
The JigCell Model Builder: A Spreadsheet
Interface for Creating Biochemical Reaction

Network Models
Marc T. Vass, Clifford A. Shaffer, Naren Ramakrishnan, Layne T. Watson, and John J. Tyson

Abstract—Converting a biochemical reaction network to a set of kinetic rate equations is tedious and error prone. We describe known

interface paradigms for inputing models of intracellular regulatory networks: graphical layout (diagrams), wizards, scripting languages,

and direct entry of chemical equations. We present the JigCell Model Builder, which allows users to define models as a set of reaction

equations using a spreadsheet (an example of direct entry of equations) and outputs model definitions in the Systems Biology Markup

Language, Level 2. We present the results of two usability studies. The spreadsheet paradigm demonstrated its effectiveness in

reducing the number of errors made by modelers when compared to hand conversion of a wiring diagram to differential equations. A

comparison of representatives of the four interface paradigms for a simple model of the cell cycle was conducted which measured time,

mouse clicks, and keystrokes to enter the model, and the number of screens needed to view the contents of the model. All four

paradigms had similar data entry times. The spreadsheet and scripting language approaches require significantly fewer screens to

view the models than do the wizard or graphical layout approaches.

Index Terms—Biochemical reaction networks, bioinformatics, modeling, user interface paradigms.

�

1 INTRODUCTION

REGULATORY network models attempt to deduce the
physiological properties of a cell from wiring diagrams

of its control systems. These networks of interacting
proteins are intrinsically dynamic. They describe the
molecular mechanisms by which a cell changes in space
and time to respond to stimuli, grow and reproduce,
differentiate, and do all the other remarkable tricks that are
necessary to stay alive and propagate the species.

A simple example of a regulatory network is the set of

reactions controlling the activity of MPF (mitosis promoting

factor) in Xenopus oocyte extracts [13], which we refer to

herein as the frog egg model (see Fig. 1). Such networks are
often represented as graphs where vertices represent

substrates and products (collectively referred to as species)

and labeled directed edges connecting vertices represent the

reactions. Chemical reactions cause the concentrations of
the chemical species (Ci) to change in time according to the

equation

dCi
dt
¼
XR

j¼1

bijvj; i ¼ 1; . . . ; N;

where R is the number of reactions, vj is the velocity of the

jth reaction in the network, and bij is the stoichiometric

coefficient of species i in reaction j (bij < 0 for substrates,
bij > 0 for products, bij ¼ 0 if species i does not take part in
reaction j).

The full set of rate equations is a mathematical
representation of the temporal behavior of the regulatory
network. Modelers are faced with many computational
problems: accurately and efficiently solving equations when
velocities are characterized by widely varied time constants,
finding steady state solutions, estimating rate constants by
fitting numerical solutions to experimental data, and
identifying bifurcation points in the multidimensional
parameter space.

For example, a realistic model of the budding yeast cell
cycle consists of about 30 differential equations containing
100 rate constants [5]. The parameters are estimated from
the cell-cycle behavior of more than 100 mutants defective
in the regulatory network. Simulating the entire set takes
from a few minutes to an hour on a desktop PC for one
choice of kinetic constants. To fit the model to the mutant
data by nonlinear regression will likely require thousands
of repetitions of the full calculations. A model of such
complexity (10-100 equations) represents the upper limit of
what a dedicated modeler can produce “by hand” with a
good numerical integrator like LSODE [17]. To adequately
describe fundamental physiological processes (such as the
control of cell division) in mammalian cells will require
models of at least 100-1,000 equations. To handle this next
generation of dynamical models will require sophisticated
software to automate the modeling cycle: network specifi-
cation, equation generation, simulation and data manage-
ment, and parameter estimation. Ongoing efforts such as
the DARPA BioSPICE initiative [6] and the DOE Genomes
to Life project [7] aspire to support models at least one order
of magnitude larger than are currently used.

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 3, NO. 2, APRIL-JUNE 2006 155

. M.T. Vass, C.A. Shaffer, N. Ramakrishnan, and L.T. Watson are with the
Department of Computer Science, Virginia Polytechnic Institute and State
University, Blacksburg, VA 24061-0106.
E-mail: {mvass, shaffer, naren, ltw}@vt.edu.

. J.J. Tyson is with the Department of Biology, Virginia Polytechnic Institute
and State University, Blacksburg, VA 24061-0106. E-mail: tyson@vt.edu.

Manuscript received 11 July 2005; accepted 3 Oct. 2005; published online
1 May 2006.
For information on obtaining reprints of this article, please send e-mail to:
tcbb@computer.org, and reference IEEECS Log Number TCBB-0078-0705.

1545-5963/06/$20.00 � 2006 IEEE Published by the IEEE CS, CI, and EMB Societies & the ACM

Until recently when the current generation of tools were
developed, many stages in the modeling cycle had been
done by hand. This cycle typically begins with the modeler
drawing a wiring diagram (see Fig. 1), then deriving a set of
corresponding reaction equations, and finally converting
the reaction equations to differential equations (in a format
appropriate to simulate the equations). This presents two
problems. First, it consumes a great amount of time and
effort on the part of the researchers to convert their intuitive
concept of the model into a suitable set of reaction
equations. Second, there are many opportunities for errors
to creep in, especially at the (essentially mechanical) step of
converting reaction equations to differential equations.

