
A Characterization Study of Merge Conflicts in Java Projects

BOWEN SHEN, Virginia Tech, United States

MUHAMMAD ALI GULZAR, Virginia Tech, United States

FEI HE, Tsinghua University, China
NA MENG, Virginia Tech, United States

In collaborative software development, programmers create software branches to add features and ix bugs tentatively, and

then merge branches to integrate edits. When edits from diferent branches textually overlap (i.e., textual conlicts) or lead

to compilation and runtime errors (i.e., build and test conlicts), it is challenging for developers to remove such conlicts.

Prior work proposed tools to detect and solve conlicts. They investigate how conlicts relate to code smells and the software

development process. However, many questions are still not fully investigated, such as what types of conlicts exist in real-

world applications and how developers or tools handle them. For this paper, we used automated textual merge, compilation,

and testing to reveal 3 types of conlicts in 208 open-source repositories: textual conlicts, build conlicts (i.e., conlicts causing

build errors), and test conlicts (i.e., conlicts triggering test failures). We manually inspected 538 conlicts and their resolutions

to characterize merge conlicts from diferent angles.

Our analysis revealed three interesting phenomena. First, higher-order conlicts (i.e., build and test conlicts) are harder

to detect and resolve, while existing tools mainly focus on textual conlicts. Second, developers manually resolved most

higher-order conlicts by applying similar edits to multiple program locations; their conlict resolutions share common editing

patterns implying great opportunities for future tool design. Third, developers resolved 64% of true textual conlicts by keeping

complete edits from either a left or right branch. Unlike prior studies, our research for the irst time thoroughly characterizes

three types of conlicts, with a special focus on higher-order conlicts and limitations of existing tool design. Our work will

shed light on future research of software merge.

CCS Concepts: · General and reference → Empirical studies; · Software and its engineering → Collaboration in

software development; Software maintenance tools.

Additional Key Words and Phrases: empirical, software merge, conlict detection, conlict resolution

1 INTRODUCTION

łIntegration Hellž refers to the scenarios where developers integrate or merge big chunks of code changes
from software branches right before delivering a software product [20]. In practice, this integration process is
rarely smooth and seamless due to conlicts, which can take developers hours or even days to debug so that
branches can inally merge [12]. To avoid łIntegration Hellž, an increasing number of developers use Continuous
Integration (CI) to integrate code frequently (e.g., once a day) and to verify each integration via automated
build (i.e., compilation) and testing [54, 57]. Nevertheless, CI practices do not eliminate the challenges posed by
merge conlicts. Developers still rely on the merge feature of version control systems (e.g., git-merge [25]) to
automatically (1) integrate branches and (2) reveal conlicts that require manual resolution. Such text-based merge

Authors’ addresses: Bowen Shen, bowenshe@vt.edu, Virginia Tech, Blacksburg, Virginia, United States; Muhammad Ali Gulzar, gulzar@vt.edu,

Virginia Tech, Blacksburg, Virginia, United States; Fei He, hefei@mail.tsinghua.edu.cn, Tsinghua University, Beijing, China; Na Meng,

nm8247@vt.edu, Virginia Tech, Blacksburg, Virginia, United States.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that

copies are not made or distributed for proit or commercial advantage and that copies bear this notice and the full citation on the irst

page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy

otherwise, or republish, to post on servers or to redistribute to lists, requires prior speciic permission and/or a fee. Request permissions from

permissions@acm.org.

© 2022 Association for Computing Machinery.

1049-331X/2022/7-ART $15.00

https://doi.org/10.1145/3546944

ACM Trans. Softw. Eng. Methodol.

https://doi.org/10.1145/3546944

2 • Shen, et al.

usually produces numerous false positives and false negatives. For example, when two branches reformat the same
line in divergent ways (e.g., add vs. delete a whitespace), git-merge reports a textual conlict even though such
a conlict is unimportant and poses no syntactic or semantic diference. Meanwhile, when two branches edit
diferent lines modifying the program semantics in conlicting ways, git-merge silently applies both edits without
reporting any conlict.

Background. In prior literature, many tools were proposed to improve text-based merge [27, 28, 30, 39, 46, 59].
For instance, FSTMerge [28] models program entities (e.g., classes and methods) as unordered tree nodes,
matches entities based on their signatures, and uses text-based merge to integrate edits inside matched entities.
JDime [27, 39] extends FSTMerge by modeling both program entities and statements in its tree representation.
It applies tree matching and amalgamation algorithms to integrate edits. Given textually conlicting edits,
AutoMerge [59] enumerates all possible combinations of the edit operations from both branches and recommends
alternative conlict resolutions. However, all of these tools only compare edits applied to the same program
entity; they do not check whether the co-application of edits to diferent entities can trigger any compilation or
testing error. Crystal [30] overcomes this limitation by building and testing tentatively merged code to reveal
higher-order conflicts (i.e., build conlicts and test conlicts).

Motivation. Despite the existence of diverse tools, some fundamental research questions (RQs) are yet to be
explored, including

• RQ1: How were the three types of conlicts (i.e., textual, build, and test conlicts) introduced in real-world
applications?

• RQ2: What are developers’ resolution strategies for diferent types of conlicts?
• RQ3: What characteristics of conlicts are overlooked by existing tool design?

Exploring these questions is important for two reasons. First, by contrasting the characteristics of merge conlicts
with the focus of existing merge tools, we can reveal the critical aspects of conlicts overlooked by such tools.
Second, by examining how conlicts were introduced and resolved by developers, we can motivate new tools to
address conlicts by mimicking developers’ practices or bringing humans into the loop.

Methodology. To investigate the RQs, we conducted a comprehensive characterization study of merge conlicts.
A typical merging scenario in software version history involves four program commits: base version � , left
branch � , right branch � , and developers’ merge result � (see Fig. 2). To crawl for merging scenarios in version
history, we searched for any commit that has two parent commits. If a commit � has two parent commits, we
consider � to be developers’ merge result�, treat the irst parent commit as � , and regard the second parent as � .
To identify the common base version �, we applied the command łgit merge-basež to the two parent commits.

As shown in Fig. 1, we took a two-phase approach to extract and analyze merge conlicts in Java open-source
software repositories. In Phase I, starting from an existing merging scenario, we applied git-merge, automated
build, and automated testing in sequence. With git-merge, we tentatively generated a text-based merged version
�� from � and � (see Fig. 2). We then built �� and tested it with developers’ predeined test cases. When any of
these steps failed, we concluded � and � to have textual, build, or test conlicts. For deeper analysis, in Phase II, we
manually inspected a sample set of scenarios with textual conlicts and all scenarios with build or test conlicts.
For each of these scenarios, we compared the ive program versions involvedÐ�, � , � ,�, and ��Ðto comprehend
the root cause and resolution of conlict(s).

Our Results. In our study, we mined the software version history of 208 popular open-source Java projects,
and found 117,218 merging scenarios (i.e., any code commit with two parent commits) in those repositories. With
the two-phase methodology mentioned above, we identiied 15,886 merging scenarios with textual conlicts, 79
scenarios with build conlicts, and 33 scenarios with test conlicts. Due to the huge number of revealed textual

ACM Trans. Softw. Eng. Methodol.

A Characterization Study of Merge Conflicts in Java Projects • 3

Merging Scenarios

from Open Source

Repositories

1. Can git-

merge

create Am?

Y
2. Does Am

build

successfully?

N Inspect five versions

(b, l, r, m, Am) for

textual conflicts

N Inspect b, l, r, m, Am

for build conflicts

3. Does Am

pass all

tests?

Y

Inspect b, l, r, m, Am

for test conflicts

N

Automatic Manual

Y

Discard the data as no conflict is revealed

Fig. 1. Workflow of our hybrid approach

Base (b)

Left (l) Right (r)

Merged by

developers (m)

textually

merged (Am)

Fig. 2. Sotware versions related to a

merging scenario

conlicts, we randomly picked 385 conlicts from distinct merging scenarios for manual inspection. We also
manually analyzed all revealed build and test conlicts to characterize the root cause and developers’ conlict
resolutions. The major indings are as below:

• How were conlicts introduced? 65 out of 385 inspected textual conlicts are false positives because �
and � edit adjacent lines instead of the same lines. 18 of the 65 false positives are located in non-Java iles
(e.g., pom.xml). Build conlicts occurred when the co-application of edits from � and � broke any def-use
link between program elements (e.g., classes or libraries). For instance, when � updates a method from
foo() to bar() and � adds a call foo(), the co-application of both edits can break a def-use link as it leads
to a mismatch between the use (i.e., call) and def (i.e., declaration) of foo(). 85% (39/46) of test conlicts
happened, as the co-application of edits broke def-use links between elements or led to mismatches between
test oracles and software implementation.

• Howdid developersmanually resolvemerge conlicts?Within the 320 true textual conlicts, developers
resolved most conlicts (i.e., 206) by exclusively keeping changes from one branch. However, developers
resolved most of the higher-order conlicts by combining all edits from both branches with additional
edits. The additional edits solve build or test errors by repairing broken def-use links or ixing mismatches
between implementation and tests. Such edits present systematic editing patterns that modify similar code
in similar ways.

• What conlicts cannot be handled by current tools? Existing tools detect textual conlicts in non-Java
software artifacts (e.g., readme.txt) with relatively low precision (72%) and thus unable to resolve true
textual conlicts fully automatically. When textual conlicts exist and �� could not be generated, neither
compilation nor testing is applicable for conlict detection. Even if �� is available, compilation and testing
can only reveal the symptoms (e.g., errors or failures) triggered by higher-order conlicts instead of the
precise root causes. There is insuicient tool support for the detection and resolution of higher-order
conlicts.

The insights from this study enlighten future software merge tools and suggest new research directions in related
areas like systematic editing and change recommendation. The program and data presented in this work are
publicly available at https://igshare.com/s/c174e1fd2ad02b15211.

2 BACKGROUND

This section deines terminology used in this paper (Section 2.1), and introduces existing tools (Section 2.2).

ACM Trans. Softw. Eng. Methodol.

https://figshare.com/s/c174e1ffd2ad02b15211

4 • Shen, et al.

Table 1. Exemplar merge conflicts

Changes in � Changes in �

(a) Textual conlict
- private int a=4; - private int a=4;

+ private int a=40; + private int a=20;

(b) Build conlict
public void foo() { public class C {

+ C.m(); - public static void m(){...}

... } + public static void m(int p){...}}

(c) Test conlict
y = foo(x); - y = foo(x);

+ y = foo(x) + 1;

- if(y < 13){...} if(y < 13){...}

+ if(++y < 13){...}

else error() else error()

Table 2. Overview of current merge tools

Detection Resolution

Textual
conlicts

git-merge, FSTMerge,
JDime, IntelliMerge,
AutoMerge, Crystal,
WeCode, CloudStudio

FSTMerge,
JDime, In-
telliMerge,
AutoMerge

Build
conlicts

Crystal, WeCode,
CloudStudio

-

Test con-
licts

Crystal, WeCode, Safe-
Merge

-

2.1 Terminology

When developers merge two branches (e.g., � and �) in a software repository, it may lead to three types of conlicts.
1. Textual Conlicts exist when � and � edit the same line in divergent ways. As illustrated by Table 1 (a),

since � and � update the same statement with conlicting values (e.g., 40 vs. 20), there is a textual conlict between
the branches.

2. Build Conlicts occur when the edits of � and � do not conlict textually, but their co-application triggers a
compilation or build error. In Table 1 (b), when � adds an invocation to C.m() and � simultaneously updates the
signature of C.m(), the edit integration causes an unresolved method reference.
3. Test Conlicts occur when the edits of � and � do not conlict textually and do not cause any compilation

issue, but the co-application of both edits triggers a runtime error or test error. For example, in Table 1 (c), although
the edits in � and � separately increment y by 1, applying both edits will increment the variable by 2 and thus fail
the related tests.

2.2 Existing Tools for Sotware Merge

Various tools were proposed to detect or resolve merge conlicts [21, 27, 28, 30ś32, 36, 39, 46, 55, 56, 59]. For
brevity, in this paper, we focus our discussion on the state-of-the-art tools proposed in the past ten years.
FSTMerge [21, 28, 32] is also known as semistructured merge. It constructs abstract syntax trees (ASTs)

of programming languages (i.e., Java, C#, and Python), and converts each AST to a program structure tree by
removing the AST subtrees of program statements. Using program structure trees, FSTMerge matches nodes
between � and � purely based on the class or method signatures. It then integrates the edits inside matching nodes
via textual merge. By modeling and comparing Java classes and methods, FSTMerge could align code better than
textual merge and thus reports conlicts with better accuracy [28, 32].

