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Modern visual analytic tools promote human-in-the-loop analysis but are limited in their ability
to direct the user toward interesting and promising directions of study. This problem is especially
acute when the analysis task is exploratory in nature, e.g., the discovery of potentially coordinated
relationships in massive text datasets. Such tasks are very common in domains like intelligence
analysis and security forensics where the goal is to uncover surprising coalitions bridging multiple
types of relations. We introduce new maximum entropy models to discover surprising chains of
relationships leveraging count data about entity occurrences in documents. These models are
embedded in a visual analytic system called MERCER that treats relationship bundles as first class
objects and directs the user toward promising lines of inquiry. We demonstrate how user input
can judiciously direct analysis toward valid conclusions whereas a purely algorithmic approach
could be led astray. Experimental results on both synthetic and real datasets from the intelligence
community are presented.
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39:2 H. Wu et al.

1 INTRODUCTION

Unstructured exploration of relationships from large text datasets is a crucial problem
in many application domains, for example, intelligence analysis, biomedical discovery,
analysis of legal briefs and opinions. The state-of-the-art today involves two broad classes
of techniques. Visual analytic tools, for example Jigsaw [47], support the exploration of
relationships extracted from large text datasets. While they promote human-in-the-loop
analysis, identifying promising leads to explore is left to the creativity of the user. At the
other end of the spectrum, text relationship exploration techniques such as storytelling [21]
provide interesting artifacts (for example, stories, summaries) for analysis but are limited in
their ability to incorporate user input to steer the discovery process.

Our goal here is to realize an amalgamation of algorithmic and human-driven techniques
to support the discovery of coordinated relationship chains from document collections. A
coordinated relationship (also called a bicluster) is one in which a group of entities are
related to another group of entities via a common relation. It is thus a generalization of
a relationship instance. A chain of such coordinated relationships enables us to bundle
groups of entities across various domains and relate them through a succession of individual
relationships. The primary artifact of interest are thus chains summarizing how entities in a
document collection are related. We introduce new maximum entropy (MaxEnt) models to
identify surprising chains of interest and rank them for inspection by the user. In intelligence
analysis, such chains can reveal how hitherto unconnected people or places are related
through a sequence of intermediaries. In biomedical discovery, such chains can reveal how
proteins involved in distinct pathways are related through cross-talk via other proteins or
signaling molecules. In legal briefs, one can use chains to determine how rationale for court
opinions vary over the years and are buttressed by the precedence structure implicit in legal
history.

As shown in Fig. 1 (left), we propose an interactive approach wherein user feedback is
woven at each stage and used to rank the most interesting chains for further exploration.
Such user feedbacks are also taken into account by the algorithm for further investigations
of the data. We will demonstrate through case studies how such an approach gets users
to their intended objectives compared to a purely algorithmic approach (Fig. 1 (right)).
The work presented here is implemented in a system – Maximum Entropy Relational Chain
ExploRer (MERCER) that uses a variety of visual exploration strategies and algorithmic
means to foster user exploration.

Our key contributions are:

(1) MERCER is a marriage of two of our prior works [51, 61] but supercedes the state-
of-the-art in these papers in significant, orthogonal, ways. MERCER is a significant
improvement over the work presented by Sun et al. [51] because the authors provide
support for only manual exploration of coordinated relationships. MERCER is also
a significant improvement over the work presented by Wu et al. [61] because this
work only presents approaches to rank chains involving a binary maximum entropy
model whereas MERCER introduces more general maximum entropy approaches
for real-valued data.

(2) We present two path strategies (full path and stepwise) to help analyze datasets.
Using our proposed maximum entropy models, the full path strategy discovers the
most surprising bicluster chains from all possible chains involving an analyst-selected
bicluster. The stepwise strategy evaluates biclusters neighboring a user-specified
one, and prioritizes possible connected information with the current pieces under
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Interactive Discovery of Coordinated Relational Chains 39:3

Fig. 1. Illustration of MERCER. (left) Discovery of coordinated relationship chains is aided by regular
incorporation of user feedback. (right) Unaided algorithmic discovery of relationship chains leads to long
lists of patterns that might not lead to the desired answer.

investigation. Both strategies directs analysts to reveal hidden plots involving
surprising relational patterns.

(3) We describe new visual encodings and summary as well as detailed views to support
user-guided exploration of coordinated relationships in massive datasets. Besides
basic color codings (for example, connection-oriented highlighting [51]), MERCER
offers highlighting mechanisms aimed at pointing out surprising information. En-
hanced with the proposed maximum entropy models, this highlighting capability
not only directs user’s attention to important connected pieces of information, but
also visually prioritizes them in a usable manner.

(4) We describe experimental results on both large, synthetic datasets (to illustrate
efficiency and effectiveness of our algorithms) and small, real datasets (to illustrate
how users can interactively explore a realistic text dataset). In particular, we show
how MERCER enables the user to more quickly arrive at plots of interest than the
traditional manual approach described in our previous work [51].
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Fig. 2. MERCER system workflow.

2 PRELIMINARIES

Figure 2 illustrates the workflow in MERCER. By taking the background information from
the document-entity transactional matrix, the MERCER system infers the maximum entropy
model, which will be described in detail in Section 3. From the document-entity matrix,
multiple entity-entity relations are extracted and surprisingness measure for relational
patterns is defined based on the MaxEnt model (Section 4). By interacting with analysts,
our visualization interface displays the surprising relational patterns discovered from the
multiple entity-entity relations, and also provides analysts’ feedback to the MaxEnt model,
which will in turn help to further discover additional surprising patterns (Section 5). In
this section, we introduce some preliminary concepts and notations that will be useful to
understand the MERCER system and the rest of this paper.
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Multi-relational schema. Suppose that we have l domains or universes which will be
denoted by Ui, where i = 1, 2, . . . , l, throughout the paper. An entity is a member of Ui and
an entity set is just a subset of Ui. We use R = R(Ui, Uj) to represent a binary relation
between some domains Ui and Uj . Given a set of domains U = {U1, U2, . . . , Ul} and a
set of relations R = {R1, R2, . . . , Rm}, a multi-relational schema S(U ,R) is defined as a
connected bipartite graph whose vertex set is given by U ∪R and edge set is the collection
of edges each of which connects a relation Rj ∈ R and a domain Ui ∈ U that the relation
Rj involves. In this paper, we will focus on binary relationships, e.g. each Rj is a binary
relation. Thus, all the vertices in R in the bipartite graph will have degree of two. Binary
relations usually can be represented as binary data matrices. In the rest of this paper, we
will use these two terms interchangeably depending on which one is easier to use to present
and explain our proposed model and algorithm.

Tiles. A tile [14] T is essentially a rectangle in a binary data matrix. Formally, it is
defined as a tuple T = (r(T ), c(T )) where r(T ) is a set of row identifiers (e.g., row IDs)
and c(T ) is a set of column identifiers (e.g., column IDs) over the data matrix. This most
general form definition imposes no constraints on values of the matrix entries identified by a
tile. Thus, each element in a tile can be any valid value in the data matrix. In the binary
case, when all entries within a tile T have the same value (i.e., either all 1s or all 0s), T is
an exact tile. Otherwise we say it is a noisy tile.

Biclusters. As local patterns of interest over binary relations, we consider binary biclusters.
Although the concept of biclusters was first introduced over real-valued data [5], as a
generalization of this concept to binary data, we will use the word biclusters to refer to
the local patterns over binary relations defined below in the rest of this paper. A bicluster,
represented by B = (Ei, Ej), on a relation R = R(Ui, Uj), consists of two entity sets Ei ⊆ Ui
and Ej ⊆ Uj such that Ei × Ej ⊆ R. As such a bicluster is a special case of an exact tile,
one in which all the elements are 1. Further, we say a bicluster B = (Ei, Ej) is closed if for
every entity ei ∈ Ui \ Ei, there is some entity ej ∈ Ej such that (ei, ej) /∈ R and for every
entity ej ∈ Uj \Ej , there is some entity ei ∈ Ei such that (ei, ej) /∈ R. In other words, Ei
is maximal (w.r.t. Ej) so that we cannot add more elements to Ei without violating the
premise of a bicluster. If a pair of entities ei ∈ Ui, ej ∈ Uj belongs to a bicluster B, we
represent this fact by (ei, ej) ∈ B. In the rest of this paper, all the biclusters we mention
refer to closed biclusters.