A wiring diagram, like Fig. 1, nicely represents the
topology of a reaction network (reactants, products, en-
zymes). But, one cannot also specify the kinetics of the
network (the reaction rate laws, vj) adjacent to the reaction
arrows without cluttering the diagram beyond recognition.
A large reaction network can become so complex that even
its topological features are obscured by a large number of
intersecting arrows. Obscurity is increased further because
there is no standard format for drawing such graphs,
though Kohn’s notation [11] has much to recommend it.
Without precise notational conventions, it is impossible to
convert a wiring diagram into an unambiguous model,
either by hand or machine.

A second method for representing a reaction network is
to explicitly write out the chemical reactions, S1; . . . ; Si into
products P1; . . . ; Pj. This loses some of the intuitive appeal
of the diagrammatic approach, but allows for a more
compact definition of a reaction network. Normally, the
modeler has already made a hand or CAD-drawn version of
the network in graphical form, showing the interactions in a
qualitative sense but without the quantitative information
of the velocity equations or the parameter values.

Models often include concepts not captured by the
differential equations alone. 1) Linear conservation relations
are defined by linear combinations of species concentrations
that remain constant throughout a simulation:PN

i¼1 aiCiðtÞ ¼ constant, ai ¼ constant. Such constraints
arise from linear dependencies in the stoichiometry matrix:PN

i¼1 aibij ¼ 0. 2) Events are special actions that trigger in

the model under given conditions. For example, cellular
division could be represented by a decrease in mass and
might occur when a given function involving some number
of chemical species reaches a threshold during a simulation.
Neither a network diagram nor a chemical reaction can
represent such events.

The rest of this paper is organized as follows: Section 2
describes three user interface paradigms for creating
computer models of biochemical reaction networks.
Section 3 describes in detail the JigCell Model Builder,
which uses a spreadsheet interface for network specifica-
tion. Section 4 reports the results of two empirical usability
studies of network model entry and inspection by different
methods. The first compares the JigCell Model Builder
spreadsheet interface to manual creation of the ordinary
differential equation model (the approach used by our
modelers prior to creating the JigCell Model Builder). The
second compares all four interface paradigms in terms of
quantitative measures for work that are not dependent on
subject experience or capability. Some conclusions regard-
ing computer support environments for regulatory network
modeling are offered in Section 5.

2 USER INTERFACE PARADIGMS FOR MODEL

BUILDERS

In this section, we describe four approaches to designing a
user interface for specifying regulatory network models: a
graphical wiring diagram, a “wizard,” a script, and a
spreadsheet. We illustrate each approach with existing
systems, and compare them for their gross characteristics
affecting usability and potential for user satisfaction.

2.1 Graphical Interfaces

Virtual Cell [24], [12] and JDesigner [21] are examples of
systems whose user interface is based on specifying a model
as a graphical network. In Virtual Cell, for example, the
network is created in a workspace where a species is
represented as a circle and a chemical reaction is represented
by a barbell. Substrates are connected to the left end of the
barbell and products to the right end. Catalysts are
connected to the middle of the barbell. Right clicking the
barbell generates a dialog box that allows a user to enter the
velocity of the reaction. It is typical for graphical approaches
to remove the rate law and constants from the graph for
visual clarity, at the expense of requiring the user to access
multiple screens to see and edit this information. The mass
action rate law is used by Virtual Cell as a default, with a
locally defined rate law being allowed but no global user-
defined rate law may be specified.

With all existing diagram editors, as the model grows, an
increasing fraction of the graph’s edges cross one another,
leading to confusion for the user. Ideally, model complexity
would be dealt with by some bundling mechanism whereby
sections of the graph can be replaced by a single icon, to be
contracted or expanded as desired. While there is not yet
consensus on how best to do this and much work remains
on developing such aggregation mechanisms, several
systems now support some form of aggregation [4], [8], [25].

Users must typically resort to some alternative interface
for entering the inherently textual information required to

156 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 3, NO. 2, APRIL-JUNE 2006

Fig. 1. Pathway diagram for the frog egg cell cycle. Cyclin B,
synthesized in reaction 1, combines with Cdk1 (reaction 3) to form
active MPF. MPF is inactivated by phosphorylation of the Cdk1 subunit
by Wee1. Cdc25P reverses the phosphorylation step, converting
inactive MPF back to active MPF. Finally, a protein complex (called
the cyclosome) degrades cyclin B protein (reaction 2).

specify the reaction equations, such as a popup text entry
box or alternate screens. No existing graphical interfaces are
purely graphical for this reason. Entering the various
parameter values and rate equations can account for a
significant fraction of the total model description. However,
the graphical approach provides modelers with the in-
tuitive appeal of being closely in line with their mental
model of the system.

2.2 Wizard Interfaces

The “wizard” metaphor consists of a series of dialog boxes
that lead a user through the various stages of creating a
reaction network. Wizard interfaces are a well-known
approach for guiding users through a highly structured
and well-defined task, such as entering information
required to prepare income tax forms, and for installing
software or hardware in Microsoft Windows. Gepasi [14],
[15] exemplifies the wizard interface for regulatory model-
ing. First, the user enters the chemical equations for a
network by selecting the reactions button. Next, to specify
the velocities of the equations, the user clicks the kinetics
button and selects the rate law to use for the chemical
equation. To add a user-defined rate law, the user must go
back to the previous screen and click the kinetic types button
and choose the add button. User-defined functions are
specified in a similar manner by clicking on the functions
button and choosing the add button.