JDime [27] is also known as structured merge. Similar to FSTMerge, JDime matches Java methods and classes
based on program structure trees. However, unlike FSTMerge, JDime creates ASTs and conducts tree-based merge
instead of text-based merge for each matching pair. A recent study shows that such structured merge could report
conlicts more precisely than semistructured merge [33], mainly because structured merge observes the syntactic
structures when matching program statements.

AutoMerge [59] is similar to JDime, in the sense that it also detects conlicts based on AST comparison. However,
AutoMerge goes beyond reporting conlicts and attempts to resolve conlicts by proposing alternative strategies
to merge � and � , with each strategy integrating some edits from both branches.

Similar to FSTMerge, IntelliMerge [55] also matches program elements (e.g., Java classes, methods, and ields)
based on the syntactic structures. For each matching pair, IntelliMerge integrates the edits inside matching nodes
via textual merge. However, unlike FSTMerge, IntelliMerge detects refactoring edits (e.g., method renaming)

ACM Trans. Softw. Eng. Methodol.

A Characterization Study of Merge Conflicts in Java Projects • 5

applied to software branches and considers those edits whenmatching program elements. In this way, IntelliMerge
reports conlicts with higher precision and higher recall than FSTMerge [55].
SafeMerge [56] takes in four program versions related to a merging scenario: �, � , � , and � and statically

infers the relational postconditions of distinct versions to model program semantics. Afterwards, SafeMerge
compares all postconditions to decide whether � and � are free of conlicts (i.e.,� does not introduce new unwanted
behaviors). Like the tools mentioned above, SafeMerge only examines edits applied to the same program entity
for potential conlicts. It does not relate edits applied to distinct program entities to reveal more conlicts.

Crystal [30, 31] takes three steps to reveal diferent kinds of conlicts. As with our Phase I, Crystal irst applies
textual merge to � and � to reveal any textual conlict. Next, it exploits automatic build and testing to reveal any
higher-order conlict.

WeCode [36] is similar to Crystal. It continuously merges the committed and uncommitted changes in software
branches to raise developers’ awareness of potential conlicts even before program edits are all committed, and
branches get merged.
CloudStudio [34] is similar to Crystal and WeCode, in the sense that they are all awareness systems. These

systems notify developers of the potential conlicts their branches can have with the branches of other developers.
As a web-based IDE, CloudStudio monitors developers’ coding activities, and reports textual conlicts when two
developers modify the same line. It also reports build conlicts by trying to merge simultaneously applied edits,
and to compile the merged version.

To facilitate understanding, we visualize the task categories covered by each tool in Table 2. This table relects
the solution domain for software merge conlicts. However, the table does not characterize the problem domain
(i.e., the conlicts exist in reality), neither does it map a tool’s applicability to diferent characteristics of conlicts.
Without such mapping, it is hard to tell (1) what kind of conlicts are well captured by the methodologies
implemented by current tools and (2) what new methodologies are still needed. Therefore, our study intends

to systematically characterize merge conlicts and their resolutions, and to compare them against the

application scope of existing techniques, while shedding light on future research directions.

3 STUDY APPROACH

Our approach has two phases (see Fig. 1). Phase I uses automatic approaches to discover conlicts (Section 3.1).
Phase II relies on manual inspection to comprehend the revealed conlicts and developers’ resolutions (Section 3.2).

3.1 Phase I: Automatic Detection of Conflicts

To ensure the representativeness of our study, we ranked Java projects on GitHub based on their popularity (i.e.,
star counts). We cloned repositories for the top 1,000 projects as our initial dataset. We then reined the dataset
with two heuristics. First, we only kept the projects that can be built with Maven [22], Ant [24], or Gradle [19],
because these three build tools are popularly used and we will rely on them to build and test each naïvely merged
version �� . In particular, Gradle projects typically contain build iles named *.gradle; Maven and Ant projects
often have build iles separately named as pom.xml and build.xml. We recognized the projects that can be built
with Maven, Ant, or Gradle based on the existence of corresponding build iles. Second, we removed tutorial
projects as they are not real Java applications and may not show real-world merging scenarios. Namely, if the
readme ile of any project contains some description like łthis tutorial project serves for learning purposesž, we
removed the project.

Consequently, our reined dataset comprises 208 repositories. Among the 208 repositories, we identiied 117,218
merging scenarios by searching for any commit with two parent/predecessor commits. In each identiied merging
scenario, we regard the irst and second parent commits as � and � separately. We treat their common child and
ancestor commits as� and �. Fig. 3 shows the distribution of projects based on their merging-scenario counts.
According to this igure, 3 projects contain no more than 2 merging scenarios, while 2 projects contain more

ACM Trans. Softw. Eng. Methodol.

6 • Shen, et al.

of

merging

scenarios

of projects
(0

,
2

]

(2
,

2
2
]

(2
2
,

2
3
]

(2
3
,

2
4
]

(2
4
,

2
5
]

(2
5
,

2
6
]

(2
6
,

2
7
]

(2
7
,

2
8
]

(2
8
,

2
9
]

(2
9
,

2
1
0
]

(2
1
0
,

2
1
1
]

(2
1
1
,

2
1
2
]

(2
1
2
,

2
1
3
]

(2
1
3
,

2
1
4
]0

5

10

15

20

25

30

35

40

Fig. 3. Project distribution based on merging scenarios

Table 3. The merging scenarios with conflicts

Textual Build Test

of merging
scenarios

15,886 79 33

Phase # of projects 183 37 22
I Max # of sce-

narios per
repository

4,172 6 4

Phase
II

of in-
spected
conlicts

385 107 46

than 213 or 8,192 scenarios. Among the 14 count intervals, (26, 27] corresponds to the most projects (i.e., 37).
The median count per project is 131, which means that merging scenarios exist widely in the subject software
repositories.
Although some of the 208 repositories have few merging scenarios (e.g., less than 10) or are maintained

by single developers, we did not further reine this dataset for two reasons. First, if the developers of some
repositories do not create or merge branches very often, our dataset can cover the merging practices by those
developers to be representative. Second, if some developers eagerly create and merge branches even though
they are the solo contributors of their projects, we believe it also important to cover the merging scenarios in
their repositories. Because diferent projects may deine test iles in diferent ways, we leveraged the regular
expression ł*Test*.javaž to search for test iles in the latest versions of 208 repositories. We found test iles in 191
repositories; only 17 repositories have no test ile. These numbers indicate that test iles popularly exist in the
subject repositories; they are usually available when testing is required to reveal test conlicts.

As illustrated in Fig. 1, in Phase I, we process each merging scenario by taking three steps sequentially. In Step
1, we apply git-merge to � and � to generate a text-based merged version �� . If this trial fails, git-merge reports
all textual conlicts, and we record that scenario. Otherwise, if both � and � build smoothly and we successfully
generate �� then, in Step 2, we attempt to build �� . If the attempt fails, we log all build errors and label the
merging scenario to have build conlicts. Otherwise, if �� builds successfully and both � and � pass developers’
test cases, then in Step 3, we further execute the successfully built version of �� with developers’ test suite. If the
program fails any test, we log all runtime errors and label the scenario to have test conlicts; otherwise, we skip
the merging scenario as no conlict is revealed. By applying such a three-step method, we marked 15,886 merging
scenarios with textual conlicts, 79 scenarios with build conlicts, and 33 scenarios with test conlicts. As shown in
Table 3, these three types of scenarios are separately from 183, 37, and 22 repositories. We found at most 4,172, 6,
and 4 merging scenarios related to individual conlicts per repository. All reported numbers imply the prevalence
of merge conlicts. Textual conlicts were reported more often than the other two types of conlicts.

3.2 Phase II: Manual Inspection

We inspected the merge conlicts to investigate the three research questions mentioned in Section 1. Due to a large
number of merging scenarios with textual conlicts (i.e., 15,886), it is infeasible to analyze each conlict manually.
We thus decided to sample 385 textual conlicts to reduce manual efort while ensuring the representativeness
of our observations. In particular, when 15,886 merging scenarios contain in total thousands or millions of
textual conlicts, 385 is a statistically signiicant sample size with 95% conidence level and ±5% conidence
interval [23, 41]. To construct our sample set, we randomly picked one or more merging scenarios in each of the

ACM Trans. Softw. Eng. Methodol.

A Characterization Study of Merge Conflicts in Java Projects • 7

Textual

Conflicts (385)

Edits to adjacent

lines (65)

Edits to the

same lines (320)

Update vs. update (82)

Update vs. delete (51)

Others (38)

Java files (239)

Other files (59)

Add vs. add (84)

Delete+add vs. update (23)

Delete+add vs. delete+add (16)

Delete+add vs. add (16)

Delete+add vs. delete (10)

Other *.xml (32)

*.md (20)

*.properties (11)

Build scripts (35)

Fig. 4. Characterization of root causes for textual conflicts

183 repositories and examined one of the reported textual conlicts for each scenario. To manually analyze every
sampled conlict, we studied ive related program versions: �, � , � ,�, and �� .

We inspected all build conlicts without sampling because of only a few such scenarios (i.e., 79). Diferent from
git-merge, build tools report compilation errors but never pinpoint the conlicting edits. To locate and understand
those edits that correspond to each compilation error, we checked ive program versions (i.e., �, � , � ,�, and ��)
and inspected edits applied to distinct locations. If the co-application of certain edits from � and � is responsible
for the error, we identiied the minimum set of involved edits as the root cause of a build conlict. Similarly, we
inspected all scenarios labeled with test conlicts (i.e., 33). Automated testing reports runtime errors but does
not locate any conlicting edits. To reveal those edits, we inspected all ive program versions to compare the
semantics and identiied the minimum set of responsible edits.

With more details, to locate the root cause of a higher-order conlict, we checked whether developers’ merged
version� had any build or test error. If both �� and� had build or test errors, we could not decide how those
errors were introduced or resolved. In such scenarios, we checked three more commits after� in the software
history. If none of these additional commits resolved the build or test errors introduced earlier, we concluded that
the merging scenario had some unknown build/test conlicts. Otherwise, if� or any of the later commits being
checked had zero build/test error, we compared �� with that commit to locate conlicts.
To ensure the quality of our manual inspection, two authors independently examined the sampled textual

conlicts and all merging scenarios with build or test failures. The authors compared their description on root
causes and resolutions for all conlicts and extensively discussed any disagreement until reaching a consensus.
As shown in Table 3, we sampled 385 textual conlicts, and manually located 107 build conlicts as well as 46
test conlicts in the 112 (i.e., 79+33) examined scenarios. Notice that one merging scenario can have one or
more higher-order conlicts. Thus, the total number of higher-order conlicts (i.e., 107+46) is larger than the
total number of examined scenarios (i.e., 112). We report our empirical indings for diferent conlict types in
Sections 4ś6.

4 STUDY RESULTS ON TEXTUAL CONFLICTS

This section presents our analysis of the 385 textual conlicts to answer each research question.

4.1 RQ1: Root Causes of Conflicts

We studied three characterisitics of each conlict: the edited iles, relative edit locations, and edit types (see Fig. 4).
In terms of edited iles, the 385 textual conlicts can be classiied into 6 categories based on where they arise: 239
conlicts occur in Java code; 35 conlicts exist in build scripts (i.e., build.xml, pom.xml, and *.gradle); 32 conlicts
are found in other XML iles (e.g., plugin.xml and web.xml); 20 conlicts are in MARKDOWN iles (i.e., *.md), 11
conlicts are located in property iles (i.e., *.properties), and 59 conlicts happen in other iles (e.g., code written in
other programming languages). Most conlicts occur in Java code, resonating with the fact that we inspected
merging scenarios in Java projects only, and developers mainly modiied code via commits.

ACM Trans. Softw. Eng. Methodol.

8 • Shen, et al.

In terms of relative edit locations, we discovered two types of conlicts: (i) in 65 conlicts, the edits from � and �
were applied to adjacent instead of same lines; (ii) in the other 320 conlicts, the edits from diferent branches
commonly cover at least one line. Table 4 presents an exemplar conlict of type (i) in (a), and conlict examples of
type (ii) in (b)ś(i). Conlicts in the irst category are false positives generated by git-merge, because the edits do
not overlap and can be co-applied theoretically. These conlicts do not satisfy the deinition of textual conlicts
mentioned in Section 2.1. Among the 65 false positives, there are 18 instances located in non-Java iles (i.e., build
scripts and other iles) and 47 instances in Java iles. In the following exploration, we focused our analysis on the
320 true conlicts.
In terms of edit types, we further classiied the true conlicts into eight categories: (1) add vs. add, (2) update

vs. update, (3) update vs. delete, (4) delete+add vs. update, (5) delete+add vs. delete+add, (6) delete+add vs. add,
(7) delete+add vs. delete, and (8) others. Given an added line and a deleted line, if they have at least 50% of
string similarity, our manual inspection considers them to present an update operation; otherwise, our manual
inspection treats them as two separate edit operations: one insertion and one deletion. Add vs. add means �
and � insert divergent content at the same location, as shown by the example in Table 4 (b). Update vs. update
means � and � update the same line(s) in divergent ways (e.g., Table 4 (c)). Update vs. delete means between � and
� , one branch updates some text while the other deletes the same text. As shown in Table 4 (d), � deletes a Java
ile while � updates content of that ile. These three edit types take up the majority of 320 conlicts (i.e., 68%).