Redescriptions. Suppose that we have two biclusters B = (Ei, Ej) and C = (Fj , Fk),
where Ei ⊆ Ui, Ej , Fj ⊆ Uj , and Fk ⊆ Uk. Note that Ej and Fj lie in the same domain.
Assume that we are given a threshold 0 ≤ ϕ ≤ 1. We define that B and C are approximate
redescriptors of each other, which we represent by B ∼ϕ,j C if the Jaccard coefficient
|Ej ∩ Fj | / |Ej ∪ Fj | ≥ ϕ. The threshold ϕ is usually specified by users, consequently we
often drop ϕ from the notation and write B ∼j C. The index j indicates the common
domain over which we should take the Jaccard coefficient. When this domain is clear from
the context we often ignore the index j from the notation. If B ∼1,j C, then we must have
Ej = Fj in which case we say that B is an exact redescription of C. This definition coincides
with the definition given by Zaki and Ramakrishnan [64], who define redescriptions for
itemsets over their mutual domain, transactions, such that the set Ej consists of transactions
containing itemset Ei and the set Fj consists of transactions containing itemset Fk.
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Bicluster Chains. We define a bicluster chain C as an ordered set of biclusters {B1, B2, . . . , Bk}
and an ordered bag of domain indices {j1, j2, . . . , jk−1} such that for each pair of adjacent
biclusters they are redescriptions of each other, e.g. Bi ∼ji Bi+1. Note that this definition
implicitly requires that two adjacent biclusters share a common domain. If a bicluster BRi

is a member of a bicluster chain C, we will denote this by BRi ∈ C in this paper.

Surprisingness. In the knowledge discovery tasks studied here, the primary goal is to
extract novel, interesting, or unusual knowledge. That is, we aim to discover results that
are highly informative compared to what we already know—we are not so much interested
in what we already do know, or what can be trivially induced from such knowledge. To this
end, we suppose a probability distribution p that represents the user’s current beliefs about
the data. When mining the data (e.g., for a bicluster or chain), we can use p to determine
the likelihood of a result under our current beliefs: if the likelihood is high, this indicates
that we probably already know about it, and thus, reporting it to users would provide little
new information. In contrast, if the likelihood of a result is very low, the result would be
quite interesting, thus potentially conveying a lot of new information. In Section 3, we will
discuss how to infer such a probability distribution for both binary and real-valued data
matrices.

Problem Statement. Given a multi-relational dataset, a bicluster chain across multiple
relations describes a progression of entity coalitions. We are particularly interested in
chains that are surprising w.r.t. what we already know since these could help to uncover
the plots hidden in the multi-relational dataset. More formally, given a multi-relational
dataset schema S(U ,R), where U = {U1, U2, . . . , Ul} and R = {R1, R2, . . . , Rm}, we aim to
iteratively discover non-redundant bicluster chains that are most surprising with respect
to each other and w.r.t. the background knowledge with the assistance of visual analysis
techniques.

3 TILE-BASED MAXIMUM ENTROPY MODEL

Our problem statement is based on a notion of a multi-relational schema. In practice, one
approach to infer such multi-relational datasets from a transactional dataset is to rely on
the item co-occurrence information in transactions where these items involved in binary
relations are from different domains (e.g., entities discovered from a document collection,
and then subsequently related by co-occurrence). More specifically, we assume that our
schema was generated from a transactional data matrix D (see Fig. 2). This data matrix
can be viewed as a matrix of size N -by-M . We will introduce the method of obtaining a
schema from D in Section 4. In this approach the columns of D correspond to the entities
of the schema. Hence, we will refer to the columns of D as entities.

3.1 Maximum Entropy Model for Binary Data

In this section, we will formally define the maximum entropy (MaxEnt) model for binary
data matrices using tiles as background knowledge—recall that a tile is a more general
notion than a bicluster. In order to understand the model derivation in the context of binary
data, we first introduce some notations for binary MaxEnt model. Then, MaxEnt theory for
modeling binary data given tiles as background information will be reviewed, and finally, we
will identify how we can estimate the model by maximizing the likelihood.
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3.1.1 Notation for Tiles. Suppose we are given a binary data matrix D of size N -by-M
and a tile T , we define the (relative) frequency of T in D, fr(T ;D), as

fr(T ;D) =
1

|σ(T )|
∑

(i,j)∈σ(T )

D(i, j) . (1)

Here, D(i, j) denotes the entry (i, j) in D, and σ(T ) = {(i, j) | i ∈ r(T ), j ∈ c(T )} represents
the cells covered by tile T in the data matrix D. Remember that a tile T is called ‘exact’ if
the corresponding entries D(i, j) are all 1 (resp. 0) for all (i, j) ∈ σ(T ). This indicates for
exact tiles, fr(T ;D) = 1 or fr(T ;D) = 0. Otherwise, it is called a ‘noisy’ tile.

Let D be the space of all the possible binary data matrices of size N -by-M , and p be the
probability distribution defined over the data matrix space D. Then, the expected frequency
of the tile T with respect to the data matrix probability distribution p is defined as

fr(T ; p) = E [fr(T ;D)] =
∑
D∈D

p(D)fr(T ;D). (2)

By combining these definitions, we can derive the following lemma.

Lemma 3.1 ([61]). Given a dataset distribution p and a tile T , the expected frequency of
tile T is

fr(T ; p) =
1

|σ(T )|
∑

(i,j)∈σ(T )

p ((i, j) = 1) ,

where p((i, j) = 1) represents the probability of a data matrix having 1 at entry (i, j) under
the data matrix distribution p.

Lemma 3.1 can be trivially proved by substituting fr(T ;D) in Equation (2) with Equa-
tion (1) and switching the summations.

3.1.2 Global MaxEnt Model from Tiles. Suppose we are given a set of tiles T , and each tile
T ∈ T is associated with a frequency γT—which typically can be trivially calculated from
the data. This tile set T provides information about the data at hand, and we would like to
estimate a distribution p over the space of all the possible data matrices D which conform
with the information given in T . In other words, we would like to be able to determine how
probable is a data matrix D ∈ D given the tile set T .

To derive a good statistical model, we adopt a principled approach and apply the maximum
entropy principle [23] from information theory. Generally speaking, the MaxEnt principle
identifies the best distribution given background knowledge as the unique distribution
which represents the provided background information but is maximally random otherwise.
MaxEnt modeling has recently attracted much attention in the realm of data mining
as a tool for identifying subjective interestingness of results with respect to background
knowledge [10, 29, 55, 60].

To formally define a MaxEnt distribution, we first specify the space of probability dis-
tribution candidates. Here, these are all the possible data matrix distributions which are
consistent with the information given by the tile set T . Hence, we define the data matrix dis-
tribution space as: P = {p | fr(T ; p) = γT ,∀T ∈ T }. Among all these possible distribution
candidates, we choose the distribution p∗T that maximizes the entropy,

p∗T = arg max
p∈P

H(p) .
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Here, H(p) denotes the entropy of the data matrix probability distribution p, which is
defined as

H(p) = −
∑
D∈D

p(D) log p(D) .

Next, to infer the MaxEnt distribution p∗T , we rely on a classical theorem about how MaxEnt
distributions can be factorized. In particular, Theorem 3.1 proved by Csiszar [6] states that
for a given set of testable statistics T (background knowledge, here a tile set), a distribution
p∗T is the maximum entropy distribution if and only if it can be written as

p∗T (D) ∝

{
exp

( ∑
T∈T

λT · |σ(T )| · fr(T ;D)
)

D 6∈ Z

0 D ∈ Z ,

where λT is the weight for fr(T ;D) and Z is a collection of data matrices such that p(D) = 0,
for all p ∈ P.

De Bie [10] formalized the MaxEnt model for a binary matrix D given row and column
margins—also known as a Rasch [37] model. Here, we consider a more general scenario of
binary data and tiles. In this case, we additionally know [Theorem 2 in 29, 55] that given a
tile set T , with T (i, j) = {T ∈ T | (i, j) ∈ σ(T )}, we can further factorize the maximum
entropy distribution p∗T as

p∗T =
∏

(i,j)∈D

p∗T ((i, j) = D(i, j)) ,

where

p∗T ((i, j) = 1) =
exp

(∑
T∈T (i,j) λT

)
exp

(∑
T∈T (i,j) λT

)
+ 1

or 0, 1 .

This result allows us to represent the MaxEnt distribution p∗T of binary data matrices given
background information in the form of a set of tiles T by a product of Bernoulli random
variables, each of which denotes a single entry in the data matrix D. We need to emphasize
here that this model is a different MaxEnt model compared to that when independence
between rows in the data matrix D is assumed [see, e.g., 35, 54, 60]. Here, for example,
in the special case where the given tiles are all exact (γT = 0 or 1), the resulting MaxEnt
distribution will have a very simple form:

p∗T ((i, j) = 1) =

{
γT if ∃T ∈ T such that (i, j) ∈ σ(T )
1
2 otherwise.

3.1.3 Inferring the MaxEnt Distribution. To estimate the parameters of the Bernoulli
random variables mentioned above, we follow a standard approach and apply the well known
Iterative Scaling (IS) algorithm [7] to infer the tile based MaxEnt model over binary data
matrices. Algorithm 1 illustrates the details of this IS algorithm for binary data. Briefly
speaking, for each tile T ∈ T , the algorithm updates the probability distribution p such
that the expected frequency of 1s under the distribution p matches the given frequency γT .
Clearly, during this iterative update procedure, we may change the expected frequencies
of other tiles, and hence several iterations are required until the probability distribution p
converges. For the proof of convergence, please refer to Theorem 3.2 proved by Csiszar [6].
In practice, the algorithm typically takes on the order of seconds to converge.
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ALGORITHM 1: Iterative Scaling Algorithm (binary dataset)

input : a tile set T , target frequencies {γT | T ∈ T }.
output : maximum entropy distribution p∗T ← p.

