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Abstract detecting outbreaks of common diseases, such as influenza,

Rapidly increasing volumes of news feeds from diverse d&% discovering temporal patterns over predefined groups of
sources, such as online newspapers, Twitter and online blkgywords. However, many infectious diseasesrare with

are proving to be extremely valuable resources in helping &Ry @ few incidences being reported in open sources. Fore-
ticipate, detect, and forecast outbreaks of rare disedbes. Casting outbreaks of rare diseases raises several chedleng
paper presentSourceSeer, a novel algorithmic framework We use a real-world scenario to illustrate these challenges
that combines spatio-temporal topic models with source- ) _ )
based anomaly detection techniques to effectively fotechsl ChallengesWe focus on Hantavirus, a rare infectious
the emergence and progression of infectious rare diseadéigase. We examine incidences in Latin America analyzing
SourceSeer is capable of discovering the location focud cOrpus of public news articles from 798 different sources
of each source allowing sources to be used as experts WipUrce here refers to the publisher of the article) refgrio
varying degrees of authoritativeness. To fuse the indivifultiple diseases over a timespan of 15 months. _

ual source predictions into a final outbreak prediction we The first challenge is that keyword based techniques
employ a multiplicative weights algorithm taking into achave significant Ilmltat|on_s at fore_ca;tlng outbreaks oé ra
count the accuracy of each source. We evaluate the perﬂﬁﬁases, such as hantavirus. As mad_ences are raresehsga
mance ofSourceSeer using incidence data for hantaviruselated keywords may be scarce over time or totally unavail-
syndromes in multiple countries of Latin America provide@lble in the available past data. Therefore, it is difficult fo
by HealthMap over a timespan of fifteen months. We demdffyword-based techniques to identify temporal patteris an
strate thatSourceSeer makes predictions of increased adredict new outbreaks in a timely manner. Next, we provide
curacy compared to several baselines and is capable of f@,\gdence on why keywprd based t.ech.nlques.can be ineffec-
casting disease outbreaks in a timely manner even wherfi4g and present a detailed evaluation in Section 5.

outbreaks were previously reported. ExaMPLE 1. We focus on Chile, Argentina, Brazil and
_ Uruguay. No incidences were reported in other countries.
1 Introduction We compare the number of mentions over time for the set of

There has been a growing interest in developing statistibaintavirus specific keywordshanta”, “hantavirus”, “roe-
models for detecting infectious disease outbreaks to enatipres”, “ratones”, “cardiopulmonar”} and the actual time-
effective control measures to be taken in a sufficiently lymdine of hantavirus incidences for each country. The actual
fashion. Most early approaches relied on highly specidlizeantavirus incidences were extracted by a third-party gold
data, including medical records or environmental time sgiandard (Section 4). Figure 1(a) shows the timeline of han-
ries [28, 29]. Recently, however, there has been a grd@virus incidences in the four countries, while Figure 1(b)
ing interest in monitoring disease outbreaks using pupli@nd Figure 1(c) show the timeline of word mentions for the
available data on the Web, including news articles [5, 13fforementioned keyword set. There are cases where despite
blogs [6], search engine logs [9] and micro-blogging sdraving an increased number of hantavirus incidences the
vices, such as Twitter [7, 16, 17]. Due to their volume, easgmber of keyword mentions is low. Also, the two timelines
of availability, and citizen participation, sucdpen source in- are not aligned with spikes in the keyword timeline appegrin
dicatorshave been shown to be effective at monitoring digvith a delay after spikes in the actual incidences timeline.

ease emergence and progression. Most prior work focuses on ) .
The second challenge is that different data sources may

“Dept. of Computer Science, University of Maryland, Coll&grk exhibit .diﬁeren.t delays at repqrtir‘g rare disease incigsn
TDept. of Computer Science, Virginia Tech and using their data for predicting outbreaks may lead to

Children’s Hospital Informatics Program, Boston Childseiospital predictions of significantly different accuracies.
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Figure 1: Timeline of hantavirus outbreaks from January3@1March 2014 for Chile, Argentina, Brazil and Uruguay.

EXAMPLE 2. For the previous scenario, we consider usinge EffectivenessSourceSeer operates on large collections
each data source in isolation for predicting hantavirus-out of news articles and can clearly rare disease topics and
breaks in Chile, Argentina, Brazil and Uruguay. Figure 2 their corresponding spatio-temporal patterns.

shows the source accuracy histograms for Chile and Brazi}, pjyersity: Our model enables rare-disease forecasting
As shown, the accuracy levels of different data sources vary for a diverse set of locations with significantly different
significantly. Similar results were observed for Argentina oytpreak patterns under a unified scheme.

and Uruguay but omitted due to space limitations. The model . . . . .
. ) . : . e Accuracy:As we illustrate in an extensive experimental
used for predicting outbreaks is described in Section 4.

evaluation, considering the spatial focus and accuracy of
each data source offers improved accuracy in forecasting
disease outbreaks as opposed to analyzing the input of all
sources for a specific location in a collective manner.

