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ABSTRACT

We present an analysis of taxi flows in Manhattan (NYC)
using a variety of data mining approaches. The methods
presented here can aid in development of representative and
accurate models of large-scale traffic flows with applications
to many areas, including outlier detection and characteriza-
tion.

Categories and Subject Descriptors

H.2.8 [Database Applications|: [Data mining - Spatial
databases and GIS]; G.2.2 [Graph Theory]|: Network prob-
lems

General Terms

Algorithms, Experimentation

Keywords

Data mining, urban computing, dynamic network analysis,
clustering, role dynamics, outlier detection.

1. INTRODUCTION

The rapid growth in urban populations has highlighted
the importance of harnessing data-driven methods to aid in
city planning, including in areas like stemming air pollution,
controlling energy consumption, and relieving traffic conges-
tion [32]. Modern datasets from wireless sensor networks can
aid in understanding traffic flows at a scale hitherto unreal-
ized.

One of the main concerns in large urban cities is to ana-
lyze traffic flows with a view toward characterizing both reg-
ularities and anomalies; detection of anomalies (e.g., caused
by accidents, protests, sports, celebrations, disasters) for in-
stance can be utilized to help mitigate congestion and diag-
nose bottlenecks. In this paper, we analyze taxi trips in New
York City logged in 2013. Our goals are to infer knowledge
about the pattern of locations w.r.t their profiles, to find
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hotspot locations, and to detect and track anomalies over
time. Using clustering approaches, we categorize the city
into smaller units and characterize locations based on their
daily taxi pick-up and drop-off demands. We also develop
a novel probabilistic graph representation of traffic flow to
infer common profiles of each location. We investigate lo-
cations by extracting their local and egonet features in the
traffic flow graph. Then, we extract the role of each lo-
cation in graph using role extraction methods and finally
detect spatio-temporal outliers using the extracted roles.
Our contributions are thus:

e Developing a novel average probabilistic flow graph to
capture the behavior of traffic flow in each location.

e Characterizing interesting locations using anomaly de-
tection methods applied over the average probabilistic
flow graph.

e Using role extraction and role-change detection to un-
derstand normal roles of each location and find spatio-
temporal anomalies in dynamic graphs.

2. RELATED WORK

Taxi Datasets: Taxis do not have pre-specified routes
and schedules and can provide a unique insight into the mo-
bility of people through a city. There have been several
works on mining taxi GPS traces in three main categories:
social dynamics, traffic dynamics, and operational dynam-
ics [5]. In social dynamics, the behavior of a group of people
is studied for several purposes such as to identify hotspots,
to characterize locations based on functionality, and to find
frequent trajectories and connectivity (linkage) between re-
gions. The results are useful as a guide to future decision
making [5]. In traffic dynamics, the dynamics of congestion
levels of vehicles have been studied. For example, travel time
and speed or adverse traffic events or even air pollution re-
sulting from traffic can be analyzed [5]. As an example,
Wang et al. [27] estimate travel time of a path in a sparse
trajectory dataset using tensors. In operational dynamics,
the goal is to provide useful information to drivers (and pas-
sengers). Ranking drivers, taxi-finding strategies [31], taxi
ride-sharing, route planning, anomaly detection (accident,
road repair, fraudulent drivers), and route prediction (travel
time estimation) are a few tasks that have been studied un-
der this category [5].

Graph Mining: One of the more popular graph mining
techniques applied here (e.g., to bike usage data) is com-
munity clustering. In [8], the authors clustered bike-sharing
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Figure 1: Noisy data vs. valid data.

stations according to their usage profiles using Poisson mix-
tures. Bike demand for NYC bikes has been analyzed in [25].
The authors in [3] used community detection with a grav-
ity model applied to bicycle flow dataset. Cheng et al. [7]
used an ARIMA model to capture autocorrelation in road
traffic data locally and dynamically. Min et al. [17] used a
hybrid spatio-temporal method to forecast traffic also using
an ARIMA model. The authors of [28] used spatio-temporal
random effect models to predict traffic flows.