Delete+add vs. update and delete+add vs. delete+add are similar to the edit type update vs. update, as these
three types all involve simultaneous line addition and deletion in both branches. In our research, we diferentiate
update from deletion+add based on the observed textual similarity. Namely, if in a branch the inserted lines are
similar to deleted ones, we label the edits update; otherwise, the label is delete+add. In Table 4, (e)ś(f) present
examples for both types. Additionally, delete+add vs. add means that one branch deletes and adds lines while
the other branch inserts lines to the same edit location. As shown in Table 4 (g), � deletes two imports and adds
another import, and � adds two imports. Because the edit locations by both branches overlap (i.e., the last import
addition), git-merge reports a conlict. Delete+add vs. delete means that one branch deletes and adds lines while
the other branch deletes lines; the two branches have overlapping edit locations (see Table 4 (h)). Others include
miscellaneous conlicts. For example, as shown in Table 4 (i), � updates a line and adds extra lines to implement
new logic; � replaces two statements with three semantically similar statements. We consider such conlicts as
update+add vs. update and put them into the miscellaneous category.

We deined the eight categories mainly due to the larger proportion of the irst seven types of conlicts. Others
include all smaller types of edits, each of which covers less than 10 conlicts.

RQ1 answer summary: Among the inspected 385 textual conlicts, 146 conlicts exist in non-Java iles;
65 conlicts are false positives by git-merge; 166 true conlicts are caused by divergent insertions or
updates between branches (i.e., add vs. add, and update vs. update).

4.2 RQ2: Resolutions of Conflicts

We observed that developers may react to a given conlict in one of the following eight ways:

• L: Keep all edits from � .
• R: Keep all edits from � .
• M: Apply new edits that are not from � or � .
• L+R: Keep edits from both sides.
• L+M: Keep edits from � and apply extra edits as needed. Compared with L, L+M may keep some instead of
all edits from � and/or add new edits.

• R+M: Keep the edits from � and apply extra edits as needed. Compared with R, R+Mmay keep some instead
of all edits from � and/or add new edits.

ACM Trans. Softw. Eng. Methodol.

A Characterization Study of Merge Conflicts in Java Projects • 9

Table 4. Nine exemplar conflicts reported by git-merge

(a) A reported conlict due to edits to adjacent lines [1]

Changes in � : Changes in � :
import java.io.IOException; import java.io.IOException;

import java.io.InputStream; - import java.io.InputStream;

import java.util.List; - import java.util.List;

import java.util.Map; - import java.util.Map;

- import java.util.concurrent.Executors; import java.util.concurrent.Executors;

(b) A conlict of type add vs. add [14]

Changes in � : Changes in � :
import org.apache.dubbo.common.URL; import org.apache.dubbo.common.URL;

+ import org.apache.dubbo.common.utils.StringUtils; + import org.apache.dubbo.common.Version;

(c) A conlict of type update vs. update [3]

Changes in � : Changes in � :
<artifactId>jackson-jaxrs </art ifactId> <artifactId>jackson-jaxrs </art ifactId>

- <version>1.8.1</version> - <version>1.8.1</version>

+ <version>1.9.7</version> + <version>1.9.3</version>

<scope>test</scope> <scope>test</scope>

(d) A conlict of type update vs. delete [15]

Changes in � : Changes in � :
Delete the whole ile TestTryCatchNoMove.java Update content of the ile TestTryCatchNoMove.java.

(e) A conlict of type delete+add vs. update [13]

Changes in � : Changes in � :
Delete and add many lines in a Java method of Server-

Connection.java. The edited area overlaps with that of � .
- if(tableKey.equalsIgnoreCase(table) &&

itemConfig!=null){

+ if((tableKey.equalsIgnoreCase(table) &&

itemConfig!=null) || tableKey.equals("*")){

(f) A conlict of type delete+add vs. delete+add [7]

Changes in � : Changes in � :
Delete 40 lines and insert 3 lines in mycat.xml. The edited region
overlaps with that of � .

Delete 29 lines and add 1 line in mycat.xml.

(g) A conlict of type delete + add vs. add [2]

Changes in � : Changes in � :
+ import java.util.ArrayList;

- import java.util.Collection; import java.util.Collection;

- import java.util.ConcurrentModificationException; import java.util.ConcurrentModificationException;

+ import java.util.Iterator; + import java.util.List;

import java.util.Map; import java.util.Map;

(h) A conlict of type delete+add vs. delete [5]

Changes in � : Changes in � :
- import azkaban.executor.ExecutableFlow.FailureAction; import azkaban.executor.ExecutableFlow.FailureAction;

- import azkaban.executor.ExecutableFlow.Status; - import azkaban.executor.ExecutableFlow.Status;

+ import azkaban.executor.ExecutionOptions;

(i) A conlict of type others [8]

Changes in � : Changes in � :
this.addConnectionExecutor = ...; - this.addConnectionExecutor = ...;

- this.closeConnectionExecutor = createThreadPoolExecu-

tor(4, ...);

- this.closeConnectionExecutor = createThreadPoolExecu-

tor(4, ...);

+ ThreadFactory threadFactory = ...;

+ this.addConnectionExecutor = ...;

+ this.closeConnectionExecutor = createThreadPoolExecu-

tor(1 + (config.getMaximumPoolSize() / 2), ...);

+ this.closeConnectionExecutor = createThreadPoolExecu-

tor(1 + config.getMaximumPoolSize() / 2, ...);

+ if (config.getMetricsTrackerFactory() != null) { ...

• L+R+M: Keep edits from sides and apply extra edits as needed. Compared with L+R, L+R+M may keep
fewer edits from both sides and/or add new edits.

• X: Do not resolve the conlict.

For the 320 true conlicts in our sample set, we present the distribution of developers’ resolution strategies
in Table 5. As shown in the table, developers resolved 64% of conlicts (206/320) by taking all edits from either
� or � (i.e., L or R). They resolved 20% of conlicts (64/320) by including all edits from both branches (i.e., L+R).
Table 6 presents such an example. Developers handled 8% of conlicts (25/320) by applying additional changes
after integrating all edits from both branches (i.e., L+R+M). They seldom used the other resolution strategies.

ACM Trans. Softw. Eng. Methodol.

10 • Shen, et al.

Table 5. Developers’ resolutions for the 320 true conflicts

Edit Types L R M L+R L+M R+M L+R+M X

Add vs. add 19 17 - 40 1 2 4 1
Update vs. update 42 23 4 5 1 - 6 1
Update vs. delete 35 12 1 - 1 2 - -
Delete+add vs. update 8 7 - 2 1 - 5 -
Delete+add vs. delete+add 7 4 - 1 - 2 2 -
Delete+add vs. add 2 3 1 7 1 - 1 1
Delete+add vs. delete 5 1 - 2 1 - 1 -
Others 11 10 - 7 3 1 6 -

Total 129 77 6 64 9 7 25 3

ł-ž indicates łzero-entryž

Table 6. A textual conflict resolved via L+R [16]

Changes in � :
- @Override public String[] ..."*:file:*.aar", "*:file:*. jmod");}

+ @Override public String[] ..."*:file:*.aar", "*:file:*. jmod", "*:file:*.kar");}

Changes in � :
- @Override public String[] ..."*:file:*.aar", "*:file:*. jmod");}

+ @Override public String[] ..."*:file:*.aar");}

Changes in�:
- @Override public String[] ..."*:file:*.aar", "*:file:*. jmod");}

+ @Override public String[] ..."*:file:*.aar", "*:file:*. kar");}

For the 206 conlicts that developers resolved by keeping all edits from one branch only, we further compared
the involved edits to understand how developers chose one branch over the other. Interestingly, we found three
insights. First, among the 36 add vs. add instances resolved via either L or R, there are 14 conlicts reported because
the content inserted by one branch fully contains the one inserted by the other. Developers resolved 12 of the 14
conlicts by taking the branch with more insertions. There are seven conlicts triggered when branches insert
semantically equivalent but textually diferent content, mainly due to formatting or code comments. Developers
resolved these seven conlicts by (probably randomly) picking one branch. Second, among the 65 update vs. update
instances resolved via either L or R, there are 30 conlicts caused by divergent updates to the library version.
Developers resolved 26 conlicts by taking the branch that introduced a higher version number. In the conlict
shown in Table 4 (b), developers kept the edit from � probably because 1.9.7 > 1.9.3. Third, among the 47 update
vs. delete cases resolved via L or R, developers handled 36 cases by keeping delete operations but resolved 11
cases by preserving updates. It means that developers are more likely to delete the edited content for resolution
given an update vs. delete conlict. These observations imply that developers adopt strategic resolutions in certain
circumstances depending on the types and content of conlicting edits.

RQ2 answer summary: Developers resolved 206 true conlicts via either L or R. Their decisions
of choosing one branch over the other seem predictable in at least 74 (i.e., 12 + 26 + 36) of these
instances.

4.3 RQ3: Discussion on Existing Tool Design

Limitations and Opportunities of Conflict Detectors. Table 2 lists eight tools that detect textual conlicts.
Three tools (i.e., git-merge, Crystal, and WeCode) have the false-positive issues grayed in Fig. 4, as they all
conduct text-based merge. CloudStudio seems to be able to detect textual conlicts accurately, as it monitors
developers’ coding activities. However, because it needs to eagerly detect and report textual conlicts whenever
two developers touch the same line, CloudStudio’s performance can scale poorly with the number of users
concurrently accessing the server. Prior work [28, 32, 33, 55] show that the other four tools (i.e., FSTMerge,
IntelliMerge, JDime, and AutoMerge) can overcome the limitation of text-based merge, because they all observe

ACM Trans. Softw. Eng. Methodol.

A Characterization Study of Merge Conflicts in Java Projects • 11

Table 7. A pilot study that applies four tools to tentatively resolve eight diferent kinds of textual conflicts

Conlict Type FSTMerge JDime IntelliMerge AutoMerge

Add vs. add Succeed Succeed Succeed Succeed
Update vs. update Fail Fail Fail Fail
Update vs. delete Fail Fail Fail Fail
Delete+add vs. update Fail Fail Fail Fail
Delete+add vs. delete+add Fail Fail Succeed Fail
Delete+add vs. add Fail Fail Fail Succeed
Delete+add vs. delete Fail Succeed Fail Succeed
Others Fail Fail Fail Fail

program syntax and report conlicts only if the same tree/graph nodes are edited divergently between � and
� . For simplicity, we use syntax-based merge to refer to the methodology shared by the four tools. Because
syntax-based tools were designed to analyze Java iles only, they are unlikely to overcome the false-positive
issues in non-Java iles (e.g., build scripts and readme iles).
We conducted a pilot study by applying FSTMerge, IntelliMerge, JDime, and AutoMerge to 10 randomly

picked merging scenarios to validate our hypothesis. Among these scenarios, we sampled three false-positive
and seven true conlicts in non-Java iles reported by git-merge. Our study shows that none of the four tools
can properly handle non-Java iles, let alone overcome the false-positive issues. Given the three versions (�, � ,
and �) of each scenario, FSTMerge either outputs nothing or generates incorrectly merged iles with no conlict
found. IntelliMerge prompts that it cannot ind any ile to merge and both JDime and AutoMerge generate error
messages to explain that the tools only accept Java iles. Our pilot study conirms that syntax-based tools do not
address the false-positive issues in non-Java iles. As we observed a considerable portionÐ12% (18/146)Ðof the
conlicts revealed by textual merge in non-Java iles to be false positives, we believe that it is still important to
create new tools that better detect textual conlicts in such iles.