The advantage of the wizard interface is that it guides the
user through the model-building process. This provides
more support for users unfamiliar with either the tool or the
modeling process. However, a wizard interface breaks the
model representation (and the model building process)
across many screens. As a consequence, models are difficult
to visualize as a whole when using the wizard paradigm.
Hence, the modeler might lose focus on the full model and
be distracted by navigating through a series of dialogs
showing only detailed portions of the model at any instant.
The wizard approach is likely to lead to more mouse clicks
and movement than would be necessary in an interface
more tuned to an experienced user, so it is inherently
inefficient to some degree. However, if the data entry task
can be sufficiently well structured, then the user can be kept
on target entering the information most immediately
needed. An alternative display technique could be used to
view a model once it has been entered, just as an income tax
program will display the filled-out form once data entry has
been completed.

2.3 Script-Based Interfaces

A third approach for building reaction networks is direct
editing of the collection of reaction equations, expressed in
ASCII text. Examples of this approach are SCAMP [20] and
Jarnac [19].

Jarnac uses a compact text-based scripting language
similar to the specification of chemical equations. A large
model can be specified quickly and can be compartmenta-
lized. Compartmentalized models become models unto
themselves, able to be viewed as a black box with inputs
and outputs. This removal of data overload allows the user
to more easily visualize large models. Because Jarnac uses a
programming language-like form, it is compact and precise.

However, the concept of “programming” the model could
be unnatural for many life scientists.

No system is entirely restricted to one paradigm. For
example, Virtual Cell uses a scripting language to make up
for limitations to its graphical interface. Some systems
attempt to combine the strengths of the graphical approach
with the equation editing approach. Jarnac works in
combination with JDesigner (JDesigner is intended as a
graphical front end to Jarnac).

With the JigCell Model Builder (JCMB), we introduce an
important interface variation based on inputting models
using direct entry of chemical equations. JCMB specifies
reaction networks using a spreadsheet paradigm. Biologists
are more likely to be experienced already with creating
spreadsheets than with creating programs or scripts. The
spreadsheet approach also has the advantage that it
imposes more structure onto the equation-writing process
than a scripting language. JCMB is part of the JigCell system
for modeling and analyzing biochemical reaction networks
[1], [2], [26]. JigCell also uses spreadsheet-based interfaces
for describing ensembles of simulation runs and comparing
experimental data to simulation results.

3 THE JIGCELL MODEL BUILDER

JCMB (see Fig. 2) mimics the standard functionality of a
spreadsheet, with each reaction, function, and rate law
being defined on a separate row. A design goal of JCMB is
to reduce the number of errors generated in the modeling
process. The spreadsheet interface allows the modeler to
visualize the entirety of many current models and allows
expression of models in the language of the domain (as
reaction equations). Modelers can see and specify a
chemical equation and its associated rate law and constants
on the same line.

Typically, the user types in the reaction equations while
frequently consulting a wiring diagram, such as Fig. 1. This
process is error prone for many reasons. Typos and copy-
paste mistakes are inevitable because of the tedium and
repetitiveness of the process. Other errors arise from
misspecifying the rate law of a reaction, neglecting entire
terms from the right-hand side of the fundamental equa-
tion, and from mistaken implementation of conservation
conditions. If a conservation condition is overlooked, then
the resulting set of differential equations contains redun-
dancies and round-off errors in simulations can lead to
significant violations of the law of conservation of mass.
More seriously, human beings may mistakenly identify or
apply conservation conditions, leading to differential
equations that are incorrect.

JCMB attempts to reduce these errors by forcing users to
adopt a reaction-centered approach that separates a reaction
from its rate law specification. This allows the computer to
apply the specified rate law to discover the velocity for a
particular reaction, which is then shown to the user in a
separate column.

Errors in a model lead to meaningless simulation results.
Such bugs are difficult to detect and might cost the modeler
hours searching for errors caused by syntactic slips made at
the model-building stage. JCMB attempts to disallow
inconsistencies in a model while it is being entered. For

VASS ET AL.: THE JIGCELL MODEL BUILDER: A SPREADSHEET INTERFACE FOR CREATING BIOCHEMICAL REACTION NETWORK... 157

example, the user does not type a rate law, but, instead,
selects one from a pulldown list. As another example, users
do not determine conservation relationships between
species. Instead, JCMB does this automatically and all the
user may do is reorder the relationships. When an
inconsistency or error is detected (such as a syntactic error
in a cell), the spreadsheet highlights the problem cell in
orange and propagates the error throughout the spread-
sheet by highlighting dependent problem cells as well.
These errors are detected by the program checking each cell
for mathematical validity within its context whenever it has
been changed. Once the error has been fixed, all cells now
made consistent will return to their normal color.

JCMB also attempts to reduce errors and structure the
editing process by restricting the ability to edit columns
where appropriate. For example, since the equation column
of a reaction is derived from its type and parameters, this
column may not be edited for reaction rows (in contrast, it
may be edited for a function row). The name column of
various row types is edited when it is first created, but may
not be edited afterward.

The spreadsheet approach appears to pack more
information on the screen than does the graphical approach,
thus allowing the user to have access to a greater portion of
the model at one time (or the entire model for smaller
examples). Of course, there is a limit to how far this can go
and larger models will require the user to scroll over
multiple screens of information. It was observed earlier
that, as a model grows, the graphical approach will require
more edges that cross each other. For the spreadsheet, an
equivalent breakdown is more reference to variables not on
the current screen. As with the graphical approach, larger
models presented in a spreadsheet view would benefit from
some sort of aggregation or component mechanism. This
might express itself as a reference to components similar to
subroutine calls in a programming language.

With respect to structuring of the data entry task, the
spreadsheet appears more structured than the graphical and
scripting approaches and less structured than the wizard. The
spreadsheet (being based on reaction equations) appears to

be further from the user’s mental model than the wiring
diagram of the graphical approach, but closer than the
abstract data collection mechanism of the wizard.