1.2 Contributions Motivated by these examples we study
the problem of forecasting disease rare outbreaks acrss di
ferent locations by analyzing a dynamic corpus of publicly o } i
available news articles updated at fixed intervals. We ine Forecasting instead of detectin§ourceSeer is able to
troduceSourceSeer, a novel rare disease outbreak forecast forecast outbreaks several days before they occur with a
framework that consists of two major components: (a) anal- Significantlead-timeover reporting in news media.
ysis of past data to detect disease spatio-temporal pattern
and (b) prediction of future outbreaks. 2 Forecasting Disease Outbreaks With Many Sources
We assume a continuously updated collection of time-

Source Characteristics (Chile) Source Characteristics (Brazil)  stamped event articles from a collection of data soufce
10 100 referring to a set of locations, and containing words from
a vocabularyV. We consider a discretization of time and
assume that new data entries are added in batches over in-
tervals of fixed time. For example, these time intervals may

05 1 82 o6 o8 1 correspond to a specific day or week. For the remainder of
Source Accuracy Source Accuracy the paper we consider a time granularity of one week, de-
Figure 2: Source accuracy histograms for Chile and Brazil. fined as the 7-day period from Sunday to Saturday referred

Since analyzing keyword mentions over time is not sUf @ arepidemiological weelor epi-weekor short. _
ficient to discover the temporal patterns rare disease out- VW& @ssume an input over a fixed discretized time win-
breaks may exhibit, we use topic models to discover the wélgW UP to time point” including data entries associated with
co-occurrence patterns in the available news articles in &fingle time pointin(1,...,T}. Itis convenient to convert
automated fashion. We model data sourcesvadving doc- this input to a collection of tuples of the for(aource, loca-

umentsover time, and introduce a new spatio-temporal tog@n: Word, time point; countjvhere the count corresponds

model (Section 3) that explicitly models time and locatioi? the total number a specific word was mentioned in all ar-

jointly with word mentions. To exploit the fact that differe ticles associated with the Source, location and tim% paint i
sources exhibit different levels of accuracy when predigti the tuple. For example, a tuple (“www.biobiochile.cl”, Gk

rare disease outbreaks, we combine the proposed topic f0s”, “Chile”), *hanta”, “28”; 35) means that the word

els with source-based anomaly detection techniques congitfnt&” was mentioned 35 times in all articles referring to

ering each source as an individual expert and fuse the il State of Los“Lagos in Chile over the epi-week 28 pro-
vidual source predictions in a single final prediction. We u¥ided by source “www.biobiochile.cl”.
anomaly detection techniques since for many locations ng GVén a time point7’, we partition the data across

outbreaks may be reported in the available news articles, 4ifférentsources is' and view each sourcee 5 as atime-
hence, detecting unknown patterns is crucial. evolving documentonsisting of a collectionV, of time-

The specific contributions of our approach are: stamped tuples, each associated with a ceftaant topic

# of Sources
(o))

# of Sources
(o))
o
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Finally, let X denote the set of all tuple collectiodé; for generate each entiye N, for sources, first, a topicz; is

all sourcess € S until time point7’. Assuming a set of chosen from the topic distributiaf_,, and then, a worab,;
tuple collectionsY that get updated with time, our goal is t@nd time-point; are generated by randomly sampling from
predict potential disease outbreaks for all locations gmesthe topic-specific multinomial distributions._, and¢._,. In

in the input data for the future time poifit + 1. Finally, our experiment we assume a fixed number of topics

we assume access to a gold-standard report (GSR) providing

ground truth information for disease outbreaks at location Sources

in L for time pointst < 7. @

3 Spatio-temporal Topic Models ‘ﬁ

The first component ddourceSeer deals with the topic and ?’c':‘_:'"’"“"';zw :

pattern discovery problem. We introduce a topic model that oiruions @
explicitly models time and location, jointly with the word D ),
co-occurrence patterns over news articles from multipte da & | TopoTme
sources. This is done by incorporating both spatial and tem- é)

poral component into the basic Latent Dirichlet Allocation
(LDA) framework [4].