Limitations and Opportunities of Conflict Resolvers. Table 2 lists four tools that can resolve textual
conlicts. To assess the resolution capabilities of distinct tools, we conducted a pilot study by constructing a
dataset of eight randomly sampled textual conlicts, with each conlict corresponding to one edit type mentioned
in Table 5. As shown in Table 7, after applying tools to the eight textual conlicts, we found all tools to be
able to successfully resolve the conlict of type add vs. add. Additionally, JDime resolved one more type of
conlict successfully: delete+add vs. delete; IntelliMerge successfully resolved another type of conlict: delete+add
vs. delete+add; AutoMerge managed to resolve two more types of conlicts: delete+add vs. add and delete+add
vs. delete. Notice that our main focus is the characterization of various conlicts instead of comparison between
tools, and it is understandable that diferent tools have separate implementation issues. Therefore, in this section,
we conducted a pilot study to qualitatively measure existing tools’ resolution capabilities, instead of performing a
large-scale study to quantitatively measure the applicability or resolution quality of all tools. We believe that the
detailed empirical comparison between tools is worth thorough investigation, although it is not the main focus
of this paper.

Although in Section 4.2 we observed developers’ preferences when they choose one branch over the other, we
are unaware of any tool built that predicts or suggests such resolution strategies. Our pilot study show that the
tools do not resolve conlicts as developers did in most cases. Future tools have great opportunities to propose
better candidate merged versions by predicting and automating more resolution strategies based on scenario
characterization.

RQ3 answer summary: Despite the necessity observed in this study, existing tools cannot precisely
detect textual conlicts in non-Java iles (e.g., build scripts and other iles). We observed typical
strategies and preferences in developers’ conlict resolution practices, which shows promise for future
tools that suggest resolutions based on scenario characterization.

ACM Trans. Softw. Eng. Methodol.

12 • Shen, et al.

Build Conflicts

(107)

Update vs. add (68)

Delete vs. add (31)

Others (6)

Java files (79)

Build scripts (19)

Java-Build files (7)

Unknown (2) Unknown (2)

Fig. 5. Characterization for build conflicts

Table 8. Developers’ resolutions for build conflicts

Edit
Types

L R M L+R L+M R+M L+R+M X

Update
vs. add

2 8 - - - - 58 -

Delete
vs. add

3 11 - - - - 17 -

Others - 3 - - - - 3 -

Total 5 22 - - - - 78 -

5 STUDY RESULTS ON BUILD CONFLICTS

This section presents our analysis of the 107 build conlicts.

5.1 RQ1: Root Causes of Build Conflicts

We characterized each inspected build conlict from two perspectives: the edited iles and edit types (see Fig. 5).
We did not classify conlicts based on relative edit locations because no conlicting edits overlap textually. In
other words, each pair of conlicting edits were smoothly integrated into �� by git-merge. In terms of edited
iles, 107 build conlicts can be classiied into 4 categories. 79 conlicts exist among Java edits (e.g., Table 9 (a)); 19
conlicts occur among edits to build scripts (e.g., Table 9 (c)); 7 conlicts are due to simultaneous edits in Java
code and build scripts (e.g., Table 9 (d)); and 2 conlicts are caused by unknown reasons. All these conlicts are
true positives because they all trigger compilation errors. We classiied the conlicts into four categories in terms
of edit types: (1) update vs. add, (2) delete vs. add, (3) others, and (4) unknown.

5.1.1 Update vs. Add. These 68 conlicts can be further classiied into 4 subcategories: declaration-reference,
super-sub, version-version, and dependency-code. We deined these subcategories based on the content and
semantic dependencies of conlicting edits. Table 9 presents an example for each subcategory, and we will explain
all of them in detail below.

(a) Declaration-referenceWhen � (or �) updates the declaration of a program entity and � (or �) adds references
to the original declaration, there is a mismatch between referencers and the referencee. For example, in Table 9
(a), � updates a ield name EPHEMERAL to DISTRO, while � adds a reference to EPHEMERAL. The integration of both edits
causes a build error łcannot ind symbol: variable EPHEMERALž.

(b) Super-sub There are scenarios where one branch adds a type reference via inheritance (i.e., A extends B) or
implementation (i.e., A implements B), and the other branch updates a method of the super or sub type. The edit co-
application makes method signatures inconsistent between two Java types. For instance, in Table 9 (b), � revises an
interface IndexDAO to declare a new method getTaskLogs(...), while � deines a class ElasticSearch5DAO to implement
the original interface. Because the deined class does not implement the newly added method, the compiler
outputs an error łElasticSearch5DAO is not abstract and does not override abstract method getTaskLogs(String) in
IndexDAOž.

(c) Version-version In some merging scenarios, one branch updates the version number of a deined artifact
in build scripts while the other branch adds one or more references to the original artifact version. As shown in
Table 9 (c), � adds a reference to version 0.2.0 of artifact spring-cloud-alibaba; however, � updates the artifact’s
version from 0.2.0 to 0.2.0.BUILD-SNAPSHOT. When both edits are applied, the compiler or build system produces
an error łCould not ind artifact org.springframework. cloud:spring-cloud-alibaba:pom:0.2.0ž.

(d) Dependency-code There are cases where one branch updates a library dependency in build scripts while
the other branch adds code that accesses APIs only supported by the original library. In Table 9 (d), � upgrades
artifact elasticsearch and � adds code to call Bucket.getKeyAsText(), which is only supported by the old library. The
co-application of both edits triggers a compilation error łcannot ind symbol: method getKeyAsText()ž.

ACM Trans. Softw. Eng. Methodol.

A Characterization Study of Merge Conflicts in Java Projects • 13

Table 9. Four representative build conflicts of the category Update vs. Add (Section 5.1.1)

(a) declaration-reference [17]

Changes in � :
In ServerListManager.java,
+ Loggers.EPHEMERAL.debug("check distro heartbeat.");

Changes in � :
In Loggers.java,
- public static final Logger EPHEMERAL = LoggerFactory.getLogger("com.alibaba.nacos.naming.ephemeral");

+ public static final Logger DISTRO = LoggerFactory.getLogger("com.alibaba.nacos.naming.distro");

Additional edits in� for conlict resolution:
In ServerListManager.java, use Loggers.SRV_LOG to replace the nonexistent ield Loggers.EPHEMERAL.
(b) super-sub [9]

Changes in � :
Add ElasticSearch5DAO.java,
+ public class ElasticSearch5DAO implements IndexDAO {...}

Changes in � :
In IndexDAO.java,
+ public List<TaskExecLog> getTaskLogs(String taskId);

Additional edits in� for conlict resolution:
In ElasticSearch5DAO.java, add code to override the newly declared method interface getTaskLogs(...).
(c) version-version [11]

Changes in � :
In spring-cloud-alibaba-sentinel-datasource/pom.xml,
+ <parent>

+ <groupId>org.springframework.cloud</groupId>

+ <artifactId>spring-cloud-alibaba</artifactId>

+ <version>0.2.0</version>

+ </parent>

Changes in � :
In pom.xml,

<groupId>org.springframework.cloud</groupId>

<artifactId>spring-cloud-alibaba</artifactId>

- <version>0.2.0</version>

+ <version>0.2.0.BUILD-SNAPSHOT</version>

Additional edits in� for conlict resolution:
In spring-cloud-alibaba-sentinel-datasource/pom.xml, update the version number to 0.2.0.BUILD-SNAPSHOT to refer to the
updated parent artifact.
(d) dependency-code [6]

Changes in � :
In pom.xml,
<groupId>org.elasticsearch</groupId>

<artifactId>elasticsearch</artifactId>

- <version>1.6.0</version>

+ <version>2.0.0</version>

Changes in � :
In CSVResultsExtractor.java,
+ for (MultiBucketsAggregation.Bucket bucket : buckets) {

+ String key = bucket.getKeyAsText().string();

Additional edits in� for conlict resolution:
In CSVResultsExtractor.java, replace the function call getKeyAsText() with getKeyAsString().

5.1.2 Delete vs. Add. These 31 conlicts can be further put into 2 subcategories: declaration-reference and
dependency-code. The irst subcategory represents scenarios where � (or �) deletes an entity declaration and � (or
�) adds one or more references to that entity. In Table 10, � deletes an entire ile DubboTransportedMetadata.java and
thus removes the class deinition for DubboTransportedMetadata. Meanwhile, � adds an import-declaration for the class.
Consequently, the combination of both edits leads to an error łcannot ind symbol: class DubboTransportedMetadataž.

ACM Trans. Softw. Eng. Methodol.

14 • Shen, et al.

The second subcategory means one branch deletes the library dependency in build scripts, and the other branch
adds references to APIs solely provided by that library. These two subcategories are similar to the subcategories
(a) and (d) of update vs. add, but diferent in terms of edit types.

Table 10. A representative build conflict of the category Delete vs. Add (Section 5.1.2)

Changes in � :
In DubboGatewayServlet.java,
+ import org.springframework.cloud.alibaba.dubbo.metadata.DubboTransportedMetadata;

Changes in � :
Delete the entire ile DubboTransportedMetadata.java,

5.1.3 Others. Six conlicts were introduced for miscellaneous reasons. Four of them are add vs. add conlicts. For
example, as shown in Table 11, when both branches add declarations of the same ield required, integrating those
edits can trigger a build error like łvariable required is already deined in class CodegenParameterž. The other two
instances are update vs. update conlicts. Namely, when � and � update diferent code regions of the same method,
the edit integration accidentally introduces the usage of undeined variables.

Table 11. A representative build conflict of the category Others (Section 5.1.3)

Changes in � :
In CodegenParameter.java,
- public Boolean hasMore = null, isContainer = null, secondaryParam = null;

+ public Boolean hasMore = null, isContainer = null, secondaryParam = null, required = null;

Changes in � :
In CodegenParameter.java,
+ public boolean required;

5.1.4 Unknown. For two conlicts, we did not igure out how the edits from � and � conlict with each other. The
reported errors are all about missing packages. For instance, one error is łpackage org.springframework.mock.web
does not existž. Although this seems to be a library coniguration issue, we could not locate the root cause or
developers’ manual resolution.

Summary. We notice an interesting common characteristic among the 105 conlicts with known reasons.
When developers deine and use program elements (e.g., classes or libraries) in software, they should always
observe two constraints regarding def-use links. First, no element should be deined twice. Second, any used
element should correspond to a deined element. If the edit integration between branches breaks def-use links by
violating any constraint, build systems report errors, and those integrated edits result in build conlicts.

RQ1 answer summary: Within the 107 conlicts studied, at least 105 conlicts are due to the co-
applied edits that break def-use links in Java iles and/or build scripts; 99 conlicts can be explained
with two typical combinations of edit types: update vs. add, and delete vs. add.

5.2 RQ2: Resolutions of Build Conflicts

For the 105 conlicts with identiied root causes, we further studied developers’ manual resolutions. Table 8
presents the resolution distribution. As shown in the table, developers resolved 78 conlicts via L+R+M. When
the co-application of edits from branches triggers any build error, developers usually applied adaptive changes to
glue those edits. For instance, to resolve the conlict shown in Table 9 (b), developers kept edits from both sides
and inserted code to ElasticSearch5DAO in order to implement the newly added method interface getTaskLogs(...).
Additionally, developers adopted L and R to separately resolve 5 and 22 conlicts.

Interestingly, the resolution distribution shown in Table 8 is quite diferent from developers’ resolutions to
textual conlicts (see Table 5). Most build conlicts were resolved via L+R+M instead of L or R. One possible
reason to explain this contrast is that build conlicts are between edits applied to distinct program locations,

ACM Trans. Softw. Eng. Methodol.

A Characterization Study of Merge Conflicts in Java Projects • 15

while textual conlicts are between divergent edits to the same location. Although it is hard to co-apply the edits
that textually overlap, it is easier to co-apply the edits whose locations are diferent. Thus, it is more favorable for
developers to keep edits from both sides when resolving build conlicts and make adaptive changes as needed.

Although the additional edits M vary with merging scenarios, we observed two important commonalities. First,
the edits were always applied to remedy broken def-use links. For simplicity, we name such edits for link-repair
purposes as adaptive changes. Second, for many scenarios, the adaptive edits similar to M were already applied
in either � or � . Take Table 9 (c) as an example. When developers updated the artifact’s version number from
0.2.0 to 0.2.0.BUILD-SNAPSHOT in � , they also revised build scripts to consistently update all version references in
order to use the new artifact version. We use consistent edits or systematic edits to refer to the similar edits
repetitively applied to multiple locations to address the similar or identical coding issues in those locations. In
Table 9 (c), we observed developers to apply adaptive changes to resolve all build errors triggered by the version
upgrade in � . These adaptive changes are very similar to the additional edits M because both sets of edits intend
to ix the same kind of errors.

Among the 78 conlicts resolved via L+R+M, we saw 64 conlicts (82%) to have M consistent with (i.e., similar to)
the adaptive edits applied in one branch. These highly consistent edits indicate great opportunities for automatic
conlict resolution.