One inherent shortcoming of the spreadsheet approach is
that columns and their names affect all row types. For
example, the “Name” column means different things,
depending on the row type, and this column title is vague
because of its multiple uses. The column order is also fixed
for all rows, although JCMB permits the user to reorder the
columns (for the entire spreadsheet) at will.

We briefly describe the major row types that might
appear in the main JCMB reaction spreadsheet. We then
describe the auxiliary spreadsheets that JCMB uses to
organize data other than reactions.

3.1 Reaction Row

A reaction row specifies what species are involved in a
chemical reaction, the chemical equation for the reaction,
the rate law, and the modifiers and constants needed by the
rate law. A reaction equation consists of a list of substrates
separated by þs, an arrow “! ,” and a list of products, also
separated by þs. The stoichiometry of a species is specified
by placing the value directly in front of the name, or by
writing the value separated from the name with a “*.”

The Type column specifies the rate law to be applied for
the reaction given in the reaction column for this row. The
three predefined rate laws are Mass action, Michaelis-
Menten, and local (we describe below how to define new
rate laws). Mass action is defined as v ¼ kf�iS

bi
i , where the

arguments to the rate law are the concentrations of the
substrates (Si), the stoichiometric coefficients (bi), and a
constant kf . For reaction A! B with concentrations ½A� and
½B�, respectively, carried out by enzyme M1, the Michaelis-
Menten rate law is defined as

d½B�
dt
¼ ðK1 �M1 � ½A�Þ=ðJ1 þ ½A�Þ:

The term “local” in the Type column indicates a function not
reused elsewhere (see Fig. 8). This may contain any
algebraic expression that uses species given in the Reaction

158 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 3, NO. 2, APRIL-JUNE 2006

Fig. 2. Frog egg extract model in JCMB.

column, any constant/modifier defined in the Parameters

column, any function defined by the user in the current
model, or any predefined function. Any symbol that is not
defined in the model will be regarded as a constant/
modifier and will appear in the Parameters column for this
reaction. Local functions are useful if the equation is likely
not to be used again within a model, as it avoids the
definition of a new rate law for a single reaction.

The Equation column is not editable by the user unless
the row has a local rate law. Otherwise, the column will
display the expression derived from substituting the values
for the constants, modifiers, and species into the rate law
given in the Type column.

The Parameters column lists the modifiers and constants
that exist for the given rate law. Where the user has
specified the values of the modifier or constant to be an
argument to the rate law, it is shown on the right hand side
of the “=” sign next to the name of the rate law argument.
To specify the values for the rate law arguments, the user
can click on this column, which will display a window for
editing the values.

3.2 Rate Law Row

A rate law (Fig. 3) specifies the velocity of a chemical
reaction by providing a unique name and the associated
equation for the rate of the reaction. It is created by selecting
new as the row type. Once a new rate law is defined, it will
become available within the current model for use in
reaction rows. The Reaction column has no meaning in a rate
law, so it must remain empty. The Equation column specifies
the algebraic equation defining the rate law. Substrates and
Products for the rate law are specified as Si or Pi,
respectively, where i is the order in which the species
appears in the list of substrates and products. User-defined
functions and predefined functions may be used in this
column. Any variable other than a Si or Pi will be shown in
the Parameters column for any reaction using this rate law.
The Parameters column is not editable by the user for rate
law rows. Once a rate law has been defined, the name

column is no longer editable. Line 14 of Fig. 2 illustrates a
function definition, which is used in lines 4, 5, and 15.

3.3 Function Row

A function row specifies an algebraic function that takes a
list of arguments and returns a value. The reaction column
has no meaning in a function (Fig. 4), so it must remain
empty. The name column specifies the function name. A
function name may not be duplicated by other functions,
species equations, or species in a reaction. The user must
choose Function in the Type column.

The Equation column specifies the algebraic equation y ¼
fðA1; . . . ; AnÞ defining the function whose return value is y.

Arguments for the function are named as Ai, where i is the

order in which the argument appears in the list of

arguments to the function. User-defined functions and

predefined functions may be used in this column. Any

variable not of the form Ai is assumed to be a constant or

modifier and will be shown in the Parameters column for

this function. This column lists the modifiers and constants

that exist for the given equation and follows the same rules

as in the Reaction row.

3.4 Species Equation Row

A species equation row (see, for example, line 15 in Fig. 2)

specifies the equation for a chemical species that does not

appear as a substrate or product in any reaction. In this

example, the species row expresses the amount of cyclosone

present in the model. The name provided in the reaction

column is the name of the species; once set, it cannot be

changed because other rows depend on it. This name may

also represent an intermediate variable for use in computa-

tion. The equation column is defined by the user, similar to

a Reaction row. The Parameters column lists the modifiers

and constants specified by the equation and follows the

same rules as in the Reaction row.
While the bulk of the user’s attention will be on the main

reaction spreadsheet, JCMB includes four more spread-

sheets to organize information separate from reactions.

Note that the process of editing the reactions spreadsheet

will in turn update these auxiliary spreadsheets. For

example, adding new constants or species to the reaction

spreadsheet will cause new entries to be added to the

constant or species spreadsheet, respectively.

3.5 Constants and Species Spreadsheets

The constants spreadsheet (Fig. 5) contains all symbols that

have not been recognized as a species and whose values

must be specified. The list is generated automatically from

the Model spreadsheet. The species spreadsheet is similar to

the constants spreadsheet and contains all species from the

reaction rows specified in the Model spreadsheet. It allows

the user to specify the initial conditions for the species.