Our.propos.e.d spatip-tgmporal topic model uses chation We use Gibbs sampling to perform approximate infer-
and topic specific distributions to model the generation 8ﬂce. Using a Dirichlet conjugate prior for the multino-

words and timestamps. Topic discovery is influenced ngta) gistributions allows us to easily integrate @ytp and
only by word co-occurrences, but also spatial and tempog?‘ITo estimate the model parameters, we calculate the con-

information. Our notation is summarized in Table 1, a'}ﬂtional probability distributiorPr(zy:|w, t,1,z_s;, @, 5, 7)

the graphical model representation of the model is Showr\/\'fﬂerez,si represents the topic assignments for all entries in

Figure 3. The generative process for the word and time poirgxcept the-th entry. We have:
of each entry corresponding to an observed location is: ' ’

Figure 3: The proposed spatio-temporal topic model.
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Symbol  Description
Number of topics
Number of sources

K
S
\Y Number of words
T
L

(3.1)

wheren? denotes the number of times wardvas associated
with topic z across all sources and entries; denotes the
number of times time-point was associated with topic

Number of discrete time-points
Number of locations

N, Number of entries in each sourge . .

0, Topic multinomial distr. for locatior across all sourcesy _denotgs the number of times Iocan_n
. Word multinomial distr. for topic: [ was associated with topie across all sources and their

€. Time point multinomial distr. for topic entries, and-si in the superscript indicates that the current
Zsi Topic of theith entry from source example has been excluded by the count summations. The
lsi Location of theith entry from source derivation of the Gibbs sampling algorithm is provided in
Wi Word of theith entry from source the supplementary material [19]. Once the sampler has
tsi Time point of theith entry from source converged, the parameters fhrp, and¢ are estimated as:

STAT generative process

o o7 + o
1. DrawK mult?nom!als@ ~ Dir(ﬁ) for each top_ic:z Oz = K of 4
2. Draw K multinomials¢, ~ Dir() for each topic: nF + o
3. DrawL multinomials#; ~ Dir(«) for each locatiori 3.2) bz0 = 72‘/ n: + 8
4. For each sourcee S and entryi € N, with [;: ”7;12 -:Oél
a) Draw a topicz,; from the multinomiab; . 2= £
(@ PICsi b ¢ ST mE

(b) Draw a wordw,; from multinomiale._,

(c) Draw a time-point,; from multinomial... For each entry in a set of event collectidhwe assign

Each source entry is associated with a locafigne a hidden topic: according to Equation (3.1), and update the
L and we consider a distributiofy,, over topics that is appropriate counts. After the sampling, we compute the dis-
randomly sampled from a Dirichlet with parameter To tributionsé, € and¢ according to equation Equation (3.2).



4 Source-based Disease Outbreak Prediction historical data, we estimate the probabilRy(w|s, 1) with

The second component &ourceSeer is responsible for IS maximum likelihood as:
forecasting outbreaks at a future time paifior each of the (4.6) Pr(wls, ) = sl
locations present ii’. At a high-level, for each location 2wy ws,l
I, we extract an individualized prediction from each soureéheren,, s ; denotes the number of mentions of wardrom
that is relevant tol and fuse the individual predictionssources in location!. Notice that. ., i.e., the probability of
using weighted majority voting. We learn the correspondingpic z being prominent at timg andPr(¢|s, w) correspond
weights using a multiplicative weights update algorithm. to future time points and need to be estimated.

According to the problem description in Section 2,
4.1 Predicting Disease Outbreaks with a Single Sourcethe available historical data spans up to time paoint 1.
Detecting an anomaly in the content of sousder location Thus, we estimate the probability of the source mentioning
1, requires reasoning about the relevance of the source’s (%rpamcglar wordw at a future t|tmez} by ﬁ?ﬁlderlng the
tent to the discovered disease topics. We view this probl(g\fﬁ'g ed average occurrence rate ot war € source-

as an instantiation of theocument classificatiof24] prob- S (s w)
lem and show how the relevance between the content dftd) Pr(t|s, w) = ST 1

. . s . T=11t—7
sour|<::e and a;]t(:pu:- can be}r{neasurﬁd usmsgg.ets_ltr)mlgrlty where I(s,7,w) is an indicator variable equal to one if
or each topicz € K, we have a distributionp. 4 rces mentioned wordw at least once at time, and

over all words in the vocabulary’. Following a similar zerg otherwise. To estimate the probability; with z €
approach to Matsubara et al. [15], we extract the averages .. K}, we use the values of distributi(i@,vg e K
occurrence rate,, for each wordw € V' across all entries corresponding to past time points. In particular, we use an
and construct aaverage representative documdot each autoregressive model over the values of topior then pre-
topic z € Z, characterized by a vectdt, that contains the vious time intervals, denoted gy ;1,&.1—2,..., &2 t—n:
expected occurrence frequency of each werd V' given
the topic. We define the-th entry of F, corresponding to

