-
uate the performance ofSourceSeer and LocSeer with
k ∈ {5, 10, 20, 30, 40, 50, 70}. We use the three hantavirus
topics described above to construct the necessary feature
vectors forSourceSeer andLocSeer.

Figure 6(a) shows the F1 score of the four approaches
from January 2013 to March 2014 aggregated over all coun-
tries. As shown,SourceSeer obtains the best F1-score for
most of the months. The F1 score of BSR is lower as its re-
call is significantly lower compared to that ofSourceSeer.
The latter is expected as BSR can only predict outbreaks for
states where a sufficient number of outbreaks has occurred
in the past. In fact, due to its design BSR fails completely
to forecast outbreaks for states or countries where no out-
breaks have been observed in the past (e.g., the outbreak in
Brazil for October 2013 and the outbreak in Uruguay for
March 2013). However this mechanism limits the number
of false positives significantly, and thus, for many months
we observe slightly higher or comparable precision scores
for BSR with those ofSourceSeer. The F1 score ofLoc-
Seer is significantly lower compared toSourceSeer due
to its significantly lower precision scores. The reason for
this behavior is the increased number of false positives re-
turned byLocSeer even after the thresholding mechanism
was employed. Finally,KeyWord performs reasonably well
when there is an increase in the number of outbreaks in pre-
vious weeks leading to increased keyword counts. However,
the model performs poorly in the presence of low keyword
counts.KeyWord failed to forecast the outbreaks in August
and September 2013 as only one was reported in July. A
detailed evaluation on the precision, recall and F1 score is
provided in the supplementary material [19].

Is the performance gain of SourceSeer significant?To ob-
tain a clearer understanding ofSourceSeer’s performance
gain, we perform the Wilcoxon signed-rank [27] test com-
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Figure 6: (a) F1-score timeline (b) quality score timeline for BSR,KeyWord, LocSeer and SourceSeer on forecasting hantavirus
outbreaks. (c) Lead-time timeline forLocSeer andSourceSeer on predicting hantavirus outbreaks.

paring the performance of BSR withSourceSeer, Key-
Word with SourceSeer and LocSeer with SourceSeer
for precision, recall, and F1-score across all months. In Ta-
ble 3 we report the corresponding test statistic scoresW
and thez-scores. We consider a baseline confidence level
of α = .05. As shown, the performance difference be-
tween BSR andSourceSeer is statistically significant for
recall and F1 (withSourceSeer outperforming BSR) while
the difference for precision is not statistically significant.
The same behavior was observed forKeyWord andSource-
Seer. For LocSeer andSourceSeer, we see that the per-
formance gain ofSourceSeer for precision and F1 is statis-
tically significant while the difference for recall is not. We
did not observe significant differences in the performance of
LocSeer andSourceSeer for different values ofk.

We further analyze the performance of the four models
by comparing the quality score cross all months under con-
sideration. Figure 6(b) shows the average prediction quality
score obtained by each model from January 2013 to March
2014. A higher quality score is an indicator that a model
can predict outbreaks correctly at the state and not only at
the country level. As shown, bothLocSeer andSource-
Seer outperform BSR andKeyWord significantly. This is
expected since BSR relies only on past reported events to
predict future outbreaks andKeyWord on increased keyword
counts, hence, by design both cannot predict outbreaks in
states with no reported incidents. Moreover, we observe that
SourceSeer obtains higher quality scores for most of the
months compared toLocSeer. This is due to its capability
of weighting the predictions of difference sources based on
their accuracy for each specific state.

What is the lead-time gain of SourceSeer?Finally, we
analyze the average lead-time ofKeyWord, LocSeer and
SourceSeer to examine if the proposed models can forecast
outbreaks in a timely manner. Figure 6(c) shows the lead-
time timeline of the three models from January 2013 to
March 2014. We observe that both models have a significant
lead-time advantage when compared against the mention of
the outbreak in news sources and also outperformKeyWord.

DiscussionFrom our experiments we see thatSourceSeer
can effectively discover rare-disease topics and their spatio-

Table 3: Wilcoxon signed-rank statistical significance test on
SourceSeer’s performance gain.H0: The median performance
difference between the pairs is zero. RejectH0: ‖z‖ ≥ 1.645
or W ≥ 15 whenz not applicable. Baseline confidence level of
α = .05. Bold fonts denotes statistically significant differences.

Metric Score SourceSeer v.s. SourceSeer v.s. SourceSeer v.s.
BSR LocSeer KeyWord

Prec. W -51 81 36
z -1.463 2.966 1.349

Rec. W 114 3 76
z 3.223 - 2.961

F1 W 61 101 100
z 1.899 3.154 2.825

temporal patterns. We also observed that exploiting the
different authoritativeness levels of news sources enables
us to forecast outbreaks more accurately even when no
outbreaks were reported in the past. Finally,SourceSeer
can forecast outbreaks ahead of news media with an average
lead-time of 8 days.

6 Related Work

To the best of our knowledge most existing topic models
focus on the temporal or spatial trends in isolation and do not
analyze both types of trends jointly. A number of methods
have been proposed for analyzing the time evolution of
topics in document collections, such as the topics over time
(TOT) model [26], the dynamic topic model (DTM) [3], and
TriMine model [15]. TOT handles time-windows of fixed
size and uses a Beta distribution to model the evolution of a
topics. DTM focuses on a time-window of fixed size but uses
Kalman filters, and TriMine is able to analyze windows of
variate size is able to find cyclic time patterns with different
timescales, which enables predicting future events.

A different line of work, Spatial Latent Dirichlet Allo-
cation (SLDA) [25], focuses on discovering spatial patterns
jointly with the word co-occurrences. While the model fo-
cuses on computer vision applications where documents are
comprised by visual words the proposed techniques can be
trivially extended to regular text documents. A similar ap-
proach was introduced by Ramage et al. [18] for labeled doc-
uments where the labels can correspond to locations.

Finally, although previous approaches [17, 20, 21] have
considered topic models for forecasting disease outbreaks,



they focus on common diseases, like influenza, for which
large amounts of data or specialized medical records are
available. None of these models considers the accuracy of
different data sources when predicting outbreaks.

7 Conclusions

We studied the problem of rare disease outbreak prediction
when analyzing dynamic news sources providing an evolv-
ing corpus of news articles. We introducedSourceSeer, a
framework that combines spatio-temporal topic models with
source-based anomaly detection techniques for forecasting
rare disease outbreaks at fine spatial granularity by consider-
ing the accuracy of each individual news source. Experimen-
tal results show the effectiveness of our proposed framework
and illustrate how taking the accuracy of data sources into
account leads to higher quality predictions.
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