VASS ET AL.: THE JIGCELL MODEL BUILDER: A SPREADSHEET INTERFACE FOR CREATING BIOCHEMICAL REACTION NETWORK... 159

Fig. 3. Rate law rows.

Fig. 4. Function row.

Fig. 5. Constants.

3.6 Conservation Relation Spreadsheet

Conservation relations (Fig. 6) appear in their own
spreadsheet. The Conservation Relation column shows the
various conservation relations that exist in the model and is
filled in automatically by the Model Builder using Reder’s
method [18], [23], [22]. The Constant Total Name column is
editable by the user and is for giving a name to the constant
total for the conservation relation. This name will appear as
a constant in the Constants spreadsheet.

The Dependent Species column is editable by the user and
must contain the name of a species from this relation that is
to be treated as dependent. This means that JCMB will not
generate a differential equation for this species and will,
instead, use a linear combination of other species to
generate its concentration. JCMB automatically chooses
one of the species to be dependent by default.

3.7 Events Spreadsheet

Events (Fig. 7) are conditions that, when met, trigger certain
user-defined actions. The Name column is a name for the
given event. The Trigger column may contain any combina-
tion of algebraic expressions and Boolean operators that
evaluate to a Boolean value. If the expression evaluates to
true from being previously false, the assignments are

performed and the event has occurred. The Delay column

specifies a delay, which is the amount of simulation time to

wait after the event has occurred before the changes listed

in the Assignments column are applied. The Assignments

column specifies a list of species and constants that are to be

changed, along with their new values, when the desired

condition has been met.

4 EVALUATION

We performed two sets of empirical studies. We first

compared JCMB against hand conversion of a set of

reactions to ODEs. We then compared the four interface

paradigms for their ability to support model entry and

model viewing.

4.1 Effectiveness of JCMB as an Error-Reducing
Editor

JCMB has been evaluated [27] to determine its effectiveness

in reducing errors in converting network diagrams to

differential equations and to classify the types of errors

made in the use of JCMB. While one might simply assume

that a tool for this purpose will be better than hand

conversion, this should by no means be taken for granted.

Many experimental software tools do not, in fact, provide

160 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 3, NO. 2, APRIL-JUNE 2006

Fig. 6. Conservation relations.

Fig. 7. Event spreadsheet.

Fig. 8. Budding yeast model in JCMB.

much value to users and some amount of testing for utility
should always be made on software that is intended to
replace activities in an existing workflow. This is precisely
what our first experiment does. We compared the effec-
tiveness of JCMB against the then-existing methodology of
one active research group in the field (John Tyson’s
modeling group). Hand conversion of reaction equations
to ODEs is not a strawman comparison, as this was, in fact,
the standard procedure for this and other groups for many
years and many of the evaluation participants are well-
practiced in this process. A second reason for doing such a
study is to attempt to identify the remaining deficiencies in
the tool so that it can be improved further.

This experiment was performed using five computa-
tional cell biology researchers at Virginia Tech. The
participants had varying experience levels with symbolic
cellular modeling. Some had a small amount of experience
with the JCMB tool and one had a background in computer
science.

Participants were given two diagrammatic cellular
models of medium-difficult complexity, called Model A
[3] and Model B [16]. Participants were first given one
model and asked to fully represent it as differential
equations by hand. Observers watched for critical incidents
and mistakes, noting each that was seen. Participants were
asked to “think out loud” while working. After participants
completed the first model, they were interviewed about
their experiences. Of particular interest were critical
incidents, signs of confusion, and moments when subjects
realized they had been proceeding in an inappropriate
direction. If mistakes had been made, subjects were asked to
try to find them. They were asked about their normal
debugging strategies when in similar situations. Together,
researchers and subjects determined whether the debug-
ging strategies suggested would have been effective or
successful in locating the particular bug.

After the first model and follow-up questioning were
completed, participants were given a second model to
represent symbolically, this time using the JCMB environ-
ment rather than pencil and paper methods. The follow-up
questioning procedure was then repeated. To ensure that
observed patterns of errors were related to the method,
rather than the model, some subjects used paper and pencil
with Model A and JCMB with Model B, while others
completed Model B by hand and Model A with JCMB.

Errors were organized on a per-subject basis into four
categories: typographical, omission, incomplete, and com-
putational. Typographical errors were a typo or a copying
mistake. Omission errors occur when an equation should
have been written for a species, but the entire equation was
left out. Incomplete errors would fail to identify all of the
reactions governing the species’ behavior. Computational
errors generally involve either incorrect mathematical
representation of a term in a differential equation or
evidence that the diagrammatic model was incompletely
understood.

4.1.1 Paper and Pencil Mistakes

A breakdown of the overall mistake rate and the relative
frequency of each type of mistake is shown in Table 1. The

denominator for each type of error is the total number of
equations. The most common errors were made when a
subject used paper and pencil to generate incomplete
differential equations. In these cases, the subject would
begin an equation for the appropriate species, but would
fail to identify all reactions governing the species behavior.
Each reaction manifests itself as a term in the equation. This
error generally seemed to be caused by distraction or
incomplete search of the wiring diagram. The fact that a
complete search is required demonstrates that the differ-
ential equation model is too far removed conceptually from
the diagram model. Converting to the mathematical model
is bound to be error prone.