1 p← a N -by-M matrix with all values of 1
2
;

2 for T ∈ T , γT = 0, 1 do
3 p(i, j)← γT , for all (i, j) ∈ σ(T );

4 end

5 while not converged do
6 for T ∈ T , 0 < γT < 1 do

7 find x such that: fr(T ; p) =
∑

(i,j)∈σ(T )
x·p(i,j)

1−(1−x)·p(i,j) ;

8 p(i, j)← x·p(i,j)
1−(1−x)·p(i,j) , for all (i, j) ∈ σ(T );

9 end

10 end

3.2 Maximum Entropy Model for Real-valued Data

In this section, we introduce the MaxEnt model for real-valued data with tiles as background
knowledge. We first extend the concept of tiles from binary transactional matrix to a
real-valued transactional matrix. Then, we formulate the global MaxEnt model over the
real-valued transactional data, and finally, we provide an efficient algorithm to infer the
real-valued MaxEnt distribution.

3.2.1 Notation for Tiles. As stated earlier, a document-entity transactional matrix D
usually contains occurrence (count) information for each entity in every document of the
corpus. Count data is integer valued but without loss of generality, the entries in the
real-valued transactional matrix D is considered to be normalized into the range of [0, 1]
(e.g. each entry of D can be divided by the maximum entry of D).

A tile T over a real-valued matrix D is still defined as the tuple T = (r(T ), c(T )) which
identifies a sub-matrix from D. Compared to the frequency of a tile defined in the binary
case, more descriptive statistical measures can be defined for real-valued tiles. In our scenario,
we choose the sum of the values and sum of the squared values identified by a tile T , which
are represented by fm and fv respectively. More specifically, fm and fv are defined as:

fm(T | D) =
∑

∀(i,j)∈σ(T )

D(i, j), (3)

fv(T | D) =
∑

∀(i,j)∈σ(T )

D2(i, j).

3.2.2 Global MaxEnt Model from Tiles. A real-valued MaxEnt model was first proposed
by Kontonasios et al. [28]. Here, we are given a set of real-valued tiles T where for every
entry (i, j) in the matrix D, there exists at least a tile T ∈ T such that (i, j) ∈ σ(T ).

Each tile T ∈ T is associated with its basic statistics, here f̃m(T ) and f̃v(T ) which can be
computed from the given real-valued data matrix. Then, the probability distribution space
of real-valued data matrices can be defined as

P = {p | Ep[fm(T | D)] = f̃m(T ),Ep[fv(T | D)] = f̃v(T ),∀T ∈ T } .
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Here, Ep[·] represents the expectation with respect to the probability distribution p. Among
all the candidate distribution p ∈ P, we choose the one that maximizes the entropy, that is,

p∗T = argmax
p∈P

−
∫
D

p(D) log p(D)dD

 .

To be more specific, inferring the MaxEnt distribution could be formulated as the following
optimization problem:

p∗T = argmax
p

−
∫
D

p(D) log p(D)dD

 (4)

s.t.

∫
D

p(D)fm(T | D)dD = f̃m(T ), ∀T ∈ T

∫
D

p(D)fv(T | D)dD = f̃v(T ), ∀T ∈ T

∫
D

p(D)dD = 1, p(D) ≥ 0.

Since the optimization problem defined above is convex, by applying the approach of Lagrange
multipliers, we can derive that the MaxEnt distribution has the following exponential form:

p∗T (D) =
1

Z
exp

(
−
∑
T∈T

λ
(m)
T fm(T | D)−

∑
T∈T

λ
(v)
T fv(T | D)

)
.

Substituting fm(T | D) and fv(T | D) with their definitions from Equation (3), the MaxEnt
distribution could be simplified as

p∗T =
1

Z

∏
(i,j)∈D

exp
(
−βi,jD2(i, j)− αi,jD(i, j)

)
(5)

=
∏

(i,j)∈D

pi,j(D(i, j)),

where

pi,j(D(i, j)) =

√
βi,j
π

exp

−
(
D(i, j) +

αi,j

2βi,j

)2
1/βi,j


αi,j =

∑
(i,j)∈σ(T )
T∈T

λ
(m)
T , βi,j =

∑
(i,j)∈σ(T )
T∈T

λ
(v)
T .

Equation (5) indicates that the real-valued MaxEnt distribution over the matrix D could
be factorized into the product of the distributions of D(i, j), where each D(i, j) follows the
Gaussian distribution,

D(i, j) ∼ N
(
− αi,j

2βi,j
,

1

2βi,j

)
.
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ALGORITHM 2: MaxEnt model inference (real-valued dataset)

input : a tile set T , target tile statistics {fm(T | D), fv(T | D) | T ∈ T }.
output : Maximum entropy distribution p∗T parameterized by αi,j and βi,j .

1 Initialize λ
(m)
T and λ

(v)
T randomly ∀T ∈ T ;

2 λ← [λ
(m)
T , λ

(v)
T | T ∈ T ];

3 while not converged do
4 updateAlphaBeta(λ);

5 compute gradient using Equation (6) and (7);

6 perform a conjugate gradient update on λ;

7 end

In addition, we can also compute the normalizing constant Z in Equation (5) as

Z =

∮
D

∏
(i,j)∈D

exp
(
−βi,jD2(i, j)− αi,jD(i, j)

)
dD

=
∏

(i,j)∈D

√
π

βi,j
exp

(
α2
i,j

4βi,j

)
.

3.2.3 Inferring the MaxEnt Distribution. To infer the real-valued MaxEnt distribution, we

need to estimate the values of the model parameters λ
(m)
T and λ

(v)
T . We leverage the duality

between maximum entropy and maximum likelihood formulations [41] by solving

max
λ

: L(λ) = log p(D) =
∑
T∈T

(
−λ(m)

T f̃m(T )− λ(v)T f̃v(T )
)
− logZ

= −
∑

(i,j)∈D

[
1

2
log

(
π

βi,j

)
+

α2
i,j

4βi,j

]
+
∑
T∈T

(
−λ(m)

T f̃m(T )− λ(v)T f̃v(T )
)

s.t. βi,j > 0, ∀(i, j) ∈ D.

The above optimization problem is convex and can be solved efficiently by state-of-the-art
optimization algorithms. Here, we choose the conjugate gradient method to solve this
problem, where the gradient of the objective function L(λ) is given by

∂L(λ)

∂λ
(m)
T

= −
∑

(i,j)∈σ(T )

(
αi,j
2βi,j

)
− f̃m(T ), (6)

∂L(λ)

∂λ
(v)
T

=
∑

(i,j)∈σ(T )

(
1

2βi,j
+

α2
i,j

4β2
i,j

)
− f̃v(T ). (7)

4 SCORING BICLUSTERS AND CHAINS

We now turn our attention to using the above formalisms to help score our patterns, viz.,
biclusters and bicluster chains. But before we do so, we need to pay attention to the
relational schema over which these patterns are inferred, as this influences how patterns can
be represented as tiles, in order to be incorporated as knowledge in our maximum entropy
models.
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4.1 Entity-Entity Relation Extraction

In this section, we describe the approach to construct a multi-relational schema S(U ,R)
from a transaction data matrix D. Recall that whenever an element D(r, ei) has a non-zero
value (e.g. 1 in the binary case or a fraction in the range of [0, 1] in the real-valued case), this
denotes that entity ei appears in row r of D. As an example, when considering text data,
an entity would correspond to a word or concept, and a row to a document in which this
word occurs. (Thus, note that when considering text data we currently model occurrences
of entities at the granularity of documents. Admittedly, this is a coarse modeling in contrast
to modeling occurrences at the level of sentences, but it suffices for our purposes.)

To extract entity-entity relations from transaction data matrix D, we utilize the entity
co-occurrence information. To be more specific, each binary relation in R stores the entity
co-occurrences in data matrix D between two entity domains, e.g. for each R = R(Ui, Uj) in
R, (e, f) ∈ R for e ∈ Ui, f ∈ Uj , and e and f appear at least once together in a row in D.

4.2 Background Model Definition

Next, to discover non-trivial and interesting patterns, we need to incorporate some basic
information about the multi-relational schema S(U ,R) into the model. For such basic
background knowledge over D we use the column marginals and the row marginals for each
entity domain. To this end, following Wu et al. [61] we construct a tile set Tcol consisting of
a tile per column, a tile set Trow consisting of a tile per row per entity domain, and a tile
set Tdom consisting of a tile per entity domain but spanning all rows. Formally, we have

Tcol = {(UD, e) | e ∈ U,U ∈ U},
Trow = {(r, U) | r ∈ UD, U ∈ U}, and

Tdom = {(UD, U) | U ∈ U}.

Here, UD represents the domain of all the documents in the dataset (e.g. the set of all rows
in the data matrix D). We refer to the combination of these three tile sets as the background
tile set Tback = Trow ∪Tcol ∪Tdom . Given the background tiles Tback , the background MaxEnt
model pback can be inferred using iterative scaling (see Sect. 3.1.3) and the conjugate gradient
method (see Sect. 3.2.3) for binary and real-valued cases, respectively.