word w asky,w = Ty - ¢sz_- Similarly, given a source where a1, as, .....,a, are the regression coefficients. We
s, @ location/ and a time point, the content of a sourcecompute the source-topic relevance for each source-toeati
is described with a word frequency vecttr; .. Given the and topic combination using the aforementioned techniques
vectorsF, andFy,;, we define the relevance of the content  gince rare disease incidences are scarce over time, the
of sources for location/ at timet to topicz as: source-topic relevance values for a rare disease topidbeill
low for most time points and high only for few time points
corresponding to an outbreak. Thus, high relevance values
where the cosine similarity of two vectorsandB is: ~ for a rare disease topic, can be viewed as anomalous points,
and anomaly detection techniques can be used.
(4.4) CosineSimilarity(A, B) = (A - B)/(||All||B]|) We use one-class SVMs [22] (OCSVM) to clas-
) ) . sify the source-topic relevance values as anomalous or
_We want to predict disease outbreaks at future g ocsyMs have successfully been used in a vari-
points when the content of each source is not avallableeggl of anomaly detection tasks [14, 10, 23]. Furthermore
us. Therefore, given a souree a location/ and a future OCSVM i . ; ey ) d to oth '
time pointt, we estimate the entries df;;, considering S present superior periormance compared to other
the expected frequency of each word. lfétlt[w] denote anom_a_lly Qetef:non tecr_lmques, such as Nearest Neighbor
the expected frequency for word € V. "o compute classification, in scenarios where a small number of anoma-
lous example is available [12]. Finally, OCSVMs do not

the expected frequency,; ,[w], we need to consider the . s .
conditignal probgbility%%’sé[url:e mentioning wordw at a make any assumptions on the distribution of the data points.

future time pointt, denoted byPr(t|s, w), the conditional _ 1° predict outbreaks for a future time point we
probability of sources publishing wordw in an article train a _separate OCSVM_ for each source-location pair
related to the locatiord, denoted byPr(w|s,1), and the (s,l) using the source-topic relevance values for all time
probability of wordw being generated by any topicc K, points up tot — 1 as training data. The training en-
given location and time point. We have that: try for a time pointt’ < ¢ corresponds to a vector

. Relevance(s, z1;1, '), Relevance(s, z2;1,t'),-- - > contain-
(4.5) Fyp[w] = Zu-Pr(t]s, w)-Pr(wls,1)- Y ¢uw-0i:-é-¢  ing the relevance values for all topies, 2o, . . . that are rel-

B #eK evant to the rare disease under consideration.
wherez,, denotes the average rate of occurrences of word

in X, and¢. ., 0; ., and¢, +, can be retrieved by the outpu
of the topic model component &ourceSeer. Given the

(48) fz,t =aa - gz,tfl +az - fz,t72 + -t an- €z,t7n

(4.3) Relevance(s, z;1,t) = CosineSimilarity (Fs, ¢, F%)

E1.2 Fusing Multiple Predictions To forecast an outbreak
for a specific location, we fuse the predictions of all soarce



into a single prediction for each locatidne L at time¢. dicting an outbreak. Moreover, lei(s) be the overalhc-
We use a weighted majority voting algorithm based on tlsgracy of a sources € S; considering its past predictions
multiplicative weights update framework[2]. for location!. The accuracy of sourceis defined over the

Given timet in the future, we focus on a locatidn available past time window ag(s) = #;?g[gfgfggfﬂﬁgﬁns

and view each source € 5 as an expert providing a4 corresponds to the probability oiving a correct pre-

predictiond, € [—1,1] with the value—1 corresponding to gjiction. Combining the above, the confidence score is:
the emergence of an outbreak ahdtherwise. We assign

a weightw, to each source, and given the predictions of g#.9) ConfScore= H ai(s) - H (1 —ai(s))

sources, we predict yes/no for an outbreak at locatiby SES_1 SESI\S 1

taking the majority vot& _ ¢ w; - d;. We learn weightsss  Given the confidence score of each outbreak prediction, one

using the multiplicative weights algorithm shown in Alg. 1can use a threshold mechanism to select the final outbreak

Algorithm 1 Multiplicative Weights Update for Sources predictions, and balance the trade-off between precisidn a

1. Input: S;: set of sources for locatiofly D;: training points; R, recall as we discuss in SeCtlon_ 5.' In pa_rupglgr, one can
source-topic relevance dictionary for sourcesSinand points inD;  Select to report an outbreak prediction only if it is in 8g%

Og,: one-class SVMs fo6;; e: discount factor confidence interval. Fusing the predictions of individual
2: Output: W: weights for sources it sources, we predidta disease outbreak will happen during a
3: Initialize all weights/¥ to 1 specific epi-week. To predict the exact day of the incidence,
4: forall d € Dy do . L .
5 forall s e S do we adopt a stqndard relatlvg date vy|th|n the ep.|-week to be
6: [*Extract the expert's vote*/ the date at which the rare disease incidence will occur, and
7 v + Og, [s].predict(Rsg, [s][d]) tune it using cross-validation.
8: if vis wrongthen
19()):‘ eISZVk < Wy - exp(—e) I* Decrease the weight */ 5 Experimental Evaluation
11: Wy + W, - exp(e) /* Increase the weight */ We evaluate the proposed framework using real-world data
12 Normalize the weights to sum up1d) focusing on Hantavirus outbreaks in Latin America.
13: return 'W