Unfortunately, mistakes such as this are not easily
preventable. Such mistakes can be typos (reversing the sign
on a term) or they might reflect that the math itself was not
understood. Omission errors are almost always attributed
to incomplete traversal of the diagram model. The errors
(both conversion and omission types) cannot be completely
prevented by any automated system because they generally
lead to syntactically consistent models (even if not the
intended model). Typographical errors are different in that
an automated system can identify possible (or even
probable) points where a mistake has been made. This is
the smallest portion of overall errors for the paper and
pencil method, but is the most directly preventable.

4.1.2 JCMB Mistakes

Since JCMB is reaction-centric, it alleviates many of the
problems observed in paper and pencil entry. By more
closely mimicking the diagram model, less effort is required
to generate a symbolic model. This reduced effort pays off
in a greater ability to notice errors as they are generated.
Simply put, the task of error detection (on the part of the
user) becomes one of matching (diagram to spreadsheet)
rather than computation (requiring searches, mathematical
double-checking, etc.).

The overall mistake rate in JCMB (4.67 percent) was
approximately one-tenth of that observed with paper and
pencil. This rate represents the average over all subjects of
the total number of mistakes divided by total number of
equations. Error rates were all computed as the number of
errors over the number of equations. Percentages for types
of mistakes dropped significantly for every error type
except typographical. Furthermore, a single subject, a
novice, was responsible for all nontypographical errors
generated using JCMB, suggesting that, in most cases, these
errors are negligible. At the very least, JCMB significantly

VASS ET AL.: THE JIGCELL MODEL BUILDER: A SPREADSHEET INTERFACE FOR CREATING BIOCHEMICAL REACTION NETWORK... 161

TABLE 1
Breakdown of Observed Mistakes

addresses these problems, although there is certainly room
for improvement to the JCMB system. It is worth
remembering here that none of the subjects had substantial
previous experience with JCMB.

The increase in percent of typographical errors for JCMB
results from decreasing occurrences of every other type of
error. Examination of the raw experimental data shows that
the same number of typographical errors (six) occurred in
both approaches. While this is a small number, it does
demonstrate that problems related to typographical errors
are insufficiently addressed by JCMB. Redesign of the
system has the potential to address problems of this type.

Reduction in mental effort, which affords closer attention
to the modeling task, is responsible for at least some of
JCMB’s success in error reduction. If steps can be taken to
further increase attention to the task, rather than to the
system, these errors might be virtually eliminated. Sugges-
tions for such improvements were obtained in interviews
with subjects.

4.2 A Comparison of the User Interface Paradigms

Our second study attempts to compare the four interface
paradigms on their abilities. There are two fundamental
activities that a user of a model building tool will wish to
do. The first is to enter the model correctly and efficiently.
The second is to review the model. Since, in principle, the
interface paradigm is independent of the class of pathway
models entered, models should (in principle!) be inter-
changeable between tools supporting various interfaces. Of
course, in practice, different tools do support varying
classes of models, but we can ignore this if we select test
cases that are supported by all of the tools under study.
Also, there is no necessary relationship between model
entry and model display. That is, a tool could support one
interface paradigm for model entry and another for model
display. For example, if it were thought that a wizard
approach supported users best for model entry, while a
spreadsheet was thought to best support model display, a
tool using a wizard approach for model entry could switch
to a spreadsheet view for display purposes. In practice,
most tools today use the same interface paradigm for both
model entry and model display. We can speculate that
future tools might support multiple interfaces for each task.

A difficulty is that, while we really wish to study interface
paradigms and not compare tools, any empirical study
requires us to compare specific implementations of those
paradigms. So, it becomes difficult to separate the interface
paradigm in principle from its implementation as a tool in
practice. Our study attempts to minimize this problem. Our
approach was to select one simple model (the frog egg model)
for entry into a representative implementation for each
interface paradigm. The person doing the data entry (Vass)
practiced entering the model into each tool before collecting
statistics on that tool. In this way, we attempt to measure the
minimum time, mouse clicks, and keystrokes required by
an “expert” user of the system (that is, only the minimum
time needed to physically enter the model is measured,
which might approximate the time required by an expert
user of the tool). While it is certainly a confounding factor
that one system, or one interface paradigm, might be more

“intuitive” for initial model entry than another, at least we
can claim to compare a minimum cost for model entry.

The four tools selected for study are JCMB for the
spreadsheet interface, Jarnac for the scripting interface,
JDesigner for the graphical interface, and Gepasi for the
wizard interface. Again, we wish to stress that our intention
is to compare the interface paradigms rather than specific
exemplars of implementations.

Table 2 shows the results for entering the frog egg model
into each of the four systems. We counted the total amount
of time for data entry and the number of mouse clicks and
key strokes done during entry. We see that the total time
required for each system is roughly the same, with the
spreadsheet and scripting interfaces needing about 10 min-
utes and the graphical and wizard interfaces needing about
12 minutes. As might be expected, the graphical and wizard
interfaces tend to require more mouse clicks, while the
spreadsheet and script interfaces tend to require more
typing. There is one particular anomaly to be pointed out,
which is that Gepasi does not support named constants.
Thus, while all other systems include time and keystrokes
to type both the name and value for various constants,
Gepasi allows/requires the user to type only a value. This is
a qualitative loss in the information being expressed,
leading to a quantitative reduction in data entry.

The second fundamental task for a model editor is
viewing the model. The final column of Table 2 shows the
total number of screens that a user needed to view in order
to see all data for the frog egg model. We see that the
spreadsheet and scripting interfaces display the full con-
tents of the model in a relatively small number of screens,
while the graphical and wizard interfaces (at least in these
implementations) require the user to walk through many
screens. Presumably, this would translate into significantly
greater viewing times. Again, we point out that a tool could
use different interfaces for model entry and model viewing.