RQ2 answer summary: We analyzed in total 107 build conlicts. Among the 105 build conlicts
with identiied root causes, 78 conlicts were resolved via L+R+M. The resolution edits M are often
consistent with the adaptive changes applied in one branch for program compilability.

5.3 RQ3: Discussion on Existing Tool Design

Limitations of Conflict Detectors. Table 2 shows three detectors for build conlictsÐ Crystal, WeCode, and
CloudStudio. All of them rely on build systems to reveal build conlicts. However, based on our experience, the
common methodology of these tools has three limitations.

First, the builder-based or compiler-based detection of conlicts is inefective in reporting build conlicts when
textual conlicts exist between � and � . Actually, in our procedural of manual inspection for textual conlicts, we
noticed that build conlicts can coexist with textual conlicts in unmergeable versions by git-merge. For such
scenarios, neither Crystal nor WeCode reports any build conlict, as they require users to remove all textual
conlicts irst and produce a merged version �� . Second, given a merged version, builders or build systems
may not report all compilation errors in one run. Namely, the initially revealed errors can prevent builders
from detecting other errors. Thus, it can be time-consuming for developers to recognize all build errors through
repetitive compilation and program revision. Our study did not change any program or ix any build error.
Instead, we focused on the initial build errors. As a result, our analysis can miss some build errors hidden by
the initially reported ones. It is possible that in the 79 merging scenarios with build conlicts detected, there
are more than 107 build conlicts between branches. Third, given a build error, developers have to identify the
conlicting edits manually. When � and � contain many edits, developers may ind it challenging to locate the
root cause manually. In our manual analysis, even though we spent lots of time investigating the root causes for
every reported build error, there are still two errors for which we cannot locate the conlicting edits. Existing
tools do not help developers/users reason about conlicts.

Future Opportunities of Conflict Detectors. As mentioned in Section 5.2, build conlicts are mainly about
the broken def-use links induced by software merge. The resolution edits always repair broken links, and those
edits are often inferable from relevant adaptive changes in either � or � . Based on these observations, we envision
a promising conlict detector to replace the usage of compilers with static program analysis. Speciically, the
tool can contrast all edits separately applied in � and � , reason about the def-use links between edited program
elements, and report conlicts whenever a def-use constraint between elements is violated. For example, for the

ACM Trans. Softw. Eng. Methodol.

16 • Shen, et al.

Test Conflicts

(46)

Update vs. add (25)

Delete vs. add (1)

Add vs. add (13)

Java files (35)

Other files (1)

Java-Other files (3)

Unknown (7) Unknown (7)

Fig. 6. Characterization for test conflicts

Table 12. Developers’ resolutions for test conflicts

Edit
Types

L R M L+R L+M R+M L+R+M X

Update
vs. add

1 3 - - - - 21 -

Add
vs. add

- 13 - - - - - -

Delete
vs. add

- 1 - - - - - -

Total 1 17 - - - - 21 -

merging scenario shown in Table 9 (a), a future tool can scan for any updated ield in either branch (e.g., �) and
then check whether the other branch adds any reference to the original ield before the update. If so, a broken
def-use link is detected, and a conlict is reported accordingly. Without using any builder or compiler, such static
analyzers can overcome the three limitations mentioned above.

Limitations and Opportunities of Conflict Resolvers.We were not aware of any tool that can resolve build
conlicts, so we conducted a pilot study by applying four syntax-based tools (i.e., FSTMerge, JDime, IntelliMerge,
and AutoMerge) to ive merging scenarios with known build conlicts. According to our experiments, JDime and
AutoMerge are unable to detect or resolve build conlicts. In the scenarios when only Java iles are involved in
conlicts, both tools either naïvely integrate edits as git-merge does, or fail to process newly added Java iles
because they strictly require all three program versions (�, � , �) to be provided. In the scenarios when build
scripts are also edited, both tools either fail to process non-Java iles or output nothing. To sum up, JDime and
AutoMerge are unable to detect and resolve build conlicts. Interestingly, when applied to the ive scenarios,
FSTMerge and IntelliMerge successfully handled one scenario by adding an extra edit to ix the broken def-use
link but failed in the other four. In the scenario where FSTMerge and IntelliMerge resolved a conlict, � removes
an import from a Java ile, and � adds a reference to the originally imported class in the same ile. The tools ixed
the broken def-use link by adding back the removed import. Our pilot study shows that we lack systematic tool
support for the resolution of build conlicts.
Based on our conlict characterization, we see great opportunities to create conlict resolvers. Speciically, a

promising approach can infer systematic editing patterns from the adaptive changes applied in either � or � and
customize the inferred patterns to resolve conlicts in �� . Our insight is that if developers resolve compilation
errors in either branch for any edit that breaks def-use links, they are likely to resolve the same compilation errors in
�� in similar ways for that merged-in edit. Take Table 9 (a) as an example. Given the conlicting edits between
branches, a future tool can focus on the ield-update edit and mine � for any adaptive edits related to that update.
Suppose an adaptive edits were applied in � to remedy broken links between the deined ields and ield accesses
(i.e., by updating all added ield accesses to refer to DISTRO). In that case, the future tool can similarly apply such
edits to �� to resolve conlicts.

RQ3 answer summary: Existing detectors of build conlicts have quite limited applicability, eiciency,
and efectiveness. There is almost no tool support to automatically resolve build conlicts.

6 STUDY RESULTS ON TEST CONFLICTS

This section presents our analysis of the 46 test conlicts.

6.1 RQ1: Root Causes of Test Conflicts

We characterized test conlicts from two perspectives: the edited iles and edit types. As shown in Fig. 6, we
classiied conlicts into four categories based on edited iles: 35 conlicts exist among Java edits (e.g., Table 13 (b));
3 conlicts are among edits to Java and other iles (i.e., .xml or .groovy); 1 conlict is among non-Java iles (e.g.,
Table 13 (a)); and 7 conlicts were caused by unknown reasons. All these conlicts involve simultaneous edits to

ACM Trans. Softw. Eng. Methodol.

A Characterization Study of Merge Conflicts in Java Projects • 17

Table 13. Two representative test conflicts

(a) An exemplar conlict of update vs. add [10]

Changes in � :
In KotlinJsonAdapter.kt, code implementation is updated

Changes in � :
In KotlinJsonAdapterTest.kt, a new test is added to invoke functions deined in KotlinJsonAdapter.kt

Additional edits in� for conlict resolution:
In KotlinJsonAdapterTest.kt, an assertion is revised to match the updated implementation logic of invoked functions.
(b) An exemplar conlict of add vs. add [4]

Changes in � :
In test/.../SampleObjects.java, developers deined a new method public long getId(){...}

Changes in � :
In test/.../SampleObjects.java, developers also deined the same method public long getId(){...} in the same way.

Additional edits in� for conlict resolution:
In test/.../SampleObjects.java, keep the deined method from �

test oracles and/or software implementation. Compared with Fig. 5, we have more test conlicts due to unknown
reasons (i.e., 7 vs. 2). This is because build errors usually report the program elements that break def-use links,
which helped us manually identify root causes. On the other hand, test errors only report the locations where
abnormal program behaviors are observed. These locations may be far away from the places where program
states initially become erroneous. Without project-speciic domain knowledge and dynamic analysis tools, it is
hard for us to manually reason about all root causes.
We classiied conlicts into four categories in terms of edit types: (1) update vs. add, (2) add vs. add, (3) delete

vs. add, and (4) unknown. Update vs. add has four subcategories: declaration-reference, super-sub, dependency-
code, and implementation-oracle. The irst three subcategories are similar to the subcategories (a), (b), and (d)
mentioned in Section 5, and they all break def-use links. However, these conlicts trigger test errors instead of
build errors because part of the conlicting edits were applied to test code, which is only compiled in the testing
instead of the build phase.
The subcategory implementation-oracle means that a conlict happens if one branch changes program imple-

mentation, while the other branch adds test code whose oracle matches the original implementation. For instance,
in Table 13 (a), � updates the implementation of KotlineJsonAdapter and � adds a test case to KotlineJsonAdapterTest

in order to test the original implementation. The co-application of both edits triggers an assertion error łExpecting
message: <’Non-null value ’a’ was null at $’> but was: <’Non-null value ’a’ was null at $.a’>ž. It indicates that
there is a semantic mismatch between the code implementation and test oracle.

Add vs. add means that � and � add the same method at distinct program locations of the same ile, causing one
method to have duplicated deinitions. Take Table 13 (b) as an example. Because both branches simultaneously
deine the same method getId() in a ile inside the test folder, the co-application of both edits triggers an error
łmethod getId() is already deined in class Employeež. Notice that such duplicated deinition errors were

introduced by git-merge, as text-based merge naïvely combines the edits simultaneously applied to

distinct program locations by branches. These errors are only reported by automated testing instead of
software build because the edits were applied to test iles.

The single delete vs. add conlict was introduced when one branch deletes a class, and the other branch adds a
test class to refer to that deleted class. This subcategory is similar to the delete vs. add category mentioned in
Section 5. The only diference is that the added reference exists in a test class, which is compiled in the testing
instead of the build phase and thus triggers test errors.

Summary. We noticed three interesting phenomena. First, many of the observed test errors are compilation
errors in test cases. They are revealed in the testing phase just because the test cases get complied within this

ACM Trans. Softw. Eng. Methodol.

18 • Shen, et al.

Table 14. Comparison between the adaptive changes in � and the extra edits M in manual resolution

Adaptive changes in � :
jsonAdapter.fromJson("{\"a\":null}")
fail()

} catch (expected: JsonDataException) {

- assertThat(expected).hasMessage("Non-null value ’a’ was null at \$")
+ assertThat(expected).hasMessage("Non-null value ’a’ was null at \$.a") }

Extra edits M in�:
jsonAdapter.fromJson("{\"a\":\"hello\"}")
fail()

} catch (expected: JsonDataException) {

- assertThat(expected).hasMessage("Non-null value ’a’ was null at \$")
+ assertThat(expected).hasMessage("Non-null value ’a’ was null at \$.a") }

phase. We currently count the conlicts triggering these errors as test conlicts simply because the compiler-based
detection of build conlicts is insuicient and produces false negatives. Second, the add-add conlicts are false
negatives of the text-based merge. Git-merge naïvely introduced them into �� without comparing the edits
co-applied to diferent locations for conlict detection or resolution. Third, among the inspected 46 test conlicts,
we observed 11 related to mismatches between code implementation and test oracles.

RQ1 answer summary:We analyzed in total 46 test conlicts, and managed to locate the root causes
for 39 conlicts. All of these 39 conlicts are due to the edit integration that either breaks def-use
links, repetitively adds new code, or causes mismatches between implementation and oracles.

6.2 RQ2: Resolutions of Test Conflicts

For the 39 conlicts with revealed root causes, we further classiied the corresponding manual resolutions. As
shown in Table 12, developers resolved 21 conlicts via L+R+M, and all these conlicts belong to the update vs. add
category. For instance, to resolve the conlict shown in Table 13 (a), developers kept edits from branches and
revised the test oracle to match with the output of the updated implementation. Additionally, developers resolved
13 conlicts via R, all of which belong to the add vs. add category. For instance, to resolve the conlict listed in
Table 13 (b), developers kept the right version because the methods repetitively added by branches cannot coexist
in the same program context. We believe that the developers prefer L+R+M over other resolution strategies.
Similar to what we found among resolutions to build conlicts, the additional edits M applied to resolve test

conlicts have two important characteristics. First, all edits were applied to ix def-use links or match test oracle
with code implementation. For simplicity, we also refer to such edits with adaptive changes. Second, they
were usually consistent with the adaptive edits applied in one branch. Take Table 13 (a) as an example. When
developers updated the implementation of KotlinJsonAdapter in � , they also adapted assertions (i.e., test oracles) in
KotlinJsonAdapterTest to ensure test success. If we compare their adaptive changes in � and the additional edits
in� (see Table 14), the two change-sets are identical albeit distinct program context. Among the 21 conlicts
resolved via L+R+M, 12 conlicts have M similar or identical to the adaptive edits in one branch.

RQ2 answer summary:When developers resolved test conlicts, they usually prefer L+R+M over
other strategies; and the extra edits M seem predictable from adaptive edits applied in one branch.

6.3 RQ3: Discussion on Existing Tool Design

Limitations of Conflict Detectors. Table 2 lists three detectors for test conlicts. Both Crystal and WeCode rely
on automated testing to reveal test conlicts so that they can cover all test conlicts mentioned in Section 6.1.
However, according to our experience, the common methodology of both tools sufers from ive limitations.
First, when test conlicts coexist with other types of conlicts, automated testing is infeasible. Developers have
to resolve the other two kinds of conlicts before getting a chance to run code with test cases and explore test

ACM Trans. Softw. Eng. Methodol.