Liu et al. [16] investigate inter-urban movements from a
check-in dataset to analyze the underlying patterns of trips
and spatial interactions by fitting gravity models. For vi-
sualization, the authors in [34] proposed a flow clustering
method to cluster flows in order to avoid cluttering while re-
vealing abstracted flow patterns. In order to estimate miss-
ing data or to find structure of different units in different
problem domains, matrix factorization and tensor decom-
position have been studied previously [27]. As an example,
Lian et al. [14] exploit weighted matrix factorization to view
mobility records in location-based social networks for point-
of-interest recommendation. As another example, in [33],
noise situations in NYC are modeled using tensor decompo-
sitions. In [9], a tensor is created for traffic flow state and
clustering methods are used to derive traffic states.

Anomaly Detection: Liu et al. [15] proposed an algo-
rithm to construct outlier causality trees based on spatio-
temporal properties of detected outliers. Chawla et al. [6]
proposed a two-step mining framework to infer the root
causes of anomalies in road traffic data. Shafer et al. [24]
proposed a novel approach using Kalman filtering as a state
estimation model for mining large bursty time series and to
find trends and anomalies. Xu et al. [29] identify and rank
crossroads in a road network using a tripartite graph. Fi-
nally, the authors in [11] find all road segment outliers which
have different traffic load than their expected values.

There is a rich literature of methods for anomaly detection
in graphs [12]. For instance, Akoglu et al. [1] find anoma-
lies using egonet features of the graph. According to [1],
anomalies can be of different types including near-cliques,
stars, heavy vicinities, and dominant heavy links. In another
work, a non-negative residual matrix factorization method
has been proposed to detect anomalies in graphs [26]. An en-
semble of different methods to detect anomalies in dynamic
graphs is proposed in [20]. A detailed survey on anomaly
detection in graphs can be found in [2]. Furthermore, vari-
ous methods used for anomaly detection in dynamic graphs
have been reviewed in [19].

3. PRELIMINARY ANALYSIS

3.1 Dataset Description and Pre-processing

The dataset contains Yellow cab trips of NYC in 2013
(raw size ~ 45GB) which is publicly available®. Informa-
tion such as pick-up and drop-off geographical coordinates
as well as time, distance, and price of trips have been logged
in this dataset. The total number of trips is 173,179,759. A
pre-processing step has been performed to remove missing
values and noisy data such as invalid geographical coordi-
nates, loops (trips with the same pick-up and drop-offs),
gifts (trips with zero traveled distance but with registered
payment), and trips with no passenger(s). The portion of
invalid data compared to the valid part is shown in Fig. 1.

Since Manhattan is one the most complex and highly pop-
ulated urban areas in the world, we focused on Manhattan.
For simplicity, we considered a rectangular area, where lat-
itudes are bounded between 40.7 and 40.85, and longitudes
are between -74.02 and -73.90. Total trips made within Man-
hattan after noise removal is 143,329,066 in 365 days.

3.2 City Decomposition

One simple and popular approach to split up the city into
blocks is grid decomposition. We divide Manhattan into
predetermined equal-sized blocks to logical blocks of Man-
hattan. However, due to the high number of vacant blocks
and also behavioral similarity of adjacent ones, clustering
adjacent blocks is recommended [5]. Various techniques
have been used for this purpose. As an example, Cao et
al. [4] used a spatial clustering algorithm to analyze compo-
sition of cities in terms of their functional behavior. They
used k-means via PCA to cluster individuals into groups.
Here, we applied hierarchical spatial clustering on less pop-
ulated blocks (blocks with less than 200 pick-ups/drop-offs
per day). The number of blocks after clustering reduced
from 15,070 to 1,204 clusters.