4.3 Quality Scores

To assess the quality of a given bicluster B with regard to our background knowledge, we
need to first convert it into tiles such that we can infer the corresponding MaxEnt model.
Below we specify how we do this conversion for biclusters from entity-entity relations. For a
given bicluster B = (Ei, Ej), we construct a tile set TB consisting of |Ei| |Ej | tiles as

TB = {(rows(X;D), X) | X = {ei, ej} with (ei, ej) ∈ B} , (8)

where rows(X;D) is the set of rows that contain X in D, e.g. the corresponding entries for
X in the matrix D that have non-zero values.

To evaluate the quality of a bicluster chain C, for each bicluster B ∈ C, we construct the
set of tiles TB as illustrated by Equation (8), and the tile set that corresponds to a bicluster
chain C is then TC =

⋃
B∈C TB .

Next, we describe the metrics that measure how much information a bicluster B (or the
corresponding tile set TB) gives with regard to the background model pback . Motivated
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by De Bie [9], the global score is defined as

sglobal(B) = KL(pB ||pback ) , (9)

where pB represents the MaxEnt distribution inferred over the background tile set Tback and
the tile set TB for the bicluster B.

For both of binary and real-valued MaxEnt model, the MaxEnt distribution p(D) can be
factorized as

p(D) =
∏

(i,j)∈D

p(D(i, j)) .

Thus, this global score can be written as

sglobal(B) =

∮
D

pB(D) log
pB(D)

pback (D)
dD

=

∮
D

∏
(i,j)∈D

pB(D(i, j))
∑

(i,j)∈D

log
pB(D(i, j))

pback (D(i, j))
dD

=
∑

(i,j)∈D

∫ +∞

−∞
pB(Di,j) log

pB(D(i, j))

pback (D(i, j))
dD(i, j)

=
∑

(i,j)∈D

KL(pB(D(i, j))||pback (D(i, j))) . (10)

For the binary MaxEnt model, D(i, j) follows the Bernoulli distribution

D(i, j) ∼ Bernoulli(q), where q =
exp

(∑
T∈T (i,j) λT

)
exp

(∑
T∈T (i,j) λT

)
+ 1

,

and the global score for binary MaxEnt model would be

sglobal(B) =
∑

(i,j)∈D

(
qB log

qB
qback

+ (1− qB) log
1− qB

1− qback

)
.

For the real-valued MaxEnt model, D(i, j) follows the Gaussian distribution

D(i, j) ∼ N
(
− αi,j

2βi,j
,

1

2βi,j

)
.

Given any two normal distribution PN1
= N (µ1, σ

2
1) and PN2

= N (µ2, σ
2
2), we can verify

that the KL-divergence between these two normal distribution is

KL(PN1
||PN2

) = log
σ2
σ1

+
σ2
1 + (µ1 − µ2)

2

2σ2
2

− 1

2
. (11)

Combining Equation (10) and (11), the global score for the real-valued maximum entropy
model is

sglobal =
∑

(i,j)∈D

1

2
log

β
(B)
i,j

β
(back)
i,j

+
β
(back)
i,j

2β
(B)
i,j

+ β
(back)
i,j

(
α
(back)
i,j

2β
(back)
i,j

−
α
(B)
i,j

2β
(B)
i,j

)2

− 1

2

 . (12)

However, using the global score defined above requires us to re-infer the MaxEnt model
for every candidate bicluster that needs to be evaluated, which could be computationally
expensive and thus not applicable to our interactive mining sitting. Moreover, sglobal
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Fig. 3. Visual representations of a bicluster that includes three entities in D1 and three entities in D2.
(A) displays all individual relationships between the two sets of entities from the two domains, D1 and
D2. (B) Realtionships are aggregated as an edge bundle that represents a bicluster.

evaluates a candidate globally, whereas typically most information is local : at most a few
entries in the maximum entropy distribution will be affected by adding B into the model.
Making use of this observation and considering the ease of computation, to reduce the
computational cost of candidate bicluster evaluation, we define the score slocal(B) that
measures the local surprisingness of a tile set as

slocal(B) = −
∑
T∈TB

∑
(i,j)∈σ(T )

log pback (D(i, j)) , (13)

which is an approximation of the local negative log-likelihood of the bicluster B. For both
binary and real-valued MaxEnt model, pback (D(i, j)) indicates the probability (or probability
density) evaluated at the value D(i, j) under the current background MaxEnt model. Notice
that although the global and local scores are described using the notation of biclusters
here, they can also be directly adopted to assess the quality of bicluster chains because
fundamentally these scores are defined around the concept of tiles and bicluster chains (and
can thus be trivially converted to a set of tiles as described at the beginning of this section).

5 MERCER

MERCER is a visual analytics system, supported by the maximum entropy model above, to
support interactive exploration of coordinated relationships using biclusters. Coordinated
relationships are groups of relations, connecting sets of entities from different domains
(e.g., people, location, organization, etc.), which potentially indicate coalitions between
these entities. MERCER extends a recently proposed bicluster visualization, BiSet [51], by
incorporating MaxEnt models to support user exploration of entity coalitions for sensemaking
purposes. In this section, we first briefly introduce BiSet, followed by the enhancements that
MERCER provides.

5.1 BiSet Technique Overview

The key idea is that BiSet visualizes the mined biclusters in context as edge bundles between
sets of related entities. BiSet uses lists as the basic layout to present entities and biclusters.
Figure 3 shows an example of a visualized bicluster in BiSet. In Figure 3, (A) shows all
individual edges between related entities and (B) presents the same bicluster as an edge
bundle. BiSet enables both ways to show the coalition of entities with two modes: link
mode and bicluster mode. Link mode displays the individual connections among entities
in a dataset, while bicluster mode offers a more clear representation to show identified
biclusters in the dataset. Based on these visual representations, BiSet can visually show
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Fig. 4. An example of four bicluster-chains (b1 - b4, b2 - b4, b2 - b5 and b3 - b5). These chains
consist of entities from three domains, D1, D2 and D3. b1 and b4 are connected through e1. b2 and
b4 share e1 and e2. b2 and b5 are linked by e3. b3 and b5 are connected by e3 and e5.

bicluster-chains as connected edge bundles through their shared entities. Figure 4 shows four
bicluster-chains (b1 - b4, b2 - b4, b2 - b5 and b3 - b5) visualized using BiSet. Each of them
consists of two different biclusters including entities from three domains. The two biclusters
in each chain are visually connected through one or two shared entities. For example,
bicluster b2 and b4 are connected by entity e1 and e2. With edges, BiSet enables users to
see members of bicluster-chains and how these biclusters are connected. This potentially
guides users to interpret the coalition among sets of entities from multiple domains in an
organized manner (e.g., checking connected biclusters from left to right).

To support exploratory analysis, BiSet treats edge bundles as first class objects, so users
can directly manipulate them (e.g., drag and move) to spatially organize them in meaningful
ways. BiSet also offers automatic ordering for entities and biclusters to help users organize
them. For example, entities can be ordered based on their frequency in a dataset and
biclusters can be ordered by size (i.e., the number of entities participating in a bicluster).
Moreover, BiSet can highlight bicluster-chains as users select their members (e.g., entities
and biclusters). This provides visual clues for users to follow in conducting their analysis.

5.2 Adaptions from BiSet to MERCER

Key adaptions, from BiSet to MERCER, lie in two levels: representation-level (specifically
visual encoding), and interaction-level, (human-model interaction, in particular). MERCER
shares the basic visual encodings in shape and size (to represent entities, biclusters and edges)
with BiSet, but it introduces surprisingness oriented highlighting, which is not included in
BiSet. Detailed visual encodings in MERCER is discussed in Section 5.3. This surprisingness
oriented highlighting aims at supporting human-model interactions in MERCER. The
capability of enabling human-model interactions is the essential difference between BiSet and
MERCER. This capability helps to address recently identified usability challenges of using
biclusters for sensemaking (e.g., bicluster evaluation and prioritization) [49, 52]. Without
human-model interactions, in BiSet, users have to check biclusters or bicluster-chains (based
on connection oriented highlighting) and manually figure out potentially useful ones. This
may take much cognitive effort, especially when data is large. However, in MERCER, users
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Fig. 5. Detailed visual encodings in MERCER. 1a, 2a and 3a depict the normal state of an entity, a
bicluster and edges, respectively. 1b, 2b and 3b depict the connection-oriented highlighting state of an
entity, a bicluster and edges, when users select bicluster 2c, hover over entity 1f and select entity 1c.
1e, 2d and 3c illustrate the surprisingness-oriented highlighting state of an entity, a bicluster and edges.
1d demonstrates larger fonts of entities as users hover the mouse pointer over their previously selected
entity 1c. Moreover, 2e represents a bicluster (in the normal state) with its edges chosen to be hidden
by users.

can explicitly request computation to help them find potentially useful biclusters or bicluster-
chains, by directly interacting with a bicluster. Moreover, by revealing the surprisingness
oriented highlighting, MERCER helps to prioritize biclusters and bicluster-chains to support
user explorations. The human-model interaction capability and evaluation strategies are
discussed in Section 5.4 and Section 5.5, respectively.