»-1  Experimental Setup We first provide a description of

ur experimental setup.
%ata: We use a dataset corresponding to a corpus of public
health-related news articles extracted from HealthMap [8]
¢@ prominent online aggregator of news articles and tweets
for disease outbreak monitoring and real-time surveikanc

under consideration. We populdBg with tuples of the form ©f €merging public health threats. Since, we focus on coun-
(timepoint, outbreak) for all historical time points up to thelries in Latin America the vocabulary we consider consists

latest time point present both it and GSR and set the valu@f SPanish and Portuguese words and does not contain only
of outbreak to —1 if an actual outbreak was reported ahd disease related words. Traditional IR pre-processing such
otherwise. Finally, we use the past source-topic relevarfteStoP-word removal and term frequency modeling is per-
values for the sources iy and the training points ii;. forme_d over a fixed vocgbulary of words. Th_e dlctpnary
Given the input described above, the algorithm proceed¥Mains WOEdS thatare ?lther commonly associated with dis
in an iterative fashion updating the weights of the sourcgases (€.9.,’contagious”) or words associated with a peci
considering the accuracy of their predictions. More prdiSéase (e.g.,‘rodents’ *hanta”for hantavirus). Fipadiach
cisely, the algorithm iterates over all training pointsin artlcle_|s associated with a datf';\ source and a location-corre
(Ln. 4). At each iteration, it examines all available sosrc§PONding to a country-state pair. o
(Ln. 5) and extracts their prediction corresponding to a spe  When predicting for an epi-week we use historical
cific training point from the past (Ln. 6-7). If the experfWe€Kly) data from June 2012 up to the previous week
is mistaken, it's corresponding weight is reduced in a mulfi ~ 1 t0 discover the topics using the model presented in
plicative fashion (Ln. 9), otherwise its weight is increase>Ction 3 and estimate the source-topic relevance values fo
(Ln. 11). Finally, the algorithm outputs the normalizef &t €ach avgllable location. As we progress to prediction
weights, which are later used to fuse the individual sourf forthcoming weeks, we gather the estimated source-
predictions for future time points. The process is repeagedPIC relevance values corresponding to past weeks an alig
more ground-truth data are becoming available in GSR. them with the_g_old sta_ndard report (Section 4.1) to form the
Finally, we associate each outbreak prediction for locagcessary training points for the OCSVMs. We evaluate the
tion [ with a confidence scorelLet S be the set of relevantPerformance of our proposed techniques from January 2013
sources for locatiohand S_; be the subset of sources preto March 2014. The size of the input data varies over time, as

Consider a locatio. To construct the necessary inp
for the multiplicative weights update algorithm, we: (i
identify the set of sources$; relevant to location, i.e.,
sources that have published for locatigand (ii) construct
the set of training point®; by considering the reporte
outbreaks in GSR (Section 2) for locatibrand the disease



new articles are added every epi-week. The number of woAls models are implemented in Python and the evalua-
ranges from 20,908 to 48,700, the number of locations frdman is performed on an Intel(R) Xeon(R) CPU E7- 4870
74 to 144 and the number of data sources from 381 to 7982.40GHz/64bit/1TB machine.

GSR: We make use of a gold standard report (GSR) whi€tarameter Setup: The OCSVM parameters are tuned using
gives ground truth determinations of whether a disease ineiave-one-out cross-validation. For the topic model, we se
dence (hantavirus) happened in a given location. The GBI parameters of the Dirichlet priorsdo= 2/ K, 8 = 0.01

is determined by analysts of MITREconsidering multiple andy = 0.01 where K is the number of topics. We
news sources and studying bulletins issued by health repexaluated the topic model witk® = {8, 12,15} and found
ing organizations such as ProMED [1]. that K = 12 results in more meaningful topics.

Models: We evaluate the following models: Metrics: We adopt five key measures of performance. Given

e SourceSeer: Our source-based framework introduced"" predictions, we compute th_e precision, recall_ a_nd Fl-
; score at a country level, grouping together prediction for

in Sections 3 and 4 coupled with a thresholding mecr\@’cations in the same country. We also compute an average

nism where for a week and country accepts only the pigs ning quality for each country. Each prediction for a

dictions with confidence scores (Equation (4.9)) in thgcation in the country under consideration is assigned a
top-k percentile of all prediction scores for that countryguality scoreR = %(1 + Qloc + Qdate ), Wherea . andqda_te
o LocSeer: A variation of SourceSeer that uses the topic denote the location and date accuracy of the prediction. To

model component to identify disease related topics Wiftculatea;,. we use a two-level topology, considering the
integrates this with bbcation-onlyanomaly detection ap- COUNTY: and state corresponding to the location of a watnin

proach. We follow an approach similar to the one i he country of an outbreak correctly and an additional score

troduced_ n Sec_tlon 4.1. For each location we calcu] Fo.5is assigned if the warning matches the state correctly.
the location-topic relevance values for future _tlme PO e date specific accuraay,. is calculated as:

and use an OCSVM to detect anomalous points. To cal- _ .