The population of trips in terms of the number of pick-
ups and drop-offs is illustrated in Fig. 2. Fig. 2(a) shows an
example of the exact latitude and longitude of pickups and
drop-offs in Manhattan at 5am on March 3rd, 2013. The
total number of pickups and drop-offs for each block before
clustering is shown in Fig. 2(b). Population of each group
after clustering is shown in Fig. 2(c). For a better visu-
alization, the differentiation between clusters is illustrated
in Fig. 2(d). It should be noted that the total number of
pick-ups and drop-offs are calculated over the year.

3.3 Location Characterization

Discovering functional regions (residential, business, etc.)
or categorizing people (student, workers, etc.) is valuable
for city planners to comprehend activities of individuals and
decide on the placement of new infrastructures [32, 13, 18].
We calculate the average daily demand to find communi-
ties with similar daily activity. K-spectral centroid (KSC)
clustering is a time series clustering method which deploys
a similarity metric that is scale and shift invariant. We use
KSC-clustering with initial clusters driven using k-means
(k=4) on averaged pick-ups and drop-offs. An adaptive
wavelet-based incremental approach of this algorithm is used
for this purpose [30]. Clustering results for pick-up profiles
are shown in Fig. 3(a) and the geographical areas related to
each curve are shown in Fig. 4(a). The corresponding re-
sults for drop-offs are shown in Fig. 3(b) and Fig. 4(b). As

*http://www.andresmh.com/nyctaxitrips/
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Figure 2: (a) Map of Manhattan with pick-ups (blue) and drop-offs (orange) at 5am on March 3rd, 2013. (b)
Total number of pick-ups and drop-offs for each block in grid. (c) Population of each cluster. (d) Clusters of
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Figure 3: Clustering locations based on their daily
profile at (a) pick-up, and (b) drop-off.
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Figure 4: Clustered areas based on their daily profile
on (a) pick-up, and (b) drop-off.

these figures depict, yellow-colored areas are the ones with
higher activities during the night (7pm-6am). The north
side of Manhattan has higher activities in terms of pick-
up demands while the southeastern part of Manhattan has
higher activities in both pick-ups and drop-offs. Red colored
areas have high demand in the morning (8am-10am) and red
colored drop-off locations are indicators of the business ar-
eas of the city. Other than characterization of functionality
of locations, these results are helpful for recommendation on
where to pickup a passenger or to find the taxis.

The total number of trips per each month at each hour is
shown in Fig. 5(a). Months are clustered according to their
temperature values in 2013. Red, green, and blue indicate

Number of trips in different months
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Figure 5: (a) Number of trips at each month at
each hour. Blue, green, and red colors represents
cold, medium, and hot temperatures. (b) Example
of traffic bursts (black) and absenteeism (red) in the
number of pick-ups in one location. Each curve rep-
resent one day of the year. The shaded pink area
shows the normal range of variation.

warm, mild, and cold temperatures, respectively. As this
figure depicts, the demand during colder months is higher.
According to the above observations, for simplicity, in the
rest of the paper we divide the 24 hours in a day into four
6-hour time slots.

4. TRAFFIC FLOW GRAPH

In order to derive an abstract explanation of behavior of
people, we create an average network graph of transporta-
tion flows. This average graph helps us to understand the
normal behavior of taxi transportation in the city. Follow-
ing the construction of such a graph, at each timestamp, we
compare the traffic graph for that instant with the averaged
graph to detect anomalies. Anomalies will thus denote ar-
eas that have characteristics distinct from the average graph.
For these purposes, after extracting local and egonet features
of the graph, we employed two graph mining methods to ex-
plain the dynamics of traffic flow. The first method is to
extract network signatures of locations using power law re-
lations (as proposed in [1]). The other method is to use role
extraction methods to understand the structural behavior of
nodes and to detect outliers by finding significant changes
in role memberships.

4.1 Graph Model and Feature Extraction



In our graph model, we assume each node is a clustered
area (from Section 3.2) and each edge represents the ex-
istence of at least one trip between two areas. Hence, the
graph will be a directed one and the weight of an edge shows
the number of trips. It should be noted that at different
times, the dynamics of the graph changes in terms of the
existence and weight of an edge, not in terms of the number
of nodes.