5.3 MERCER Visual Encoding

5.3.1 Shape and Size. In MERCER, entities and biclusters are represented as rectangles
(e.g., 1a and 2a in Figure 5), and edges are visualized as Bézier curves. We use Bézier curves
because they can generate more smooth edges, compared with polylines [32]. Rectangles
indicating entities are equal in length, while those representing biclusters are not. MERCER
applies a linear mapping function to determine the length of a bundle based on the total
number of its related entities. In a bicluster rectangle, MERCER uses two colored regions
(light green and light gray) to indicate the proportion between its related entities in lists
of both sides (left and right). In an entity rectangle, a small rectangle is displayed on the
left to indicate its frequency in a dataset. The length of these rectangles is determined
by the frequency of the associated entities with a linear mapping function. These helps
users to visually discriminate entities from biclusters. Moreover, when users hover over
a selected entity or bicluster (e.g., entity 1c and bicluster 2c in Figure 5), the font of its
related entities is enlarged (e.g., comparing 1d with 1b in Figure 5). This helps users review
relevant information of their previous selections.

5.3.2 Color Coding. MERCER applies color coding to entities, biclusters and edges to
indicate their states and allows users to hide edges of biclusters to reduce visual clutter (see
2e in Figure 5). In MERCER, entities, biclusters and edges have two basic states: normal
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Fig. 6. The human-model interaction flow in MERCER. Visual representations in MERCER enable the
interaction between users and the proposed maximum entropy models.

and highlighted. The normal state is the default state for entities, biclusters and edges.
Examples of the normal state for them are shown as 1a, 2a and 3a, respectively, in Figure 5.
To encode surprisingness, MERCER supports two types of highlighting states: connection
oriented highlighting (colored as orange in Figure 5) and surprisingness oriented highlighting
(color as red in Figure 5), which encode two levels of information: the coalition of entities and
the surprisingness of the coalition. The former indicates the linkage of entities, emphasizing
the connections between entities. The latter reveals the model-evaluated surprisingness of
different sets of entity coalitions. In Figure 5, examples of connection-oriented highlighting
for entities, biclusters and edges are shown as 1b, 2b and 3b, respectively; while examples of
surprisingness-oriented highlighting are presented as 1e, 2d and 3c.

The connection oriented highlighting state is triggered as users hover or select an entity or
a bicluster. For example, when users hover the mouse pointer over the entity 1f, its directly
connected bicluster 2b is highlighted and other entities that belong to this bicluster are
also highlighted. The surprisingness oriented highlighting state is triggered by explicit user
request of model evaluation. For instance, in Figure 5, as users request to find the most
surprising chains with bicluster 2c as the starting point, MERCER highlights entities and
biclusters in a chain that has the highest score given by the proposed maximum entropy
model (the approach to discover such a chain will be described in Section 5.5 below). With
our color codings, MERCER empowers users to explore entity coalitions by directing them
to computationally identified surprising chains.

5.4 Human-model Interaction

MERCER allows human-model interaction with visualizations to support visual analytics of
entity coalitions. To enable this capability, we incorporate the proposed maximum entropy
models into MERCER. Figure 6 illustrates the human-model interaction flow in MERCER.
Visual representations in MERCER work as the bridge to enable the interaction between
users and the proposed models. After inspecting the visualized biclusters and bicluster-chains,
users can explicitly request model evaluations using right click menus on a bicluster. This
further triggers the maximum entropy model to evaluate either all paths passing through
the requested bicluster or its neighboring biclusters. Then, based on results of the model
evaluation, MERCER highlights the most surprising bicluster-chain including the user
requested bicluster or neighboring biclusters. We address this with a detailed discussion in
Section 5.5. Moreover, users can mark highlighted bicluster(s), based on model evaluation,
as useful one(s) by using a right click menu on the bicluster(s). This implicitly evokes a
model update function, which informs the model that the information in a marked bicluster
has been known by users. Then the model updates its background information to take the
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marked bicluster(s) into account and prepare for further user requested evaluations. This
human-model interaction flow in MERCER enables the combination the human cognition
with computations for the exploration of entity coalitions.

5.5 Model Evaluation Strategies

MERCER offers two strategies to evaluate bicluster-chains, using the proposed maximum
entropy models, based on explicit user requests: full path evaluation and stepwise evaluation.
Both ways require users to explicitly specify a bicluster based on its visual information, e.g.
size of a bicluster, frequency of corresponding entities, etc., to initiate the chain. The former
evaluates all bicluster-chains passing through the bicluster that users request for evaluation,
while the latter evaluates neighboring biclusters that satisfy a certain degree of overlap with
the user-specified one. MERCER enables users to explicitly issue an evaluation request from
a bicluster with a right click menu. From the menu, users can choose the desired way of
evaluation.

5.5.1 Full Path Evaluation. The full path evaluation in MERCER includes three key steps:
1) path search, 2) path evaluation, and 3) path rank. In MERCER, a path, passing through
a bicluster, refers to a set of biclusters (e.g., {b2, b4} in Figure 4), which can be connected
through certain entities to form a bicluster-chain. In the path search step, MERCER finds
all possible paths passing through the bicluster that users request for evaluation. Similar
to tree search, MERCER treats the user requested bicluster as a root node and applies
depth-first search to find all paths starting from this bicluster. If the user requested bicluster
is not from the left or right most relation in the user specified multi-relational schema,
MERCER performs bidirectional search and then combines identified paths in the left and
those in the right together to obtain all paths going through this bicluster. Then in the path
evaluation step, MERCER converts each bicluster-chain, found in the previous step, into
a unique set of tiles following the Equation (8) in Section 4.3, and applies the maximum
entropy models to score them. Finally, based on the score from the model, in the path rank
step, MERCER ranks these bicluster-chains and visually highlights the one that has the
highest score (e.g., {2c, 2d} in Figure 5). Thus, with the full path evaluation in MERCER,
users can get the most surprising bicluster-chain for the bicluster requested for evaluation.

5.5.2 Stepwise Evaluation. The stepwise evaluation in MERCER examines neighboring
biclusters for the one that users request for evaluation. Neighboring biclusters for a specific
bicluster refers to those that can meet certain degree of overlaps, with respect to participated
entities, with a user requested bicluster. MERCER uses the Jaccard coefficient to measure
the degree of overlaps between two biclusters with a default threshold set as 0.1. Thus, for a
specific bicluster, its potential neighboring biclusters are those sharing at least one domain
(e.g., people, location, date, etc.) with this one.

Similar to the full path evaluation, the stepwise evaluation also has three key steps,
including: 1) neighboring bicluster search, 2) neighboring bicluster evaluation, and 3)
neighboring bicluster coloring. Based on a user specified bicluster for evaluation, MERCER
first identifies its neighboring biclusters using the Jaccard coefficient. Then, MERCER
converts the identified neighboring biclusters into different sets of tiles following Equation (8)
and employs the maximum entropy models to score them. Based on the model evaluation
score, BiSet applies a linear mapping function to assign the opacity value of surprisingness
oriented highlighting color to these biclusters. The more red a color is, and the higher
score this neighboring bicluster gets, which indicates more surprising information. Figure 7
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Fig. 7. Exampled results from the stepwise evaluation in MERCER. (a) shows the bicluster selected by a
user to initiate the maximum entropy model evaluation. (b) represents the most surprising bicluster in
the same bicluster list as the one requested for evaluation. (c) illustrates the most surprising bicluster in
another bicluster list.

Fig. 8. Document view mode in MERCER. (A) depicts the bicluster ID, relevant document ID(s) and
associated entities. (B) shows the content of a document. (C) lists all document IDs in a dataset with a
search function.

gives an example of the stepwise evaluation in MERCER. In this example, users request to
evaluate a bicluster (see a), MERCER highlights neighboring biclusters based on their model
evaluation scores. Of these highlighted biclusters, bicluster b shows the most surprising
one in the same bicluster list as that requested for evaluation, and bicluster c is the most
surprising bicluster in the adjacent bicluster list. Although bicluster b here could not be
used to extend the users selected bicluster a, it has the potential to reveal entities related to
the bicluster a and the plots. Thus, we also take the most surprising bicluster from the same
relation of the users selected bicluster into account. Such stepwise evaluation potentially
enables to involve users in the process of building a meaningful bicluster-chain. Each time
after a stepwise evaluation, users can investigate highlighted neighboring biclusters, identify
and then select useful one(s) for further exploration. Users can iterate this process and build
a bicluster-chain that is meaningful for them.
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5.6 Bicluster based Evidence Retrieval

In MERCER, users can directly retrieve related documents from biclusters by using a right
click menu. Users can use a right click menu to open a popup view, where relevant documents
are listed, as is shown in Figure 8. This helps users review information relevant to this
bicluster and verify computationally identified coalitions of entities. This document view is
on top of the relationship exploration view with transparency, so users can simultaneously
see both the visualized relationships and corresponding documents. Moreover, after reading
documents, users can quickly return to the relationship exploration view by closing it.