A Characterization Study of Merge Conflicts in Java Projects • 19

conlicts. During our manual analysis of textual conlict scenarios, we observed test conlicts to coexist with
textual ones. For such scenarios, neither Crystal nor WeCode reveals any test conlict. Second, when multiple test
conlicts coexist, the runtime errors triggered by some conlicts can stop program execution and prevent testing
from detecting other conlicts. In other words, testing-based conlict detection can be slow and may require
lots of test runs. Third, it is time-consuming for developers to write test cases and ensure suicient coverage
of testing. Fourth, both tools can only reveal the symptoms (i.e., runtime errors) instead of root causes for any
test conlict. They do not provide further assistance in conlict localization. Fifth, there are laky tests that pass
and fail nondeterministically in diferent program runs. For such scenarios, automated testing cannot efectively
reveal symptoms of conlicts, and we did not include such scenarios in our dataset.

SafeMerge is designed to statically reason about program semantics to overcome all limitations of testing-based
conlict detection. However, due to its complex modeling for program semantics, SafeMerge cannot relate edits
applied to distinct Java methods, neither can it analyze edits applied to non-code iles. Therefore, SafeMerge
cannot reveal any test conlict caused by the edits simultaneously applied to distinct program elements (i.e., iles
or classes). Our study found all 39 conlicts to be introduced by simultaneous edits to diferent program elements,
limiting the usefulness of SafeMerge in real-world scenarios. In fact, we tried to apply SafeMerge to test conlicts
but without success. Therefore, we were unable to conduct a pilot study to validate the tool’s capability.

Opportunities of Conflict Detectors. SafeMerge demonstrates a promising way to detect test conlicts via
static program analysis. However, SafeMerge is limited to intra-procedural analysis, while most conlicts we
observed require inter-procedural analysis. The mismatch between the problem domain and the current solution
indicates great opportunities for conlict detectors based on inter-procedural static program analysis.

Limitations and Opportunities of Conflict Resolvers. We were unaware of any tool that can resolve test
conlicts, so we conducted a pilot study by applying 4 syntax-based tools (i.e., FSTMerge, JDime, IntelliMerge, and
AutoMerge) to 15 merging scenarios with known test conlicts. Among the scenarios, 10 conlicts belong to add
vs. add, which were wrongly introduced by git-merge and 5 conlicts belong to update vs. add. As syntax-based
tools were designed to align Java methods between branches based on method signatures and implementation,
they should be able to detect or even resolve the add vs. add conlicts. Unsurprisingly, our study shows that the
four tools resolved all 10 conlicts successfully. Speciically, these tools all recognized the duplicated addition of
the same methods in 10 scenarios and included single copies of those methods in the merged versions. In other
words, our pilot study conirmed that JDime, IntelliMerge, FSTMerge, and AutoMerge could nicely address the
add vs. add conlicts incorrectly introduced by git-merge. Meanwhile, no syntax-based tool can detect or resolve
the other ive test conlicts (update vs. add). This is because these tools do not model or compare any program
semantics for co-applied edits.
There is no tool that automatically resolves semantic mismatches in test conlicts. Based on our conlict

characterization, nevertheless, we see great research opportunities to create conlict resolvers. Similar to the
future tool design described in Section 5.3, a promising approach can infer systematic editing patterns from the
adaptive changes in � or � and customize the inferred patterns to resolve conlicts in �� . Our insight is that if
developers resolve test errors in one branch for edits that either break def-use links or cause mismatches between code
and tests, they are likely to resolve the same errors in �� in similar ways. Among the 21 conlicts resolved with
L+R+M, this proposed approach will be able to resolve 12 conlicts.

RQ3 answer summary: Existing detectors of test conlicts are insuicient in four aspects: applica-
bility, efectiveness, eiciency, and program coverage. Currently, no resolver can ix the semantic
mismatches between co-applied edits to remove test conlicts.

ACM Trans. Softw. Eng. Methodol.

20 • Shen, et al.

7 OUR RECOMMENDATIONS

Based on our study, we would like to provide the following recommendations for future research.

Resolution Prediction for Textual Conlicts. According to our analysis, it seems too ambitious to build
a tool that automatically resolves all conlicts because the additional edits M involved in some strategies are
speciic to projects and domains. However, it is promising to predict developers’ resolution strategies, as the
developers of diferent projects implicitly share decision-making patterns like preferring L and R over other
strategies. Future tools can characterize merging scenarios from diferent perspectives (e.g., the ile types, edit
types, edit content, program contexts, authors, and timestamps) and train machine-learning models for strategy
prediction. As developers resolve most conlicts by keeping all edits from one branch, a highly accurate prediction
model can automatically resolve those conlicts with high success rates to reduce manual efort.

Detection of Higher-Order Conlicts. Existing tools mainly detect higher-order conlicts via automatic
compilation and testing. Both compilation and testing heavily rely on the existence of merged versions and
require intensive human-in-the-loop interactions before uncovering all conlicts. Therefore, the applicability and
capability of such tools are not always satisfactory.

We recommend future tools to statically analyze and contrast software branches for conlict detection without
requiring branches to be merged or compiled successfully. Speciically, a new approach can enumerate all
situations where the naïve edit integration between branches can cause build or test errors and deine patterns to
represent those situations. For instance, conlicting situations can include (1) one branch renames or removes a
program element (e.g., class, method, or ield), while the other branch adds references to the original element; (2)
one branch adds a method�() to a Java interface, while the other branch deines a new class to implement the
interface but does not deine any method body for�(). With patterns deined for such conlicting situations, the
new approach can search for pattern matches between � and � in any given merging scenario to detect conlicts.
In this way, the future tool does not need automatic compilation or testing.

Resolution of Higher-Order Conlicts. In our study, we observed that most conlicts were resolved via
L+R+M, and the additional edits M are often similar to the adaptive changes applied to one of the branches. The
rationale behind the observed similarity is that when developers apply certain edits to remove the build or test errors
in either branch, they are likely to apply similar edits to remove the same build or test errors in the naïvely merged
software �� .
Some systematic editing tools like Sydit [45] and Lase [44] can generalize abstract program transformations

from concrete code change examples and repetitively apply similar edits to similar code snippets. We see promise
in extending these tools for automatic conlict resolution. For instance, given edits from � and � producing
a higher-order conlict, a future tool can extend Lase to search for relevant adaptive changes applied to one
branch. The tool can then extract systematic editing patterns from those adaptive changes, customize patterns
for particular program locations, and apply the customized edits.

8 RELATED WORK

The related work includes empirical studies and change recommendation systems.

8.1 Empirical Studies on Merge Conflicts

Several studies were conducted to characterize the relationship between merge conlicts and developers’ coding
activities [26, 35, 40, 43, 48?]. For instance, Leßenich et al. surveyed 41 developers and identiied 7 potential
indicators (e.g., # of changed iles in both branches) for merge conlicts [40]. With a further empirical study of
the indicators, the researchers found that none can predict the frequency of conlicts. Similarly, Owhadi-Kareshk
et al. deined 9 features to characterize merging scenarios and trained a machine-learning model that predicts
conlicts with 57%ś68% accuracy [?]. Mahmoudi et al. observed that certain refactoring types (e.g., Extract

ACM Trans. Softw. Eng. Methodol.

A Characterization Study of Merge Conflicts in Java Projects • 21

Method) are more related to merge conlicts [43]. These studies only focus on the relationship between textual
conlicts and other coding features (e.g., refactorings). They do not characterize any root cause or resolution for
conlicts, neither do they analyze higher-order conlicts.
Some other studies characterize the root causes and/or resolutions of textual conlicts [18, 29, 37, 50, 53, 58].

Speciically, Ji et al. studied the textual conlicts caused by Git RebaseÐa practice to merge program changes
by rewriting the evolution history [37]. Our research scope is diferent, as we focus on the conlicts revealed
or caused by Git Mergeśa more popularly used approach of merging program changes. Yuzuki et al. inspected
hundreds of textual conlicts [58]. They observed that 44% of conlicts were caused by conlicting updates to the
same line of code, and developers resolved 99% of conlicts by taking either the left- or right- version of code.
Pan et al. studied 271 merging scenarios with textual conlicts inside the repository of Microsoft Edge [53]. The
researchers clustered scenarios based on the ile types, conlict sizes, conlict locations, and resolution patterns.
They also showed the feasibility of using program synthesis to resolve merge conlicts. Our study revealed similar
indings for textual conlicts, but our analysis scope is wider and deeper. Namely, we characterized the root causes
and resolutions for higher-order conlicts; we also analyzed the limitation of existing merge tools based on our
conlict characterization.
Nguyen et al. [50] studied the version history of four projects and analyzed all merging scenarios to assess

(1) the integration and conlict rates between software branches and (2) the frequency of rollbacks for merge
operations. The researchers found that (i) a higher integration rate of a project does not generate a higher
unresolved conlict rate, (ii) developers rolled back merge operations for 5ś33% of cases, and (iii) git-merge
falsely reports many textual conlicts when concurrent edits are applied to adjacent code instead of same lines.
Diferent from Nguyen et al., we characterized conlicts from new perspectives. For textual conlicts, in addition
to relative edit locations, we characterized the edited iles and edit types as root causes of conlicts. We also
discussed all possible strategies developers may take when resolving conlicts. Furthermore, we conducted a
similar characterization for both build and test conlicts.
Brindescu et al. [29] manually inspected 606 textual conlicts. They characterized merge conlicts in terms of

the AST dif size, LOC dif size, and the number of authors. They reported that the vast majority of merge conlicts
are resolved by the author of one of the branches. They identiied three resolution strategies: SELECT ONE (i.e.,
keep edits from one branch), INTERLEAVE (i.e., keep edits from both sides), and ADAPTED (i.e., change existing
edits and/or add new edits). Compared to Brindescu’s work, our study characterizes textual conlicts in terms of
the edited iles, relative edit locations, and edit types. We did not measure the dif size, count authors, or compare
the authors of branches with conlict resolvers. The three resolution strategies recognized by Brindescu et al. are
roughly equivalent to our eight strategies mentioned in Section 4.2. For instance, SELECT ONE corresponds to L
and R. However, our strategy classiication is iner-grained. More importantly, we studied higher-order conlicts
and reasoned about the limitations of existing tools based on characterized conlicts.
The study by Ghiotto et al. [18] is most relevant to our work. Ghiotto et al. focused on the textual conlicts

found in 2,731 open-source Java projects hosted by GitHub. Seeded by the manual analysis of the history of ive
projects, their automated analysis of all 2,731 projects (1) characterizes the merge conlicts in terms of the number
of chunks, size, and programming language constructs involved, (2) classiies the manual resolution strategies that
developers use to address these merge conlicts, and (3) analyzes the relationships between various characteristics
of the merge conlicts and the chosen resolution strategies. The researchers also provided recommendations for
future merge techniques based on their study.

We got inspired by Ghiotto’s work, but our study is unique in two aspects. First, in addition to textual conlicts,
we also mined, inspected, and characterized higher-order conlicts. Second, our recommendations complement
the suggestions by Ghiotto et al.. Two of our research recommendations are related to higher-order conlicts.
Without characterizing such conlicts or exploring the relevant tools, no prior work recognizes the research
opportunities as our study does.

ACM Trans. Softw. Eng. Methodol.

22 • Shen, et al.

8.2 Change Recommendation Systems

Based on the insight that similar code is likely to be changed similarly, researchers proposed tools to recommend
code changes or facilitate systematic program editing [38, 42, 44, 45, 47, 49, 51]. With more details, simultaneous
editing enables developers to simultaneously edit multiple preselected code fragments in the same way [47].
While a developer interactively demonstrates the edit operations in one fragment, the tool replicates the lexical
edits (e.g., copy a line) to other fragments. CP-Miner identiies code clones (i.e., similar code snippets) and
detects copy-paste-related bugs if clones have inconsistent identiiers or context mappings [42]. Given two or
more similarly changed code examples, Lase extracts the common edit operations, infers a general program
transformation, and leverages the transformation to locate code for similar edits [44].
Although both software merge and change recommendation systems are active research areas, our study is

the irst piece of work that methodically connects the two areas. Our study uncovers various scenarios where
developers repetitively applied similar edits to resolve conlicts. It enlightens future research to improve change
recommendations, such that conlict-speciic systematic edits are automatically created and applied.