Definition 1. Traffic flow graph of taxis at time ¢ of day d
is denoted by G¢(V, E{), where V = {v1,v2, .0, } is a set
of nodes. Each node, v;, in this graph is a geographic area
(clustered area) and each edge, e;;, represents the trips from
the i*" area to the j*" area.

Each element of the underyling adjacency matrix (A), ai;,
is one if and only if there is an edge between the i*" and 5
areas in E¢. Each element of the weight matrix, w;;, de-
notes the number of trips from v; to v;. As stated before,
we look at 6-hour time ranges: (1) lam-6am, (2) 7am-12pm,
(3) 1pm-6pm, and (4) 7Tpm-12am. Hence, per day, d, de-
pending on the nature of the day (weekend/weekday), we
have four different graphs: G¢,G¢, G4, GS.

4.1.1 Local and Egonet Features

In order to extract signatures of the traffic network of
taxis, for each node we extract the following local and egonet
features:

e Degree In: The number of edges going into the node,
e Degree Out: The number of edges going out from the

node,

e Weight In: The total weights of edges going into the
node,

o Weight Out: The total weights of edges going out from
the node,

e Distin;: The average geographical distance traveled
to reach the node,
e DistOut;: The average geographical distance traveled
from the node,
N,;: Number of nodes in egonet i,
FE;: Number of edges in egonet i,
W;: Total weight of egonet 1,
Ai: Principal eigenvalue of the weighted adjacency ma-
trix of egonet 7, and
e Clustering coefficient: the ratio of links that exists in
egonet ¢ divided by maximum possible number of links
that could exist.

Egonet features are helpful in characterizing the topology
and relationships between nodes in the graph. Akoglu et
al. [1] find anomalies in a static graph using power law repre-
sentations. According to their definition, anomalous nodes
can have different types w.r.t their egonet features (near-
clique, stars, heavy vicinities, and dominant heavy links).
We deploy this approach to identify interesting and unusual
locations that have such behaviors in their egonets. More
details are provided in Section 5.

4.2 Average Probabilistic Flow Graph

One might use a simple approach to look at locations in-
dividually to find the profile of each location and also to
find occurrence of outliers. Fig. 5(b) shows such an exam-
ple where traffic bursts (black dots) and absenteeism (red
dots) occurred in terms of deviation in the number of pick-
ups in one location (vicinity of Times Square — 8th Ave and

40th St). The shaded pink area shows the normal range of
variations in the number of pick-ups (u £ 30). Any values
outside this range can be labeled as an outlier. We refer
to the values higher (or lower) than the normal range as
bursts (respectively, absenteeism). However with this tech-
nique the relationships between different locations cannot
be recovered.

The average graph of traffic flow will be an indicator of
normal pattern of locations throughout the year. We calcu-
late this graph using a probabilistic approach. Also this
graph can be considered as a baseline model to identify
anomalies at different times/days of the year.

Definition 2. Average Probabilistic Flow (APF) Graph:
A graph of taxi flows at time ¢ averaged over a set of days,
S, S| < 365 is Gf (V, E?), where V = {v1,v2, .0, } is a set
of nodes. The edges Ef represent the probability of trips
between nodes.

Since we aim to suppress the effect of specific events—
where traffic flow happens during a few times with high
ratio—the elements of the probabilistic adjacency matrix
(AS) are calculated as follows:

365

1

d=1,desS

This equals the average number of days that have at least
one trip from v; to v; and can be interpreted as the empirical
probability of having an edge from i*" to j** areas. Similarly,
the elements of the weight matrix are calculated as follows:

s 1 d
Wij = 7457 Wij- (2)
191 4Taes

This equals the total number of trips from v; to v; in S di-
vided by the number of days (|S|) which can be interpreted
as the expected number of daily trips from v; to v;. Since
city mobility patterns differ between weekdays and week-
ends, we perform separate experiments on each category of
days. It should be noted that for weekends |S| = 104 and
for weekdays |S| = 261.