6 EXPERIMENTS

We describe the experimental results over both synthetic and real datasets. For real datasets,
we focus primarily on datasets from the domain of intelligence analysis. Through a case
study, we demonstrate how the proposed maximum entropy models embedded in our visual
analytics approach helps analysts to explore text datasets, such as used in intelligence
analysis. All experiments described in this section were conducted on a Xeon 2.4GHz
machine with 1TB memory. Performance results (for synthetic data) were obtained by
averaging over 10 independent runs.

6.1 Results on Synthetic Data

To evaluate the runtime performance of the proposed maximum entropy models with respect
to the data characteristics, we generate synthetic datasets. Since we focused on the runtime
performance of the proposed models here, and the multi-relational schema of the dataset will
not affect how the proposed models are inferred over the data matrix D, we will temporarily
ignore the multi-relational schema of the dataset in the synthetic data for now. The synthetic
datasets are parameterized as follows. The data matrix D consists of N rows and M columns,
or entities, and β denotes the density of the data matrix D. For each entry in the data
matrix D, we set its value to be non-zero with probability β. For the binary case, the
non-zero values would naturally be one, and for the real-valued case, the non-zero values
are generated from a standard uniform distribution. In order to avoid the scenario that too
many rows or columns in D contains only zeros, a non-zero value is placed randomly in a
row or column if it only contains zeros.

In our experiments, we explore data matrix D sizes of (N = 1000,M = 1000), (N =
2000,M = 2000), and (N = 3000,M = 3000), and varied the density β of the data matrix
D from 0.01 to 0.05 in steps of 0.01. To infer the maximum entropy models, we use column
margin and row margin tiles as the set of constraint tiles for the proposed model (see Sect. 3).
We first investigate the time needed to infer the maximum entropy models. Figure 9 shows
the model inference time for the binary and real-valued maximum entropy formulations.
As expected, model inference increases with dataset size and requires more time for the
real-valued model. Since the real-valued maximum entropy model adopts the conjugate
gradient method, model inference time heavily depends upon the structure of the given
dataset, the number of constraint tiles, and how fast the model converges to the optimal
solution along the gradient direction. For example, in our experiments we used the row
and column margin tiles as the constraints for the real-valued maximum entropy model,
the dimension of the gradient could be 2(M + N) (that would be 4,000 dimension when
N = 1000,M = 1000 for our synthetic datasets).

Another interesting phenomenon we observed here is that as the density β of the data
matrix D increases, the inference time required by the real-valued maximum entropy model
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Fig. 9. Time to infer the binary (left) and real-valued (right, Y-axis is in log scale) maximum entropy
model on synthetic datasets. The error bars represent the standard deviation

Fig. 10. Time to evaluate a set of tiles with the binary (left) and real-valued (right) maximum entropy
model on synthetic datasets. The set of solid lines on the top represents the results of global score, and
the set of dash lines at the bottom represents the results of local score. The error bars represent the
standard deviation, and the Y-axis is in log scale.

decreases. One explanation for this phenomenon is that denser data matrices provide
more information to the maximum entropy model about the underlying data generation
distribution through the constraint tiles. This aids the model in rapidly learning the structure
of the data space and search for the optimal solution with fewer iterations of the conjugate
gradient algorithm.
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We also measured the runtime performance of evaluating tile sets with the proposed
binary and real-valued maximum entropy models since the patterns (biclusters or bicluster
chains) whose qualities we would like to assess will eventually be converted into a set of
tiles in our framework. To be more specific, we randomly generated a set of tiles over the
synthetic data matrix, and compared the time required to evaluate this tile set with both
global score and local score using converged binary and real-valued models, and Figure 10
illustrates the results. As we can see from this figure, in both binary and real-valued
maximum entropy model, evaluating tile sets using the global score requires more time than
the local score, which is expected since the global score requires a complete re-inference
of the model. The difference of runtime performance between global and local scores is
significant in the real-valued model due to this model inference step. When applying the real-
valued maximum entropy model in practical applications, such as the one here necessitating
real-time interaction, we can employ an asynchronized model inference scheme, e.g. creating
a daemon process to infer the model when the system is idle, and adopt the local score to
evaluate tile sets.

6.2 Evaluation on Real Dataset: A Usage Scenario

In this section, we walk through an intelligence analysis scenario to demonstrate how
MERCER, particularly incorporating the proposed maximum entropy models for identifying
surprising entity coalitions, can support an analyst to discover a coordinated activity via
visual analysis of entity coalitions. For ease of description, we use a small dataset, viz.
The Sign of the Crescent [22], which includes 41 fictional intelligence reports about three
coordinated terrorist plots in three cities. Each plot involves at least four suspicious people.
24 of these reports are relevant to the plots. We use LCM [58] to identify closed biclusters
from this dataset with the minimum support parameter set to 3. This assures that each
bicluster has at least three entities from one domain. This generates 337 biclusters from
284 unique entities and 495 individual relationships (based on entity co-occurrence in the
reports).

In order to try to discover all the possible plots hidden in the Crescent dataset, in
MERCER, we set the threshold for the Jaccard coefficient as 0.05, which is a loose constraint.
This enables the model to evaluate those neighboring biclusters that has a few entity overlaps
with user specified biclusters for assessment. Although MERCER fully supports pattern
evaluations with the real-valued maximum entropy model, we observed that the model
evaluation results of a given bicluster were similar when using the binary and the real-valued
maximum entropy models in our experiments over the Crescent dataset. Thus, we only
present the use case study using the binary maximum entropy model here to demonstrate
the effectiveness of the proposed MERCER technique when assisting analysts in conducting
intelligence analysis tasks.

To illustrate the benefits of integrating the maximum entropy models into visual analytic
tools, in this intelligence analysis scenario, we use BiSet [51] as the baseline approach for
comparison purposes. Notice that BiSet does not has the capability of model evaluations,
and thus it just provides the connection oriented highlighting function for users to manually
explore entity coalitions. We begin our discussions with the use case of BiSet, and then
discuss the use case of MERCER.

In our scenario, suppose that Linda is an intelligence analyst. She has a task to read
intelligence reports and identify potential terrorist threats and key persons from the Crescent
dataset. She opens BiSet, picks four identified domains (people, location, phone number and
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date), and starts her analysis. Figure 11 to Figure 16 demonstrate Linda’s key analytical
steps using BiSet. Figure 17 and Figure 18 show the key steps of Linda’s analytical process
using MERCER. The BiSet use case and Figure 17 are informed by the previous publication
of the BiSet technique [51].

6.2.1 BiSet Use Case. Linda starts analysis by checking people’s names. When she hovers
the mouse over an entity, BiSet highlights its related bundles and entities. Immediately she
notices that A. Ramazi is active in three bundles. This indicates that he may be involved
in three coordinated activities. Linda selects it (Figure 11) to focus on the highlighted
entities of these bundles. She finds that A. Ramazi is involved in two cells with five people
(S. Khallad, T. al Adel, B. Dhaliwal, C. Webster and F. Goba). One cell is in Germany
and the other cell is more broadly located in four countries. A. Ramazi is the only person
connecting the two cells. Moreover, two overlapped groups of people (sharing A. Ramazi
and C. Webster) are involved in the broader cell, and each group has its unique person, B.
Dhaliwal and F. Goba, respectively.

Fig. 11. Selecting A. Ramazi and finding that there are two similar bundles and two cells.

Then Linda decides to investigate the two overlapped groups, since she aims to know
what brings the unique people to them. She checks B. Dhaliwal first. After hovering the
mouse over it, two bundles are highlighted. Following their edges, Linda finds that two
people’s names (B. Dhaliwal and C. Webster) and four locations (Charlottesville, Virginia,
Afghanistan and Richmond) are shared by them, and the bigger one is connected with a
new name, H. Pakes (see Figure 12). Then she checks F. Goba in the same way. This time
three names (M. Galab, Y. Mosed and Z. al Shibh) and three bundles are highlighted, and
one name, M. Galab, has a high frequency (see Figure 13).

Linda quickly notices this, so she decides to temporarily pause her analysis of B. Dhaliwal,
and moves on with F. Goba. Linda hovers the mouse over M. Galab to check what additional
information it can lead to. However, no additional bundles or names are highlighted. Linda
realizes that people potentially connected with M. Galab have already been highlighted in
the current view. The bundle (shown in Figure 13 as the black box in the middle) reveals
two people (F. Goba and Y. Mosed) related with M. Galab, and all their activities are in
the US, including Charlottesville, Virginia, Atlanta, Los Angeles, New Orleans and Georgia.
Linda get this key insight based on the group of locations in this bundle. The relations
from this bundle are important, and Linda hypothesizes that the three people (M. Galab, Y.

ACM Transactions on Knowledge Discovery from Data, Vol. 9, No. 4, Article 39. Publication date:

March 2010.



39:24 H. Wu et al.

Fig. 12. When hovering the mouse over B. Dhaliwal, one name and two bundles are highlighted.

Fig. 13. When exploring F. Goba, three names and three bundles are highlighted.

Mosed and Z. al Shibh) may work on something together in the US. Thus, by following this
tail [25], she wants to find more related information.