culate the location-topic relevance, we estimate each g510) min(|predicted date- actual datg 7)

try of the location’s word frequency vector &5 [w] = _ . 7 o _

T Pr(t|l,w) 3, c g Bow - 01z - €20, WherePr(t|l, w) Finally, we consider the lead time of our predictions, which
is defined similarly to Equation (4.7). Intuitivelioc- is calculated as the time between the date of alerting and the

Seer integrates news articles from multiple data sourc@stual date of reporting the outbreak (not the incidence dat
ignoring the accuracy of individual sources. We use4 the outbreak). Notice that lead time is different from the
thresholding mechanism similar to that®6urceSeer ~date accuracy described above. .
considering the accuracy of each state-based OCSVMVIiapping Warnings to Events: Since there could be multi-

« KeyWord: A keywordbased prediction technique tha?le events (and/or alerts) in a given month, a strategy is nec
monitors the mentions of the Hantavirus related key>>2"Y to map events to alerts. We conduct a maximum bi-
w o oo oo artite matching between events and alerts where (i) an edge

word set{“hanta”, “hantavirus”, “roedores”, “ratones”," "™~ : } .
exists if the alert was issued prior to the reporting datéef t

“cardiopulmonar?} and uses an OCSVM to predict fu . . .
ture outbreaks based on past mentions of words. THRE (i) the weight on the edge denotes the quality score.

word-set reflects the fact that Hantaviruses have aimést How effective is the proposed topic model in discov-
entirely been linked to human contact with rodent excr@ting disease topics and their spatio-temporal patterns?

ment and their symptoms affect the heart and the Iungghe HealthMap corpus contains mentions to both common
and rare diseases over multiple countries in Latin America.

* BRM: A base rate modetha_t assumes a fixed ratel'he most prevalent diseases mentioned in the dataset are
for the occurrence of rare disease outbreaks for each . . .
location and for each month. To determine this rata//a" flu (|.e.,t)_/pe h5n1), dengue fever, swine flu (i.e.,Jhln
the model extracts the averé e frequency of outbr ﬁalf) the hantavirus pumonary syndrome (HPS) and the han-
9 q Y SAVirus hemorrhagic fever with renal syndrome (HFRS) [11].

occurrences reported over a past time window of four We evaluate the topics discovered by our topic model
months. BRM reports disease outbreaks for that Iocatign . . '
IX out of the twelve topics are related to the diseases men-

i lfed aboue, whl 0 st e backyound opecs rolta
event dates are assigned uniformly at random to a 2 non—d_lsease aspects Of. the news articles. We focus oply
within the corresponding month. We take the averaog/ the dl_sease related topics. To evaluate the disease topic

. ) W consider a vocabulary of 184 health-related words. For
performance over 25 independent runs.

each topic, we examine the most likely words based on the

health-related vocabulary and their per-topic probaedit
Table 2 shows three topics related to hantavirus and their

most likely words based on the health-related vocabulary.

partial score of).5 is assigned to a warning if it matches

Qdate = 1 —

TThe Mitre Corporation is a not-for-profit company that opesamulti-
ple federally funded research and development centers.



Table 2: Three discovered topics that are related to han&avl he Topic Prominence per Country

top words with their probability in each topic are shown. 013l -
0.12

HPS HFRS Hanta Transmission g on Brazil ooz
virus 0.0468 | vacuna 0.0057| paciente 0.0220 g2 ol Chile
epidemia 0.0443| campos 0.0031| transmissor 0.0133 g 0.09 Aﬁggﬁﬁﬁz —
enfermos 0.0066| provincial  0.0028] lixo 0.0099 @ ggj
hanta 0.0068| hantavirus 0.0024| criaderos 0.0088 0'06
viral 0.0038 | tosse 0.0022| respiratorias  0.0061 oios
territorio 0.0027 | nariz 0.0019| manos 0.0056
pneumonia 0.0014| estornudar  0.0011 boca 0.0047
sangre 0.0014| abdominal  0.0008| rural 0.0038
ratones 0.0006| lluvia 0.0008 | musculares 0.0028 :
cardiopulmonar ~ 0.0002 renal 0.0005| roedores 0.0022 Topic

. . . Figure 5: The country specific topic prominence for différen
The first topic refers to the HPS syndrome with words sug geases averaged ove): stgtes. pic.p

as "pneumonia’, “sangre” (blood), and “cardiopulmonag How efficient is SourceSeer at forecasting disease

. X ; 5.
being ranked higher. We see that the proposed topic mog& breaks? We evaluate the performance of the various dis-