4.2.1 Calculating Local and Egonet Features

In a regular graph, G¢(V, EY), we say v; is in the egonet
of v;, if e;5 € E{or eji € E¢. However in the APF graph, we
have to describe features in probabilistic terms. Hence, the
probability of the existence of node v; in egonet ¢ depends on
the probability of existence of e;; and e;;. Assuming that the
presence of these two edges are independent, the following
equation is used to calculate the probability of having node
v; in egonet i:

P; = Prob(v; € Egonet;)
= Prob(eij € Ef Uej; € Ef) = afj + afi - af}afi. (3)

Recall that afj is the probability that an edge exists from v;
to vy, i.e. afj = Prob(ei; € Ef). Then, the expected number
of nodes in the egonet i can be determined as follows:

Ni=1+ Y P (4)
k=1,k#i
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Figure 6: Illustration of relationships of features of the APF graph for an evening period (1pm-6pm) during
weekdays. (a) E; vs N;, (b) E; vs. W, (c¢) W vs. A, (d) Q-Q plot of DistIn and DistOut. Green dots in figures

(a) to (c) are nodes and blue dots represent outliers.

Note that the i** node always exists in egonet i (with prob-
ability of 1).

In order to calculate the expected number of edges in
egonet 4, we need to consider ey;, if both 4" and k" nodes
are in egonet i. The probability of existence of both nodes
in egonet 7 is P,ini. Hence, the expected number of edges
in egonet ¢ is
Z (ais + aii)+

k=1,k#i

E; =

n n

> | X

k=1,k#i \j=1,j7i,j#k

PLP;(ai; + ajy) (5)

where the first summation is the expected number of edges
that are connected to v; while the second summation repre-
sents the expected number of edges that are not connected
to v;. In a similar way, the expected total weight in egonet
% is:
n
> (wik +wi)+
k=1,k#i

W; =

n n

> X

k=1,k#i \j=1,j7#i,j#k

(6)

The expected principal eigenvalue of egonet ¢ is derived
from the weighted adjacency matrix of egonet. Let us as-
sume that 7 is the weight matrix of egonet 7, and {vj,vr} €
FEgonet;. Each element of the weight matrix of egonet i is
calculated as follows:

w3 k=i,j#i
a5 — Wi j=ik#i )
ik T i i S . . . .

PiPiwy, j#4k#Fik#]

0 O.W.

where P{ P} is the probability that both of the nodes vy and
v; are in egonet 7.

The average geographical distance originating from wv;,
DistOut;, and the average geographical distance going into
v;, DistIn;, are calculated as follows:

1 n
= > ai;dist(i, j),
j=1Qij

DistOut; =

j=1

1 n
D’LStI’fh - <=n Z ajdeSt(.]7 Z)7
2j=1 i

where dist(j, 1) is the distance between v; and v;, and dist(j,4) =

dist(i,7). Note that the averages of Eq. 8 are weighted av-
erages where higher weights are given to those edges that
have higher probability of existence in the average graph.

S. BEHAVIOR ANALYSIS USING THE AV-
ERAGE PROBABILISTIC FLOW GRAPH

The egonet features driven from a graph can identify dif-
ferent behavioral patterns of each node [1]. In what follows,
we deployed an anomaly detection method based on egonet
features [1] on eight APF graphs (four time periods during
weekends and four time periods during weekdays) to find lo-
cations of interest and investigate their behavior. Since we
perform our experiment on an average graph of transporta-
tion over a year, outliers detected using this method do not
necessarily imply anomalous locations. In fact, this method
reveals a set of locations with uncommon features that made
them different from the rest of locations. Similar to [1], we
analyze the following three pairs of features:

(1) E; vs N;: Comparing the number of edges with the
number of nodes in each egonet is helpful in detecting near-
cliques and stars. According to [1], the number of nodes
and number of edges of egonets follow a power law (F;
N, 1 < a < 2) where in our experiments for APF graphs, o
ranges between 1.716 and 1.94. This range of variation for «
indicates that most of the nodes have a near-clique pattern.
The logarithmic scale for one of the APF graphs (1pm-6pm
in weekdays) is shown in Fig. 6(a). The red line shows the
least square error fit on data. Also blue and black lines have
the slope of 2 (cliques) and 1 (stars), respectively.