After Linda selects this useful bundle, BiSet highlights its related bundles that can form
bicluster chains. Five bundles, between the location list and the phone number list, are
highlighted (Figure 14), and two bundles, between the phone number list and the date
list, are highlighted (Figure 15). Relevant entities in these lists are also highlighted. For
these newly highlighted bundles, Linda finds that there are two big ones (relatively longer
shown in Figure 14 and Figure 15). These two bundles seem useful since they have more
relations. Linda decides to check them and find how bundles from different relationship lists
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Fig. 14. After selecting a useful bundle, five bundles (in-between the list of location and phone number)
are highlighted. Checking connected entities of the first and the third bundles.

Fig. 15. After selecting a useful bundle, two bundles (in-between the list of phone number and date)
are highlighted.

are connected. For bundles between the location list and the phone number list (from top
to bottom in Figure 14), Linda finds that the first and the third bundle share two locations
(Charlottesville and Virginia) with the selected bundle, and other highlighted bundles just
share one location with the selected one. Compared with the first bundle, the third one
is related with less locations that are not associated the selected bundle. Linda chooses
to focus on information highly connected with the selected bundle, instead of additional
information, so she considers the third bundle a useful one. Using a similar strategy in
another bicluster list (between the phone number list and the date list), she finds that the
bigger bundle (the top listed one in Figure 15) is more useful.

After this, Linda uses the right click menu to hide edges of other bundles for creating a
clear view (see Figure 16). Then, in her workspace, there are three bundles connecting with
each other through two shared locations (Charlottesville and Virginia) and three shared
phone numbers (703-659-2317 and 804-759-6302 and 1070173). Linda feels that she has
found a good number of relations, connecting four groups of entities, which may reveal a
suspicious activity. Therefore, she decides to read relevant documents to collect details
about these connections and make her hypothesis.

These three connected bundles direct Linda to eight reports, and all of them are relevant
to the plot. By referring to the entities with bright shading in the four connected groups
(shown in Figure 16), Linda reads these reports. The darker shading indicates that an entity
is shared more times. This information helps to direct her attention to more important
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entities in the reports. After reading these reports, she identifies four key persons involved
in a potential threat as follows:

F. Goba, M. Galab and Y. Mosed, following the commands from A. Ramazi,
plan to attack AMTRAK Train 19 at 9:00 am on April 30.

In this use case, Linda has to manually check details about shared entities to determine
which biclusters are meaningful and useful, because BiSet does not provide the function
of model based bicluster or chain evaluation. With just connection oriented highlighting,
Linda has to verify many connected biclusters to find potentially useful ones. This limits her
analysis strategy as stepwise search, and such search focuses on checking the shared entities
of investigated biclusters. Thus, it takes Linda significant effort to work at the entity-level
information to identify a meaningful bicluster chain.

6.2.2 MERCER Use Case. Similar to the previous case, Linda begins analysis by hovering
individual entities in the list of people. MERCER highlights related bundles and entities as
she hovers the mouse over an entity. Immediately she finds that A. Ramazi is active in three
bundles (Figure 17 (1)), which indicates that this person is involved in three coordinated
activities. Based on edges, Linda finds that two bundles are similar (see the black dotted
box in Figure 17 (1)) due to the number of their shared entities. Thus, she decides to further
investigate them.

With the right click menu on the two bundles, Linda uses the stepwise evaluation function,
provided by MERCER, to find their neighboring bundles that contain the most surprising
information (Figure 17 (2) and (3)). Based on evaluated scores from the maximum entropy
model, MERCER highlights their most surprising neighboring bundles. She finds that the
most surprising bundles connected with the two investigated bundles are the same. This
indicates that the model-suggested most surprising bundle may be important and worthy of
further inspection, and so Linda decides to find more relevant information from it.

Linda chooses the full path evaluation function on this model-suggested bundle to find
the most surprising bicluster-chain. MERCER highlights the path (Figure 17 (4)) passing
through this bundle having the highest evaluation score from the maximum entropy model.
This provides four connected sets of entities from all the selected domains (people, location,
phone and date). Linda feels that she has discovered enough information for a story, so she
checks entities involved in this chain and reads documents from the three connected bundles.
The three bundles directs Linda to nine reports in total, and eight of them are relevant to
each other. After reading these relevant reports, she identifies a potential threat with four
key persons as follows:

F. Goba, M. Galab and Y. Mosed, following the commands from A. Ramazi,
plan to attack AMTRAK Train 19 at 9:00 am on April 30.

Linda is satisfied with this finding and marks the bundles in this model suggested chain
as useful, using the right click menu. This informs the integrated maximum entropy model
in MERCER that the information in these bundles has been known to the analyst, and so
the model updates its background information for further evaluations.

The content of one report, from the bundle in the middle of the surprising chain (a
in Figure 17 (4)), is irrelevant to that of the other eight, but the entities extracted from
this report are connected with those in the identified threat. Thus, Linda considers the
information in this report as potentially useful clues, which may lead to some other threat
plot(s). In order to check what new information it can bring in, she uses the full path
evaluation function on the bundle in the middle of the surprising chain (a in Figure 17
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(4)). Based on this request, MERCER highlights another chain (Figure 18 (5)). This newly
highlighted chain has one new bundle (a in Figure 18 (5)), and this chain merged with
previously suggested surprising chain (comparing Figure 17 (4) with Figure 18 (5)). By
checking this newly brought in bundle, Linda finds that all its entities are different from
those in previously investigated bundles. In order to connect this new piece of information
with previously examined pieces, Linda decides to use the stepwise evaluation function on
this bundle.

After this stage, MERCER highlights just one bundle (Figure 18 (6)), which is the most
surprising one suggested by the model. From this bundle, Linda finds that it includes the
person, B. Dhaliwal. This quickly catches her attention since she remembers that B. Dhaliwal
is connected with A. Ramazi (Figure 17 (1)). Because of this connection, Linda decides to
find more information from this bundle and another bundle that includes B. Dhaliwal and A.
Ramazi (the bundle on top in the black dotted box in Figure 17 (1)), so she requests the full
path evaluation from them. Based on the request from the newly highlighted bundle shown
in Figure 18 (6), MERCER highlights a new bicluster-chain (Figure 18 (7)). Then based on
the evaluation request from the bundle including B. Dhaliwal and A. Ramazi, MERCER
highlights another chain. Linda finds these two chains merge together (Figure 18 (8)). The
two merged chains both include new pieces of information which connects with the previous
findings. Thus, Linda decides to read the reports that are related to these four bundles.

From the four bundles, in the document view of MERCER, Linda finds in total ten unique
reports. Of the ten reports, six show evidences about a new threat and three are those
relevant to previously identified threat plot. Based on the six reports, Linda identifies the
potential threat as:

B. Dhaliwal and A. Ramazi plan to attack the New York Stock Exchange
at 9:00 am on April 30.

Considering the connections between this plot and the previously identified one (e.g., they
share some people’s names and date), Linda also confirms that A. Ramazi is the key person
who coordinates the two planned attacks.

With the capability of model evaluations, in this use case, MERCER effectively directs
Linda to discover potentially meaningful biclusters or bicluster-chains. Using colors to
visually indicate the model evaluation scores in MERCER, Linda can easily see the most
surprising bicluster or bicluster-chain, evaluated by the maximum entropy model. Compared
with the previous use case of BiSet, following the model-suggested biclusters or chains saves
Linda significant time in checking entity-level overlaps for meaningful bicluster identification.
In this use case, the maximum entropy model shares the burden of Linda for foraging
information (e.g., finding potentially useful biclusters or chains). Thus, compared with the
first use case, Linda can spend more time and effort to synthesize the visualized structured
information for hypothesis generation.

6.2.3 Comparison between BiSet and MERCER. Both BiSet and MERCER can highlight
entities and biclusters based on connections, and visually present entities and biclusters
(algorithmically identified structured information) in an organized manner. However, com-
pared with BiSet, MERCER also enables the highlighting entities and biclusters based on
identified surprising coalitions from the maximum entropy model. Comparing the two cases
discussed above, we find that MERCER better supports the user’s sensemaking process
of exploring entity coalitions, than BiSet does, from two key aspects: 1) efficiency and 2)
exploring new analytical paths.
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Compared with BiSet, MERCER more effectively directs users’ attention to potentially
useful biclusters or bicluster-chains by visually prioritizing them with colors based on their
maximum entropy model evaluation scores. The model evaluation function provided in
MERCER eases the process for users to find useful biclusters, particularly compared with
manually entity overlap investigation. For example, in the first use case, a user has to
examine in total 9 biclusters (4 in the left most bicluster list, 5 in the middle bicluster list
and 2 in the right most bicluster list as shown in Figure 16), before she finally identifies a
meaningful bicluster-chain that covers the information of a potential threat. However, in
the second use case, MERCER directs the user to a bicluster-chain after she investigates 3
biclusters (in the left most bicluster list shown in Figure 17). Although this chain is slightly
different from the manually identified one in the first use case, it covers the same amount of
information as the other one does. Thus, in the second use case, MERCER saves the user
from checking highlighted biclusters in the other two lists, and effectively provides a useful
bicluster-chain for users to explore.