IS gbule tto ret”r 1eve the correla]Elolln be_lt_\r/1veen WOI’((;St h_an:gase outbreak forecasting algorithms focusing on hawigvir
and “ratones” (mice) success ully. N sec‘f)n . ?p|c 1cidences at the country level considering the predictee o
cuses on the HFRS syndrome with words as “nariz” (nos

. , . oo eaks for Argentina, Chile, Uruguay and Brazil. We ap-
estornudar” (sneeze), “renal” being more prevalent. Fﬂy BSR, KeyWord, SourceSeer andLocSeer. We eval-
nally, the third topic focuses on the hantavirus transroissi ' '

. - . , ate the performance &ourceSeer and LocSeer with
routes with words as “lixo” (garbage), “criaderos (brequ—

. | “ » (hand d“roed » (rodent % € {5,10,20,30,40,50,70}. We use the three hantavirus
'ng pace_s), manos’ (hands) an roedores (rodents)gei ics described above to construct the necessary feature
ranked higher than others. According to Jonsson et al. |

HPS is th . q b din the Ameri f tors forSourceSeer andLocSeer.
IS In€ main syndrome observed in the Americas while Figure 6(a) shows the F1 score of the four approaches

::]Fii;ass,?s are mainly observetd ('jn ﬁura&a. ThthJS, obs:ar ifoi January 2013 to March 2014 aggregated over all coun-
€ opic Seems unexpected. HoWeVer, atter analy4fids - s shownSourceSeer obtains the best F1-score for

thetactl;]al ?rtlt_:les n %ur E[:orpus,llwe fOL:_nd tbha}[thirtlcl(;s;_ "fiost of the months. The F1 score of BSR is lower as its re-
porting hantavirus incidents usuafly mention both hAmes/t . ¢ significantly lower compared to that 8burceSeer.

syndromes for informational purposes. The top words f%e latter is expected as BSR can only predict outbreaks for

the other disease topics are pro_vided in the supplement&g;{es where a sufficient number of outbreaks has occurred
mat(;,-\lr|alt[19] due to.spat;:]e |tlmltatI0n|S. t di q {n the past. In fact, due to its design BSR fails completely
h hext’ we e>§[am_|ne g_ empotr_a pa e_rr:s lscgvf(_ere ¢ 'forecast outbreaks for states or countries where no out-
€ hantavirus fopics. Iven a time point, we detine tigq 1. have been observed in the past (e.g., the outbreak in
prominence of a t_op|c as the tempora_l d|str|bu_t|on value fg?azil for October 2013 and the outbreak in Uruguay for
that topic at that time point. The prominence h|stogram§ Ffarch 2013). However this mechanism limits the number
shownin Figure 4. The HFRS topic shows small quctuat|08§ false positives significantly, and thus, for many months

across time. Howev_er, the HPS top_|c fqllows _a trend S'm"We observe slightly higher or comparable precision scores
to that of the hantavirus incidence timeline (Figure 1(a)). for BSR with those oSourceSeer. The F1 score of.oc-

Hantavirus pulmonary syndrome Hantavirus fever with renal syndrome Seer IS Slgnlflcantly |OW6r Compared tsourceseer due

016 016 to its significantly lower precision scores. The reason for
g;g[ J : g;g‘ A this behavior is the increased number of false positives re-
0.04 004 turned byLocSeer even after the thresholding mechanism

was employed. FinallykeyWord performs reasonably well

x when there is an increase in the number of outbreaks in pre-
Figure 4: The topic prominence timeline for HPS and HFRS. vious weeks leading to increased keyword counts. However,
the model performs poorly in the presence of low keyword

Finally, we examine the correlations between the dl(?E)unts.KeyWOrd failed to forecast the outbreaks in August

covered topics and the countries in Latin America undercoiﬂiOI September 2013 as only one was reported in July. A
sideration. Figure 5 shows the prominence of each tow& :

for Brazil, Chile, Uruguay and Argentina. As expected, w tailed evaluation on the precision, recall and F1 score is
observe that in Chile, HPS and HFRS are more promin nrtowded In the supplementary material [19]

while in Brazil Dengue topic is prominent as Brazil is pronlx‘—?_)[he pel,\rforman%e gain %f So;rf‘;:eSeeSzr S|qn|f|cafnt70 ob-
to dengue outbreaks throughout the year. tain a clearer understanding 8burceSeer’s performance

gain, we perform the Wilcoxon signed-rank [27] test com-
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Figure 6: (a) F1-score timeline (b) quality score timelime BSR,KeyWord, LocSeer and SourceSeer on forecasting hantavirus
outbreaks. (c) Lead-time timeline faocSeer andSourceSeer on predicting hantavirus outbreaks.