(2) W; vs E;: Comparing the total weight with the num-
ber of edges in each egonet is helpful in detecting heavy
vicinities. The total weight and number of edges follow a
power law (W; o« E? 8 > 1) [1]. In our experiments for
APF graphs, § ranged upto 1.023 which reveals that no
heavy vicinity node is observed in the traffic flow graph. As
Fig. 6(b) depicts, all nodes have similar behavior and no
particular node deviates from the fitting line.

(3) As vs W;: Comparing the principal eigenvalue of weighted
adjacency matrix with total weight is helpful in detecting
dominant pairs (strongly connected pair of nodes). Accord-
ing to [1], the relationship between these two features follows
a power law (A\; o« Wy',0.5 < v < 1) where smaller values of
v indicate uniform distribution of weights while larger val-
ues indicate the existence of dominant edges in egonet. In
our experiment with APF graphs, v ranged from 0.766 to
0.906 which means most of the nodes have dominant pairs in
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Figure 7: Illustration of a dominant pair (dark red
link) in two locations: (a) Along FDR drive dur-
ing lam-6am on weekends, (b) Columbia University
during 1pm-12am on weekends.

their egonets. Fig. 6(c) shows an example where most of the
nodes have near-heavy edges (v is close to one). Blue nodes
in this figure shows egonets that deviate from the fitting line.

5.1 Locations of Interest

Typically, nodes that deviate from the fitting line are con-
sidered as outliers. As we stated before, because we are
only studying APF graphs the outliers found by this method
should be considered as locations of interest since their pat-
terns are unique (compared to the rest of Manhattan). In
Fig. 6(a) and Fig. 6(c), blue circles show the top ten nodes
with highest outlier score. Similar to [1], the outlier score
for anomaly detection is calculated as a summation of nor-
malized local outlier factor (LOF) and dy, where dy is a
distance to the fitting line (y = Cz?) which is calculated as
follows:

. max(ys, Cx?
dy (i) = "W O

- o

1).
min(y;, Cx?) Ui I+1)

Note that ds represents the distance between normal behav-
ior (Cx”) and the observed value(y) in a normalized loga-
rithmic scale. Higher deviations from the normal behavior
(Cz%) result in larger values of dy.

5.2 Discussion on Interesting Points

In what follows, we mention a few samples of discovered
interesting locations that either have high feature values or
that deviate from the fitting line. It is interesting to know
that most of the top attractions of NYC such as the Em-
pire State Building, Rockefeller Center, and the Metropoli-
tan museum of art are not included in our list. This sug-
gests that people perhaps use other types of transportation
(e.g. subway) to travel to these attractions, or they chose
nearby locations as their pick-up and drop-off points.

Fig. 6(d) illustrates Q-Q plots of geographical distances
(In vs. Out) in a sample APF graph. As this figure depicts,
the distribution of In and Out distances are the same. This
is also true for the In and Out degrees of nodes (Fig. 8).

Some locations such as the New York Presbyterian Hospi-
tal (covering Fort Washington Ave, from W 161st St to W
173rd St) have high geographical distance to their neighbor-
hoods, indicating that trips to/from this hospital are longer
compared to others. High Bridge Park and Claremont Park
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Figure 8: Q-Q plot of Degree-In and Degree-Out of
APF graph for Evening(1pm-6pm) of weekdays.

have similar behavior.

Two examples of discovered dominant pairs are shown in
Fig. 7. The dark red colored links indicate dominant edges.