Based on the four user selected domains (visualized as a fixed schema), it is hard to
identify all three threat plots in the Crescent dataset because not all pre-identified biclusters
can be shown. However, from the two cases, we can find that MERCER can direct users
from one identified plot to a new plot via a surprising bicluster-chain. However, when users
manually forage relevant information, it is not easy for them to make such transitions due
to cognitive tunneling [56]. In the first use case, the key bundle that can lead to a new plot
is actually identified not as useful as the one shown as b in Figure 16. Thus, MERCER
significantly aids in identifying coalitions of entities worthy of further exploration.

7 RELATED WORK

In this section we survey related work. In particular, we discuss work related with regard to
mining surprising patterns, iterative data mining, mining multi-relational datasets, finding
plots in data, and bicluster visualizations for data exploration.

7.1 Mining Biclusters

Mining biclusters is an extensively studied area of data mining, and many algorithms for
mining biclusters from varied data types have been proposed, e.g. [2, 5, 39, 42, 57, 59, 63].
Bicluster mining, however, is not the primary aim in this paper; instead it is only a component
in our proposed framework. Moreover, the above mentioned studies do not assess whether
the mined clusters are subjectively interesting. A comprehensive survey of biclustering
algorithms was given by Madeira and Oliveira [34].

7.2 Mining Surprising Patterns

There is, however, significant literature on mining representative/succinct/surprising patterns
[e.g., 27] as well as on explicit summarization [e.g., 8]. Wang and Parthasarathy [60]
summarized a collection of frequent patterns by means of a row-based MaxEnt model,
heuristically mining and adding the most significant itemsets in a level-wise fashion. Tatti
[54] showed that querying such a model is PP-hard. Mampaey et al. [35] gave a convex
heuristic, allowing more efficient search for the most informative set of patterns. De Bie
[10] formalized how to model a binary matrix by MaxEnt using row and column margins
as background knowledge, which allows efficient calculation of probabilities per cell in the
matrix. Kontonasios et al. [28] first proposed a real-valued MaxEnt model for assessing
patterns over real-valued rectangular databases. These papers all focus on mining surprising
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patterns from a single relation. They do not explore the multi-relational scenario, and can
hence not find connections among surprising patterns from different relations—the problem
we focus on.

7.3 Iterative Data Mining

Iterative data mining as we study was first proposed by Hanhijärvi et al. [18]. The general
idea is to iteratively mine the result that is most significant given our accumulated knowledge
about the data. To assess significance, they build upon the swap-randomization approach of
Gionis et al. [15] and evaluate empirical p-values. With the help of real-valued MaxEnt model,
Kontonasios et al. [30] proposed a subjective interestingness measure called Information Ratio
to iteratively identify and rank the interesting structures in real-valued data. Mampaey
et al. [35] and Kontonasios et al. [30] show that ranking results using a static MaxEnt
model leads to redundancy in the top-ranked results, and that iterative updating provides a
principled approach for avoiding this type of redundancy. Tatti and Vreeken [55] discussed
comparing the informativeness of results by different methods on the same data. They gave
a proof-of-concept for single binary relations, for which results naturally translate into tiles,
and gave a MaxEnt model in which tiles can be incorporated as background knowledge. In
this work we build upon this framework, translating bicluster chains (over multiple relations)
into tiles to measure surprisingness with regard to background knowledge using a maximum
entropy model.

7.4 Multi-relational Mining

Mining relational data is a rich research area [12] with a plethora of approaches ranging
from relational association rules [11] to inductive logic programming (ILP) [33]. The idea of
composing redescriptions [64] and biclusters to form patterns in multi-relational data was first
proposed by Jin et al. [24]. Cerf et al. [4] introduced the DataPeeler algorithm to tackle the
challenge of directly discovering closed patterns from n-ary relations in multi-relational data.
Later, Cerf et al. [3] refined DataPeeler for finding both closed and noise-tolerant patterns.
These frameworks do not provide any criterion for measuring subjective interestingness of
the multi-relational patterns. Ojala et al. [36] studied randomization techniques for multi-
relational databases with the goal to evaluate the statistical significance of database queries.
Spyropoulou and De Bie [43] and Spyropoulou et al. [46] proposed to transform a multi-
relational database into a K-partite graph, and to mine maximal complete connected subset
(MCCS) patterns that are surprising with regard to a MaxEnt model based on the margins of
this data. Spyropoulou et al. [45] extended this approach to finding interesting local patterns
in multi-relational data with n-ary relationships. Bicluster chains and MCCS patterns
both identify redescriptions between relations, but whereas MCCS patterns by definition
only identify exact pair-wise redescriptions (completely connected subsets), bicluster chains
also allow for approximate redescriptions (incompletely connected subsets). All except for
the most simple bicluster chains our methods discovered in the experiments of Section 6
include inexact redescriptions, and could hence not be found under the MCCS paradigm.
Another key difference is that we iteratively update our MaxEnt model to include all patterns
we mined so far. Later, Spyropoulou and De Bie [44] further extended MCCS patterns
to support discovering approximate multi-relational patterns (α-CCS), where dense local
patterns (e.g. dense tiles but not biclusters in our scenario) from binary relations are allowed
to be used to construct the α-CCS patterns. Compared to our bicluster chain approach
proposed in this paper, these are two different fundamental approaches to formulate and
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solve the same problem. However, the differences between these two approaches from the
theoretical perspective and whether they perform similarly or not over the same dataset
need to be further investigated in future work.

7.5 ‘Finding Plots’

The key difference between finding plots, and finding biclusters or surprising patterns
is the notion of chaining patterns into a chain, or plot. Commercial software such as
Palantir provide significant graphic and visualization capabilities to explore networks of
connections but do not otherwise automate the process of uncovering plots from document
collections. Shahaf and Guestrin [40] studied the problem of summarizing a large collection
of news articles by finding a chain that represents the main events; given either a start or
end-point article, their goal is to find a chain of intermediate articles that is maximally
coherent. In contrast, in our setup we know neither the start nor end points. Further,
in intelligence analysis, it is well known that plots are often loosely organized with no
common all-connecting thread, so coherence cannot be used as a driving criterion. Most
importantly, we consider data matrices where a row (or, document) may be so sparse or
small (e.g., 1-paragraph snippets) that it is difficult to calculate statistically meaningful
scores. Storytelling algorithms [e.g., 20, 21, 31] are another related thread of research; they
provide algorithmic ways to rank connections between entities but do not focus on entity
coalitions and how such coalitions are maintained through multiple sources of evidence. Wu
et al. [61] proposed a framework to discover the plots by detecting non-obvious coalitions of
entities from multi-relational datasets with maximum entropy principle and further support
iterative, human-in-the-loop, knowledge discovery. However, no visualization framework was
developed to enable analysts to be involved when discovering the surprising entity coaliations
in that work. Moreover, we also propose the full path and step-wise chain search strategies
and combine them together to help analyts to explore the data.

7.6 Bicluster Visualizations

Finally, we give an overview of work on bicluster visualization techniques. Biclusters offer a
usable and effective way to present coalitions among sets of entities across multiple domains.
Various visualizations have been proposed to present biclusters for sensemaking of data in
different fields. One typical application domain of bicluster visualizations is bioinformatics,
where biclusters are visualized to help bioinformaticians to identify groups of genes that have
similar behavior under certain groups of conditions (e.g., BicAt [1], Bicluster viewer [19],
BicOverlapper 2.0 [38], BiGGEsTS [16], BiVoc [17], Expression Profiler [26], GAP [62] and
Furby [48]). In addition, Fiaux et al. [13] and Sun et al. [50] applied biclusters in Bixplorer, a
visual analytics tool, to support intelligence analysts for text analytics. Evaluations of these
tools show promising results, which indicates that using visualized bicluster to empower
data exploration is beneficial.

In order to systematically inform the design of bicluster visualizations, a five-level design
framework has been proposed [53] and the key design trade-off to visualize biclusters has been
identified: Entity-centric and relationship-centric [51]. This design framework highlights
five levels of relationships that underlie the notions of biclusters and bicluster chains. The
design trade-off suggests that bicluster visualizations should visually represent both the
membership of entities and the overlap among biclusters in a human perceptible and usable
manner.
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8 CONCLUSION

Our approach to discover multi-relational patterns with maximum entropy models in a
visual analytics tool is a significant step in formalizing a previously unarticulated knowledge
discovery problem and supporting its solution in an interactive manner. We have primarily
showcased results in intelligence analysis; however, the theory and methods presented are
applicable for analysis of unstructured or discrete multi-relational data in general—such as
for biological knowledge discovery from text. The key requirement to apply our methods is
that the data should be transformed into our data model.

Some of the directions for future work include (i) obviating the need to mine all biclusters
prior to composition, (ii) improving the scalability of the proposed models and framework
to be able to deal with even larger datasets, (iii) enabling dynamic and flexible multi-
relational schema generation to support better sensemaking and hidden plot discovery, (iv)
incorporating weights on relationships to account for differing veracities and trustworthiness
of evidence. Ultimately, the key is to support more expressive forms of human-in-the-loop
knowledge discovery.
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