9 THREATS TO VALIDITY

Threats to External Validity: Our study is based on the 538 conlicts extracted from 208 Java project repositories
on GitHub. The characterization of conlicts and the observed resolutions may not generalize well to other
conlicts, other projects, other programming languages, or other hosting platforms (e.g., Bitbucket). Our data
collection started from the 208 popular open-source Java projects in GitHub, but we only found 79 build conlicts
and 33 test conlicts. Although we made our best efort by spending one year in exploring all merging scenarios
in those repositories, the relatively small number of higher-order conlicts are the best dataset we can create at
this point, mainly due to the limitations of existing tool support. Consequently, the relative low numbers can also
limit the generalizability of our empirical indings. In the future, we plan to mitigate this threat by creating and
using better tools to reveal higher-order conlicts more efectively.

As with prior work [18, 29, 50, 58], we relied on the intuitive pattern łone child commit following two parent
commitsž to recognize merging scenarios in software version history. However, it is possible that some developers
may merge software branches without using the command git merge or producing the commits matching our
pattern. They may simply copy and paste code from branches, manually integrate the edits of distinct branches,
and then discard some branches. As such non-typical software merge practices leave no obvious footprint in
software version history, we were unable to identify or study such merging scenarios. Therefore, our empirical
indings may not generalize well to the non-typical merging scenarios.

Threats to Construct Validity: Although we tried our best to manually inspect the sampled textual conlicts and
all revealed build/test conlicts, it is possible that our manual analysis is subject to human bias and restricted by
our domain knowledge. To alleviate the problem, two authors independently examined each sampled textual
conlict, every reported build or test error in the merged software �� , and related resolution edits applied by the
developers. The two authors actively discussed the instances they disagreed upon until reaching a consensus.
The root causes of some observed compilation/test errors are not manually located, mainly because we are not
familiar with the project-speciic software context. In the future, as we gain more knowledge of merge conlicts
and create better tools to reveal the root causes automatically, we can further improve the quality of empirical
indings.

Threats to Internal Validity: We adopted compilation and testing to reveal build and test errors and then
manually analyzed merging scenarios to locate conlicts responsible for those errors. Both methodologies (i.e.,
compiler-based and testing-based conlict detection) have various limitations (see Sections 5.3 and 6.3). For
instance, compiler-based method is inapplicable when build conlicts coexist with textual conlicts. This is because

ACM Trans. Softw. Eng. Methodol.

A Characterization Study of Merge Conflicts in Java Projects • 23

the existence of textual conlicts prevents git merge from creating a merged version �� , making it impossible
for a build process to tentatively build �� and to detect compilation errors. Similarly, testing-based method
is inapplicable when test conlicts coexist with textual (or build) conlicts. Additionally, testing-based method
only reports test failures or runtime errors; it does not directly pinpoint the conlicting edits responsible for any
abnormal program behavior. Therefore, the number of higher-order conlicts reported in our study can be lower
than the actual number of conlicts contained by the studied projects. In the future, we would like to overcome
this limitation by creating better approaches for conlict detection.

Our current method automatically detects test conlicts only when (1) both � and � compile and pass all tests,
and (2) �� compiles but fails one or more tests. Given the fact that this method only revealed 33 test conlicts in
our study, people may be tempted to relax the iltering condition (2), and only require �� to partially instead of
fully compile but fail certain tests. We thought about using this alternative method to enlarge the dataset of test
conlicts, and believed the method to not work for two reasons. First, we currently rely on Maven/Ant/Gradle to
compile and test projects. All build tools have their internal predeined worklows. In a typical worklow, the test
phase follows the build phase, and the test phase only starts when the build phase completes successfully. We
cannot manipulate this built-in process to run tests on partially compiled code. Even with the straightforward
and standard built-in process, we have already spent tremendous time and efort on all studied merging scenarios.
It is hard to imagine how much more time and efort we need to put in order to customize the worklows for
distinct projects. Second, when partial compilation is successful and test failures occur, it can be even harder
to manually diagnose the root cause of test conlicts. This is because a test failure may be due to incomplete
compilation or merged edits. It can be more time-consuming to triage the root causes of test failures produced
by partially compiled code. Meanwhile, we may lack the domain knowledge to always correctly triage the root
causes.

10 CONCLUSION

Prior empirical studies showed that merge conlicts frequently occur, and conlict resolution is important but
challenging. This study comprehensively studied three kinds of conlicts and their resolutions and characterized
the conlicts that existing tools cannot handle. Unlike prior studies that focus on textual conlicts, our study is
wider and deeper for two reasons. First, we examined higher-order conlicts in addition to textual conlicts, as (1)
higher-order conlicts are harder to detect and resolve and (2) few tools are available to handle those conlicts.
Second, by comparing the approach design or methodologies against characteristics of real-world conlicts, we
identiied the limitations of current approaches and suggested future research to overcome those limitations.
Our study intends to (1) explore the gap between real conlicts and current tool support and (2) suggest future
research to close the gap. No prior work shares the same goals.
Our study provides multiple insights. First, developers usually resolved textual conlicts by keeping all edits

from one branch. Our empirical study characterizes the scenarios where a future tool can accurately predict
developers’ decision-making to select one branch over the other. Second, current tools mainly rely on two
methods to uncover higher-order conlicts: compilation and testing. However, these tools are limited as (1) neither
method is applicable when textual conlicts exist between branches, and (2) both methods require heavy human
involvement to locate all conlicts. Our research shows that higher-order conlicts present typical commonalities
(e.g., broken def-use links and test-implementation inconsistency), which future conlict detectors can leverage.
Third, developers usually resolved higher-order conlicts by applying similar edits to similar code locations. By
automating such practices, future tools can resolve higher-order conlicts.

ACKNOWLEDGMENT

We thank anonymous reviewers for their valuable comments on our earlier version of the paper. This work was
supported by NSF-1845446.

ACM Trans. Softw. Eng. Methodol.

24 • Shen, et al.

REFERENCES
[1] 2010. Merge branch ’master’ of github.com:ning/async-http-client. https://github.com/AsyncHttpClient/async-http-client/commit/

4999b8dd4278f9cae0a1d278c00f067e8df5c12e.

[2] 2012. close hooks. https://github.com/eclipse-vertx/vert.x/commit/48972cf7c810802eeb88bb0babbabc56f34023d5.

[3] 2012. Merge branch ’master’ of https://wenshao@github.com/AlibabaTech /fastjson.git. https://github.com/alibaba/fastjson/commit/

ee3728b727c52d9090919f7791e1b0d738e1ea6f.

[4] 2013. Merge branch ’master-issue1115’ of github.com:enesakar/hazelcast into master. https://github.com/hazelcast/hazelcast/commit/

dc13b1efc99bb0fb086e817492c9ed196836b33b.

[5] 2013. Merge branch ’master’ of github.com:azkaban/azkaban2 into pipelineui. https://github.com/azkaban/azkaban/commit/

4816d7435f6d0ba469bf20e68852ccc056c9435d.

[6] 2015. Merge commit ’b2fb76cdacfbf2ce2c2aab8e3e4e87bfcae292a4’ into elastic2.0. https://github.com/NLPchina/elasticsearch-sql/

commit/10f0159963f9d84f13f32b37490222059c6a9397.

[7] 2015. Merge remote-tracking branch ’origin/master’. https://github.com/MyCATApache/Mycat-Server/commit/

56e17e66e0fb7f94ebf7a97d0a1ac0407bb07478.

[8] 2016. Merge branch ’dev’ of https://github.com/nitincchauhan/HikariCP into dev. https://github.com/brettwooldridge/HikariCP/commit/

68a52f143194e3d2fc7a14a005c64a58aca0d5a7.

[9] 2017. Merge branch ’dev’ of https://github.com/Netlix/conductor into dev. https://github.com/Netlix/conductor/commit/

4fd6f1a6cc4979b9fc7832c464615281f5734c9.

[10] 2018. Merge pull request #511 from square/eric.non-null. https://github.com/square/moshi/commit/

eb24a235682eacdfb7bbfd7444f6a2bca65ef76.

[11] 2018. Merge remote-tracking branch ’upstream/master’. https://github.com/alibaba/spring-cloud-alibaba/commit/

f2c3906734e917594994c1dd85d010e2d121a69.

[12] 2018. Which manufacturer updates its phones fastest? Android Oreo edition. https://www.androidauthority.com/android-oreo-fastest-

manufacturers-update-874788/.

[13] 2019. Merge branch ’1.6.6-druid’ into zzw-druid. https://github.com/MyCATApache/Mycat-Server/commit/

c42db00282577e9524a55ccef8889a3df713518.

[14] 2019. Merge branch ’2.7.0-release’. https://github.com/apache/dubbo/commit/68fa9c189d5a260260fb411a7ad7e8e035475b8a.

[15] 2019. Merge branch ’master’ into type-inference-wip. https://github.com/skylot/jadx/commit/

e1f4955286f73a6ca4525fc27b11fd02106f7f08.

[16] 2019. Merge branch ’master’ of https://github.com/java-decompiler/jd-gui. https://github.com/java-decompiler/jd-gui/commit/

2ae4688ea65a52a7921c36e3b993b502c2d34fee.

[17] 2019. Merge pull request #1552 from nkorange/hotix_log_optimization. https://github.com/alibaba/nacos/commit/

9b2367eb91dbd909ef4fd0ceeddfd9762d348d02.

[18] 2020. On the Nature of Merge Conlicts: A Study of 2,731 Open Source Java Projects Hosted by GitHub. IEEE Transactions on Software

Engineering 46, 8 (2020), 892ś915. https://doi.org/10.1109/TSE.2018.2871083

[19] 2021. Gradle. https://gradle.org.

[20] 2021. Integration Hell. https://www.solutionsiq.com/agile-glossary/integration-hell/.

[21] 2021. jFSTMerge. https://github.com/guilhermejccavalcanti/jFSTMerge.

[22] 2021. Maven. https://maven.apache.org.

[23] 2021. Sample size calculator. https://www.surveymonkey.com/mp/sample-size-calculator/.

[24] Last visited 07/18/19. Ant. https://ant.apache.org.

[25] Last visited 07/26/2019. Git Merge. https://git-scm.com/docs/git-merge.

[26] I. Ahmed, C. Brindescu, U. A. Mannan, C. Jensen, and A. Sarma. 2017. An Empirical Examination of the Relationship between Code

Smells and Merge Conlicts. In 2017 ACM/IEEE International Symposium on Empirical Software Engineering and Measurement (ESEM).

58ś67. https://doi.org/10.1109/ESEM.2017.12

[27] Sven Apel, Olaf Lessenich, and Christian Lengauer. 2012. Structured Merge with Auto-tuning: Balancing Precision and Performance. In

Proceedings of the 27th IEEE/ACM International Conference on Automated Software Engineering (Essen, Germany) (ASE 2012). ACM, New

York, NY, USA, 120ś129. https://doi.org/10.1145/2351676.2351694

[28] Sven Apel, Jorg Liebig, Benjamin Brandl, Christian Lengauer, and Christian Kastner. 2011. Semistructured Merge: Rethinking Merge in

Revision Control Systems. In Proceedings of the 19th ACM SIGSOFT Symposium and the 13th European Conference on Foundations of

Software Engineering (Szeged, Hungary) (ESEC/FSE ’11). ACM, New York, NY, USA, 190ś200. https://doi.org/10.1145/2025113.2025141

[29] Caius Brindescu, Iftekhar Ahmed, Carlos Jensen, and Anita Sarma. 2020. An empirical investigation into merge conlicts and their efect

on software quality. Empirical Software Engineering 25, 1 (2020), 562ś590. https://doi.org/10.1007/s10664-019-09735-4

ACM Trans. Softw. Eng. Methodol.