Table 3: Wilcoxon signed-rank statistical significancet tes

paring the performance of BSR witBourceSeer, Key-
Word with SourceSeer and LocSeer with SourceSeer

SourceSeer’s performance gain.Ho: The median performance

for precision, recall, and F1-score across all months. n fiference between the pairs is zero. Rejétf |z[| > 1.645

ble 3 we report the corresponding test statistic scatés

or W > 15 whenz not applicable. Baseline confidence level of

. . . = .05. Bold fonts denotes statistically significant differences
and thez-scores. We consider a baseline confidence level YS9

of @« = .05. As shown, the performance difference be=ieiic | Score | SourceSeerv.s. | SourceSeer v.s. | SoUrceSeer vis.
tween BSR andsourceSeer is statistically significant for - BglR L°°83199f Key;’g‘”d
recall and F1 (wittSourceSeer outperforming BSR) while | Prec. z -1.463 2.966 1.349
the difference for precision is not statistically signifita | gec w 114 3 76

. ’ z 3.223 - 2.961
The same behavior was observediery\Word andSource- W 51 10T 100

F1

Seer. ForLocSeer andSourceSeer, we see that the per- z 1.899 3.154 2.825

formance gain oSourceSeer for precision and F1 is Stat's'temporal patterns. We also observed that exploiting the

tically significant while the difference for recall is nOt'erifferent authoritativeness levels of news sources esable

did not observe significant differences in the performariced)S to forecast outbreaks more accurately even when no
LocSeer andSourceSeer for different values of:.

utbreaks were reported in the past. FinaBpurceSeer
We further analyze the performance of the four mod P P %

b ing th lit I h q 3n forecast outbreaks ahead of news media with an average
y comparing the quality score cross all months under Ccrgéd-time of 8 days.

sideration. Figure 6(b) shows the average prediction tyuali
score obtained by each model from January 2013 to Ma@h Related Work

2014. A higher quality score is an indicator that a model

can predict outbreaks correctly at the state and not only'8; the best of our knowledge most existing topic models

the country level. As shown, bothocSeer and Source- focus on the temporal or spatial trends in isolation and do no
Seer outperform BSR andkeyWord significantly. This is analyze both types of trends jointly. A number of methods
expected since BSR relies only on past reported eventd'@y€ Peen proposed for analyzing the time evolution of
predict future outbreaks am@yWord on increased keywordmp'cs in document collections, such as the topics over time
counts, hence, by design both cannot predict outbreakd §T) model [26], the dynamic topic model (DTM) [3], and

states with no reported incidents. Moreover, we observe th#Mine model [15]. TOT handles time-windows of fixed

SourceSeer obtains higher quality scores for most of th&/2€ and uses a Beta distribution to model the evolution of a
months compared thocSeer. This is due to its capability topics. DTM focuses on a time-window of fixed size but uses

of weighting the predictions of difference sources based §@man filters, and TriMine is able to analyze windows of
their accuracy for each specific state. variate size is able to find cyclic time patterns with difiere

What is the lead-time gain of SourceSeer?Finally, we timescales, which enables predicting future events.

. A different line of work, Spatial Latent Dirichlet Allo-
analyze the average lead-time KéyWord, LocSeer and . . : .
g cation (SLDA) [25], focuses on discovering spatial patsern
SourceSeer to examine if the proposed models can forecas

. ; : 8|ntly with the word co-occurrences. While the model fo-
outbreaks in a timely manner. Figure 6(c) shows the le uses on computer vision applications where documents are
time timeline of the three models from January 2013 £ b P

March 2014. We observe that both models have a significcgpprlsed by visual words the proposed techniques can be

lead-time advantage when compared against the mention”(\)llla"y extended to regular text documents. A similar ap-

the outbreak in news sources and also outperiegWord. proach was introduced by Ramage et al. [18] for labeled doc-

) ) ) uments where the labels can correspond to locations.
DiscussionFrom our experiments we see tli&durceSeer

. . . i N Finally, although previous approaches [17, 20, 21] have
can effectively discover rare-disease topics and theiliepagqnsidered topic models for forecasting disease outbreaks



they focus on common diseases, like influenza, for whi¢to] K. A. Heller, K. M. Svore, A. D. Keromytis, and S. J. Stolf
large amounts of data or specialized medical records are One class support vector machines for detecting anomalous
available. None of these models considers the accuracy of windows registry accesses. Workshop on Data Mining for
different data sources when predicting outbreaks.

[11]

7 Conclusions

We studied the problem of rare disease outbreak predictjgp
when analyzing dynamic news sources providing an evolv-
ing corpus of news articles. We introduc8durceSeer, a
framework that combines spatio-temporal topic models with3]
source-based anomaly detection techniques for foregastin
rare disease outbreaks at fine spatial granularity by censid

tal results show the effectiveness of our proposed fran’ieeri[S]
and illustrate how taking the accuracy of data sources into
account leads to higher quality predictions.
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