5 CONCLUSIONS

JCMB is a part of the JigCell problem solving environment
[10], a component of the DARPA BioSPICE project. Models
of the cell cycle in frog eggs, fission yeast, and budding
yeast have been entered using JCMB. Fig. 2 represents a
current working version of a frog egg extract model in
JCMB entered by Jason Zwolak with the corresponding
diagram appearing in Fig. 1. Fig. 8 represents a budding
yeast model in JCMB by Andrea Ciliberto.

The spreadsheet interface is also used in other JigCell
components where appropriate. The JigCell RunManager
[26] allows the user to specify the information necessary to
simulate a collection of mutations on a basic “wild type”

162 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 3, NO. 2, APRIL-JUNE 2006

TABLE 2
A Comparison of Four User Interface Paradigms

model. Each mutation is defined by a (typically small) set of
changes to parameter and initial condition settings for a
model. For the budding yeast model, we have approxi-
mately 130 such mutations to describe. A spreadsheet
proves to be a natural way to view this collection of
information. The JigCell comparator [1], [2] allows the user
to define metrics for comparison and then to view the
results of a simulation for such an ensemble of runs. For
each mutation, the corresponding experimental data are
described, along with an objective function used to define
the quality of the match between experimental data and the
simulation output. Those results outside a user-defined
tolerance are highlighted. Again, a spreadsheet proves to be
a natural presentation method.

The usability studies identified areas for improvement to
JCMB. These include support for modularization, comment-
ing, and annotation, a comprehensive copy and paste
facility, and support for a protein name-matching feature.
A simple feature to match new species names to existing
ones should reduce the number of typographical errors. The
biggest planned change to JCMB is integration with a
graphical interface. The spreadsheet interface and the
graphical interface have complementary strengths and
weaknesses. The graphical interface is useful for generating
an overall picture of the relationships between the various
species in the model, but is poor at specifying quantitative
information. In contrast, the spreadsheet supports entering
quantitative information, but is not good at allowing
modelers to grasp the overall vision of the model. Our goal
is to provide the two interfaces as alternate, simultaneous
views into the model. Each interface would support full
editing of the model and changes to the model made in one
interface would be reflected in the other. In this way, users
should get the best of both interface approaches.

ACKNOWLEDGMENTS

This work was supported by the US National Science
Foundation Biocomplexity Program, Grant No. MCB-
0083315, US National Insitutes of Health Grant 1 R01
GM64339-01, the US Defense Advanced Research Project
Agency, and the US Air Force Research Laboratory, Air
Force Materiel command, USAF, under agreement number
F30602-02-0572.

REFERENCES

[1] N. Allen, L. Calzone, K. Chen, A. Ciliberto, N. Ramakrishnan, C.
Shaffer, J. Sible, J. Tyson, M. Vass, L. Watson, and J. Zwolak,
“Modeling Regulatory Networks at Virginia Tech,” OMICS, A J.
Integrative Biology, vol. 7, pp. 285-299, 2003.

[2] N. Allen, C. Shaffer, M. Vass, N. Ramakrishnan, and L. Watson,
“Improving the Development Process for Eukaryotic Cell Cycle
Models With a Modeling Support Environment,” Simulation,
vol. 79, pp. 674-688, 2003.

[3] A. Asthargiri and D. Lauffenburger, “A Computational Study of
Feedback Effects on Signal Dynamics in a Mitogen-Activated
Protein Kinase (mapk) Pathway Model,” Biotectnology Program-
ming, vol. 17, pp. 227-239, 2001.

[4] U. Bhalla, “Use of Kinetikit and Genesis for Modeling Signaling
Pathways,” Methods Enzymology, vol. 345, pp. 3-23, 2002.

[5] K. Chen, L. Calzone, A. Csikasz-Nagy, F. Cross, B. Novak, and J.
Tyson, “Integrative Analysis of Cell Cycle Control in Budding
Yeast,” Molecular Biology of the Cell, vol. 15, pp. 3841-3862, 2004.

[6] DARPA BioSPICE Web site, https://community.biospice.org,
2005.

[7] DOE, US Dept. of Energy Genomes to Life Web site, http://
doegenomestolife.org/, 2005.

[8] M. Ginkel, A. Kremling, T. Nutsch, R. Rehner, and E. Gilles,
“Modular Modeling of Cellular Systems with ProMoT/DIVA,”
Bioinformatics, vol. 19, no. 9, pp. 1169-1176, 2003.

[9] M. Hucka et al., “The Systems Biology Markup Language (SBML):
a Medium For Representation and Exchange of Biochemical
Network Models,” Bioinformatics, vol. 19, no. 4, pp. 524-531, 2003.

[10] JigCell project Web site, http://jigcell.biol.vt.edu, 2005.
[11] K. Kohn, “Molecular Interaction Map of the Mammalian Cell

Cycle Control and DNA Repair Systems,” Molecular Biology of the
Cell, vol. 10, pp. 2703-2734, 1999.

[12] L.M. Loew and J.C. Schaff, “The Virtual Cell: A Software
Environment for Computational Cell Biology,” Trends in Biotech-
nology, vol. 19, pp. 401-406, 2001.

[13] G. Marlovits, C. Tyson, B. Novak, and J. Tyson, “Modeling M-
Phase Control in Xenopus Oocyte Extracts: The Surveillance
Mechanism for Unreplicated DNA,” Biophysical Chemistry, vol. 72,
pp. 169-184, 1998.