The area between Avenue C, E 5th St, and E 3rd St has a
near-clique pattern during 7pm-12am. On the other hand,
MalcolmX Blvd from W 137th St to W 147th St, during
Tam-12pm on weekends has a star pattern.

The egonet features of the following locations have high
value which made them hotspots: Penn Station (7th Ave
and W 3lst St) during 7am-6pm on weekends has a high
number of nodes, edges, weights, and large eigenvalues. The
area covering Penn station (SE), US post office, and inter-
section of 8th Ave and W 31st St has a high number of
incoming and low outgoing trips from 7am-12am. The area
covering Chelsea market and Google HQ, in lam-6am, has a
high number of nodes, edges, total weights, and large eigen-
value. The area in Central park (SW), Columbus Circle, 7th
Ave, 55th St, and 8th Ave from 7am-12am in weekdays has
a high number of nodes, edges, weight, and large eigenvalue.

6. ROLE EXTRACTION

Role extraction (RolX) is a non-parametric, scalable and
efficient approach that finds similar structural behaviors and
patterns in a graph [10, 21, 22]. The three main steps of this
method are feature extraction, feature grouping, and model
selection. First, features (global, local, egonet) for each node
must be extracted to create a n X f node-feature matrix
X. The next step is to generate a rank r approximation
of X using non-negative matrix factorization (NMF). NMF
is used to simplify interpretation of roles and memberships
by creating non-negative low rank matrices (Hts and F° ) as
follows:

1
H? Ff = arg%n?inxf — HF||%, st. H>0, F >0,

where X is the node-feature matrix for the APF graph G¥
and ||.||r is Frobenius norm. Membership of a node to each
role can be estimated using the rows of H,, x, while columns
of Fi.«s are used to determine the relationship between the
role membership and feature values. Since NMF generally
results in sparse representations of the original matrix, it is
a better candidate for role extraction compared to other fac-
torization methods. The third step is to select the number
of roles, r, using the minimum description length (MDL)
criterion to compress X. In other words, the objective is to
minimize the description length L which is equal to the sum-
mation of the coding cost and the cost of model description.
MDL selects the number of behavioral roles, r, such that
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the model complexity (number of bits) and model errors are

balanced:

1
L=r(n+f)+ (- 55 IXE = HIFSI3),

where o is variance of X . Details can be found in [10].
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The number of detected roles as well as the normalized
feature values at each time of weekdays and weekends are
shown in Fig. 9. As these figures illustrate, some features
were significant in defining the extracted roles such as de-
grees, weights, and geographical distances.

6.1 Spatio-temporal anomaly detection

The total number of trips per day is shown in Fig. 10.
As this figure depicts, the number of trips decreased signif-
icantly in specific days with most of them being holidays.

(Christmas)

L L L L L
1
(] 50 100 150 200 250 300 350
Days

Figure 10: Total trips traveled at each day. Days
with high variations represent anomalies.

This might be due to the decrease in the number of avail-
able taxi drivers rather than decrease in demand (the present
analysis and data availability cannot make this distinction).
We use the extracted roles from the APF graph to detect
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Figure 11: Outliers for different times of a day during a year. Red colors represents higher score of outliers.

anomalies during the whole year. Several techniques have
been proposed to detect changes in dynamic networks. As
an example, [23] defined an event as a subset of nodes in the
network that are close to each other and have high activity
levels. However, Rossi et al. [21] track node memberships
over time (temporal dependencies of roles and nodes) to
discover anomalies. Network dynamics (structural patterns
in network over time) can be analyzed using this method.
In another work, Rossi et. al [22] proposed dynamic behav-
ioral mixed-membership model to capture roles of the nodes.
They identify dynamic patterns in node behaviors and then
using prediction on future structural changes in the node,
they identify unusual changes in behavior transitions.