[14] P. Mendes, “Gepasi: A Software Package for Modeling the
Dynamics, Steady States and Control of Biochemical and Other
Systems,” Computational Applied Bioscience, vol. 9, pp. 563-571,
1993.

[15] P. Mendes, “Biochemistry by Numbers: Simulation of Biochemical
Pathways with Gepasi 3,” Trends in Biochemical Sciences, vol. 22,
pp. 361-363, 1997.

[16] B. Novák and J. Tyson, “Modeling the Control of DNA Replication
in Fission Yeast,” Proc. Nat’l Academy of Science USA, vol. 94,
pp. 9157-9162, 1997.

[17] K. Radmakrishnan and A. Hindmarsh, “Description and Use of
LSODE, the Livermore Solver for Ordinary Differential Equa-
tions,” Technical Report URCL-ID-113855, Lawrence Livermore
Nat’l Laboratory, 1993.

[18] C. Reder, “Metabolic Control Theory: A Structural Approach,”
J. Theoretical Biology, vol. 145, pp. 175-201, 1988.

[19] H. Sauro, “Jarnac: A System for Interactive Metabolic Analysis,”
Animating the Cellular Map: Proc. Ninth Int’l Meeting on BioThermo-
Kinetics, 2000.

[20] H. Sauro and D. Fell, “Scamp: A Metabolic Simulator and Control
Analysis Program,” Math. Computer Modeling, vol. 15, pp. 15-28,
1991.

[21] H. Sauro, M. Hucka, A. Finney, C. Wellock, H. Bolouri, J. Doyle,
and H. Kitano, “Next Generation Simulation Tools: The Systems
Biology Workbench ann Biospice Integration,” OMICS: A J.
Integrative Biology, vol. 7, pp. 355-372, 2003.

[22] H. Sauro and E. Ingalls, “Conservation Analysis in Biochemical
Networks: Computational Issues for Software Writers,” Biophysi-
cal Chemistry, vol. 109, pp. 1-15, 2004.

[23] H. Sauro, J. Small, and D. Fell, “Metabolic Control and Its
Analysis. Extensions to the Theory and Matrix Method,” European
J. Biochemistry, vol. 175, pp. 216-221, 1987.

[24] J. Schaff and L. Loew, “The Virtual Cell,” Proc. Pacific Symp.
Biocomputing, pp. 228-239, 1999.

[25] K. Takahashi, N. Ishikawa, Y. Sadamoto, H. Sasamoto, S. Ohta, A.
Shiozawa, F. Miyoshi, Y. Naito, Y. Nakayama, and M. Tomita, “E-
Cell 2: Multiplatform E-Cell Simulation System,” Bioinformatics,
vol. 19, no. 13, pp. 1727-1729, 2003.

[26] M. Vass, N. Allen, C. Shaffer, N. Ramakrishnan, L. Watson, and J.
Tyson, “The Jigcell Model Builder and Run Manager,” Bioinfor-
matics, vol. 20, pp. 3680-3681, 2004.

[27] M. Vass and P. Schoenhoff, “Error Detection Support in a Cellular
Modeling End-User Programming Environment,” Proc. IEEE
Symp. Human Centric Compter Language and Environments, pp. 104-
106, 2002.

VASS ET AL.: THE JIGCELL MODEL BUILDER: A SPREADSHEET INTERFACE FOR CREATING BIOCHEMICAL REACTION NETWORK... 163

Marc T. Vass is a PhD candidate in the Department of Computer
Science at Virginia Tech. He received the BS degree in computer
science from Virginia Tech in 2000 and the MS degree in computer
science from Virginia Tech in 2001. His research interests include
creativity and cognition, problem solving environments, flow, and
theoretical human computer interaction.

Clifford A. Shaffer received the PhD degree
from the University of Maryland in 1986. He is an
associate professor in the Department of Com-
puter Science at Virginia Tech. His current
research interests include problem solving en-
vironments, bioinformatics, component architec-
tures, visualization, algorithm design and
analysis, and data structures. He is a member
of the IEEE and the IEEE Computer Society.

Naren Ramakrishnan received the PhD degree
in computer sciences from Purdue University in
August 1997. He is an associate professor of
computer science and a faculty fellow at Virginia
Tech. He also serves as an adjunct professor at
the Institute of Bioinformatics and Applied
Biotechnology (IBAB), Bangalore, India. His
research interests are computational science,
problem solving environments, mining scientific
data, and information personalization. He cur-
rently serves on the editorial board of Computer.

He is a member of the IEEE Computer Society.

Layne T. Watson received the BA degree
(magna cum laude) in psychology and mathe-
matics from the University of Evansville, Indiana,
and the PhD degree in mathematics from the
University of Michigan, Ann Arbor. He is a
professor of computer science and mathematics
at Virginia Tech. His research interests include
fluid dynamics, structural mechanics, homotopy
algorithms, parallel computation, mathematical
software, and image processing. He has worked

for USNAD Crane, Sandia National Laboratories, and General Motors
Research Laboratories and served on the faculties of the University of
Michigan and Michigan State University, East Lansing, before coming to
Virginia Tech. He is a fellow of the IEEE and a member of the IEEE
Computer Society.

John J. Tyson received the PhD degree in
chemical physics from the University of Chicago
in 1973 and has been specializing in theoretical
cell biology since that time. He is University
Distinguished Professor of Biological Sciences
at Virginia Tech. His current interests revolve
around the gene-protein interaction networks
that regulate features of cell physiology such as
cell division, circadian rhythms, intracellular
signaling networks, and programmed cell death.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

164 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 3, NO. 2, APRIL-JUNE 2006