In this paper, we use roles extracted from APF graphs
and compare the roles with the profile of each day to dis-
cover graphs with high variations compared to the average
behavior. Therefore, for each graph, G¢, we calculate the
node-feature matrix X¢. Let us assume that based on the
APF graph, the role R; has been assigned to the i*" node
(i.e. R; = argming(dist(F; ,X{ ))) T. Then we calculate
the total distance of graph to the assigned roles in feature
space as follows:

n

A =YX = B e

i=1

where n is total number of nodes.

Since we are seeking graphs with high variations, we ex-
tract graphs with variations outside the normal range. For
this purpose, we calculate the following average and stan-
dard deviations over all days at time ¢:

365 d 365
Zd:l,de\s\ At 1
=, 0t =

p S EETR e Rk

d=1,d€|S]

where |S| is number of days. Based on our assumption, an
anomaly will occur if the changes in the graph deviates more
than a predefined threshold (u+30). Fig. 11 shows the vari-
ation degree of each part of the day compared to the original
assigned roles. Red color shows high variations while green
color shows low variations. The result is compatible with
Fig. 10. Table 6.1 illustrates the amount of variations for
major holidays and cultural events. As an example, the last
day of the year (1pm-12am) and first day of the year (lam-
12pm) are the ones that have medium to high variations.
This result is helpful to understand when the normal behav-
ior of movements in terms of taxi trips changes significantly.
As an example, we looked at what happens at each loca-
tion during Labor day (7am-12pm). The variation at each
location is show in Fig. 12(a). Fig. 12(b) shows the differ-
ence of features of APF graph (assigned role) vs. that on

TXfi _is the 3" row of matrix Xgi )

Table 1: Federal, Religious, and Cultural Holidays
with their deviation degrees

[ Name [ 16 [ 712 [ 16 [ 712 |
New Year’s Day (1/1) 710 | 350 | -7o0 1.60
Inauguration Day (1/20) 1.70 | -1.10 .o 1o
M.LutherKing Day (1/21) | 1.60 | 1.20 7o 2.10
Groundhog day (2/2) 1.30 7o 1.80 1.40
Chinese New Year (2/10) .30 .30 70 -.50
Lincoln BD (2/12) “20 | 150 | 180 | 150
Valentine’s Day (2/14) lo .60 .80 1.20
G.Washington BD (2/18) 2.20 9o 9o 1.20
Mothers Day (5/12) -90 | -20 -l.o -.60
Memorial Day (5/27) 280 | 410 | -lo 3.10
Independence Day (7/4) 510 | 2.10 | -.50 -To
Fid al-Fitr (8/3) 20 | 150 | 170 | -1.90
Labor Day (9/2) 570 | 380 | -.4o 4.30
Columbus Day (10/14) -.20 -.30 -l40 | -20
Eid al-Adha (10/15) -20 | -1.10 | -1.20 | -90
Halloween (10/31) .50 -.60 .60 -.30
Diwali (11/3) 270 | 1.90 .30 -.60
Veterans Day (11/11) -.30 -4o0 1o -.50
Thanksgiving (11/28) 3.60 | 1.60 -.80 -.60
Christmas day (12/25) 6.0 340 | -.50 2.0
New Year’s Eve (12/31) To .30 1.80 5.30

(a)

Figure 12: (a) Degree of deviation from assigned
roles for Labor day in late morning (7am-12pm) (b)
Comparison of assigned role of (Park Ave and Lex-
ington Ave and 62nd St and 60th St) in APF graph
and features of Labor Day in late morning.

Labor day for one specific location. The results are helpful
for decision-makers and traffic management.

7. DISCUSSION

In this paper, we applied graph mining approaches to un-
derstand the dynamic behavior of taxi trips in a highly pop-
ulated city. For this purpose, using power-law relationships
of egonet features and role extraction using non-negative
matrix factorization, we discovered locations of interest as
well as outlier days (and locations) at different times. Event
prediction methods using the APF graph and utilizing this
approach to recommend the placement of new infrastructure
are possible directions of future work.
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