https://github.com/AsyncHttpClient/async-http-client/commit/4999b8dd4278f9cae0a1d278c00f067e8df5c12e
https://github.com/AsyncHttpClient/async-http-client/commit/4999b8dd4278f9cae0a1d278c00f067e8df5c12e
https://github.com/eclipse-vertx/vert.x/commit/48972cf7c810802eeb88bb0babbabc56f34023d5
https://github.com/alibaba/fastjson/commit/ee3728b727c52d9090919f7791e1b0d738e1ea6f
https://github.com/alibaba/fastjson/commit/ee3728b727c52d9090919f7791e1b0d738e1ea6f
https://github.com/hazelcast/hazelcast/commit/dc13b1efc99bb0fb086e817492c9ed196836b33b
https://github.com/hazelcast/hazelcast/commit/dc13b1efc99bb0fb086e817492c9ed196836b33b
https://github.com/azkaban/azkaban/commit/4816d7435f6d0ba469bf20e68852ccc056c9435d
https://github.com/azkaban/azkaban/commit/4816d7435f6d0ba469bf20e68852ccc056c9435d
https://github.com/NLPchina/elasticsearch-sql/commit/10f0159963f9d84f13f32b37490222059c6a9397
https://github.com/NLPchina/elasticsearch-sql/commit/10f0159963f9d84f13f32b37490222059c6a9397
https://github.com/MyCATApache/Mycat-Server/commit/56e17e66e0fb7f94ebf7a97d0a1ac0407bb07478
https://github.com/MyCATApache/Mycat-Server/commit/56e17e66e0fb7f94ebf7a97d0a1ac0407bb07478
https://github.com/brettwooldridge/HikariCP/commit/68a52f143194e3d2fc7a14a005c64a58aca0d5a7
https://github.com/brettwooldridge/HikariCP/commit/68a52f143194e3d2fc7a14a005c64a58aca0d5a7
https://github.com/Netflix/conductor/commit/4fd6ff1a6cc4979b9fc7832c464615281f5734c9
https://github.com/Netflix/conductor/commit/4fd6ff1a6cc4979b9fc7832c464615281f5734c9
https://github.com/square/moshi/commit/eb24a235682eacdfb7bbfd7444ff6a2bca65ef76
https://github.com/square/moshi/commit/eb24a235682eacdfb7bbfd7444ff6a2bca65ef76
https://github.com/alibaba/spring-cloud-alibaba/commit/ff2c3906734e917594994c1dd85d010e2d121a69
https://github.com/alibaba/spring-cloud-alibaba/commit/ff2c3906734e917594994c1dd85d010e2d121a69
https://www.androidauthority.com/android-oreo-fastest-manufacturers-update-874788/
https://www.androidauthority.com/android-oreo-fastest-manufacturers-update-874788/
https://github.com/MyCATApache/Mycat-Server/commit/c42db00282577e9524a55ccef8889a3dff713518
https://github.com/MyCATApache/Mycat-Server/commit/c42db00282577e9524a55ccef8889a3dff713518
https://github.com/apache/dubbo/commit/68fa9c189d5a260260fb411a7ad7e8e035475b8a
https://github.com/skylot/jadx/commit/e1f4955286f73a6ca4525fc27b11fd02106f7f08
https://github.com/skylot/jadx/commit/e1f4955286f73a6ca4525fc27b11fd02106f7f08
https://github.com/java-decompiler/jd-gui/commit/2ae4688ea65a52a7921c36e3b993b502c2d34fee
https://github.com/java-decompiler/jd-gui/commit/2ae4688ea65a52a7921c36e3b993b502c2d34fee
https://github.com/alibaba/nacos/commit/9b2367eb91dbd909ef4fd0ceeddfd9762d348d02
https://github.com/alibaba/nacos/commit/9b2367eb91dbd909ef4fd0ceeddfd9762d348d02
https://doi.org/10.1109/TSE.2018.2871083
https://gradle.org
https://www.solutionsiq.com/agile-glossary/integration-hell/
https://github.com/guilhermejccavalcanti/jFSTMerge
https://maven.apache.org
https://www.surveymonkey.com/mp/sample-size-calculator/
https://ant.apache.org
https://git-scm.com/docs/git-merge
https://doi.org/10.1109/ESEM.2017.12
https://doi.org/10.1145/2351676.2351694
https://doi.org/10.1145/2025113.2025141
https://doi.org/10.1007/s10664-019-09735-4

A Characterization Study of Merge Conflicts in Java Projects • 25

[30] Yuriy Brun, Reid Holmes, Michael D. Ernst, and David Notkin. 2011. Proactive Detection of Collaboration Conlicts. In Proceedings of the

19th ACM SIGSOFT Symposium and the 13th European Conference on Foundations of Software Engineering (ESEC/FSE ’11). ACM, New

York, NY, USA, 168ś178. https://doi.org/10.1145/2025113.2025139

[31] Y. Brun, R. Holmes, M. D. Ernst, and D. Notkin. 2013. Early Detection of Collaboration Conlicts and Risks. IEEE Transactions on Software

Engineering 39, 10 (Oct 2013), 1358ś1375. https://doi.org/10.1109/TSE.2013.28

[32] Guilherme Cavalcanti, Paulo Borba, and Paola Accioly. 2017. Evaluating and Improving Semistructured Merge. Proc. ACM Program.

Lang. 1, OOPSLA, Article 59 (Oct. 2017), 27 pages. https://doi.org/10.1145/3133883

[33] Guilherme Cavalcanti, Paulo Borba, Georg Seibt, and Sven Apel. 2019. The Impact of Structure on Software Merging: Semistructured

versus Structured Merge. In Proceedings of the 34th IEEE/ACM International Conference on Automated Software Engineering (San Diego,

California) (ASE ’19). IEEE Press, 1002ś1013. https://doi.org/10.1109/ASE.2019.00097

[34] H. Christian Estler, Martin Nordio, Carlo A. Furia, and Bertrand Meyer. 2013. Unifying Coniguration Management with Merge Conlict

Detection and Awareness Systems. In 2013 22nd Australian Software Engineering Conference. 201ś210. https://doi.org/10.1109/ASWEC.

2013.32

[35] H. C. Estler, M. Nordio, C. A. Furia, and B. Meyer. 2014. Awareness and Merge Conlicts in Distributed Software Development. In 2014

IEEE 9th International Conference on Global Software Engineering. 26ś35. https://doi.org/10.1109/ICGSE.2014.17

[36] Mário Luís Guimarães and António Rito Silva. 2012. Improving Early Detection of Software Merge Conlicts. In Proceedings of the

34th International Conference on Software Engineering (Zurich, Switzerland) (ICSE ’12). IEEE Press, Piscataway, NJ, USA, 342ś352.

http://dl.acm.org/citation.cfm?id=2337223.2337264

[37] Tao Ji, Liqian Chen, Xin Yi, and Xiaoguang Mao. 2020. Understanding Merge Conlicts and Resolutions in Git Rebases. In 2020 IEEE 31st

International Symposium on Software Reliability Engineering (ISSRE). 70ś80. https://doi.org/10.1109/ISSRE5003.2020.00016

[38] Lingxiao Jiang, Zhendong Su, and Edwin Chiu. 2007. Context-based Detection of Clone-related Bugs. In Proceedings of the the 6th Joint

Meeting of the European Software Engineering Conference and the ACM SIGSOFT Symposium on The Foundations of Software Engineering.

[39] Olaf Leßenich, Sven Apel, and Christian Lengauer. 2014. Balancing precision and performance in structured merge. Automated Software

Engineering 22 (2014), 367ś397.

[40] Olaf Leßenich, Janet Siegmund, Sven Apel, Christian K’́astner, and Claus Hunsen. 2018. Indicators for Merge Conlicts in the Wild:

Survey and Empirical Study. Automated Software Engg. 25, 2 (June 2018), 279ś313. https://doi.org/10.1007/s10515-017-0227-0

[41] Liuqing Li, He Feng, Wenjie Zhuang, Na Meng, and Barbara Ryder. 2017. CCLearner: A Deep Learning-Based Clone Detection Approach.

In 2017 IEEE International Conference on Software Maintenance and Evolution (ICSME). 249ś260. https://doi.org/10.1109/ICSME.2017.46

[42] Zhenmin Li, Shan Lu, Suvda Myagmar, and Yuanyuan Zhou. 2004. CP-Miner: A Tool for Finding Copy-paste and Related Bugs in

Operating System Code.. In OSDI. 289ś302.

[43] M. Mahmoudi, S. Nadi, and N. Tsantalis. 2019. Are Refactorings to Blame? An Empirical Study of Refactorings in Merge Conlicts. In

2019 IEEE 26th International Conference on Software Analysis, Evolution and Reengineering (SANER). 151ś162. https://doi.org/10.1109/

SANER.2019.8668012

[44] Na Meng, Miryung Kim, and Kathryn McKinley. 2013. LASE: Locating and Applying Systematic Edits. In ICSE. 10.

[45] Na Meng, Miryung Kim, and Kathryn S. McKinley. 2011. Systematic Editing: Generating Program Transformations from an Example. In

Proceedings of the 32Nd ACM SIGPLAN Conference on Programming Language Design and Implementation (San Jose, California, USA)

(PLDI ’11). ACM, New York, NY, USA, 329ś342. https://doi.org/10.1145/1993498.1993537

[46] T. Mens. 2002. A state-of-the-art survey on software merging. IEEE Transactions on Software Engineering 28, 5 (2002), 449ś462.

https://doi.org/10.1109/TSE.2002.1000449

[47] Robert C. Miller and Brad A. Myers. 2001. Interactive Simultaneous Editing of Multiple Text Regions. In Proceedings of the General Track:

2002 USENIX Annual Technical Conference. USENIX Association, Berkeley, CA, USA, 161ś174.

[48] Nicholas Nelson, Caius Brindescu, Shane McKee, Anita Sarma, and Danny Dig. 2018. The life-cycle of merge conlicts: processes, barriers,

and strategies. Empirical Software Engineering (2018), 1ś44.

[49] Hoan Anh Nguyen, Tung Thanh Nguyen, Gary Wilson, Jr., Anh Tuan Nguyen, Miryung Kim, and Tien N. Nguyen. 2010. A graph-based

approach to API usage adaptation. 302ś321.

[50] Hoai Le Nguyen and Claudia-Lavinia Ignat. 2018. An Analysis of Merge Conlicts and Resolutions in Git-Based Open Source Projects.

Computer Supported Cooperative Work (CSCW) 27, 3 (01 Dec 2018), 741ś765. https://doi.org/10.1007/s10606-018-9323-3

[51] Tung Thanh Nguyen, Hoan Anh Nguyen, Nam H. Pham, Jafar M. Al-Kofahi, and Tien N. Nguyen. 2009. Clone-Aware Coniguration

Management. In ASE. 123ś134. https://doi.org/10.1109/ASE.2009.90

[52]]Owhadi-Kareshk2019 Moein Owhadi-Kareshk, Sarah Nadi, and Julia Rubin. [n. d.]. Predicting Merge Conlicts in Collaborative Software

Development. https://arxiv.org/pdf/1907.06274.pdf.

[53] Rangeet Pan, Vu Le, Nachiappan Nagappan, Sumit Gulwani, Shuvendu K. Lahiri, and Mike Kaufman. 2021. Can Program Synthesis be

Used to Learn Merge Conlict Resolutions? An Empirical Analysis. In 43rd IEEE/ACM International Conference on Software Engineering,

ICSE 2021, Madrid, Spain, 22-30 May 2021. 785ś796. https://doi.org/10.1109/ICSE43902.2021.00077

ACM Trans. Softw. Eng. Methodol.

https://doi.org/10.1145/2025113.2025139
https://doi.org/10.1109/TSE.2013.28
https://doi.org/10.1145/3133883
https://doi.org/10.1109/ASE.2019.00097
https://doi.org/10.1109/ASWEC.2013.32
https://doi.org/10.1109/ASWEC.2013.32
https://doi.org/10.1109/ICGSE.2014.17
http://dl.acm.org/citation.cfm?id=2337223.2337264
https://doi.org/10.1109/ISSRE5003.2020.00016
https://doi.org/10.1007/s10515-017-0227-0
https://doi.org/10.1109/ICSME.2017.46
https://doi.org/10.1109/SANER.2019.8668012
https://doi.org/10.1109/SANER.2019.8668012
https://doi.org/10.1145/1993498.1993537
https://doi.org/10.1109/TSE.2002.1000449
https://doi.org/10.1007/s10606-018-9323-3
https://doi.org/10.1109/ASE.2009.90
https://arxiv.org/pdf/1907.06274.pdf
https://doi.org/10.1109/ICSE43902.2021.00077

26 • Shen, et al.

[54] Tony Savor, Mitchell Douglas, Michael Gentili, Laurie Williams, Kent Beck, and Michael Stumm. 2016. Continuous Deployment at

Facebook and OANDA. In Proceedings of the 38th International Conference on Software Engineering Companion (Austin, Texas) (ICSE ’16).

ACM, New York, NY, USA, 21ś30. https://doi.org/10.1145/2889160.2889223

[55] Bo Shen, Wei Zhang, Haiyan Zhao, Guangtai Liang, Zhi Jin, and Qianxiang Wang. 2019. IntelliMerge: A Refactoring-Aware Software

Merging Technique. Proc. ACM Program. Lang. 3, OOPSLA, Article 170 (Oct. 2019), 28 pages. https://doi.org/10.1145/3360596

[56] Marcelo Sousa, Isil Dillig, and Shuvendu Lahiri. 2018. Veriied Three-Way Program Merge. In Object-Oriented Programming, Systems,

Languages & Applications Conference (OOPSLA 2018). ACM. https://www.microsoft.com/en-us/research/publication/veriied-three-way-

program-merge/

[57] Bogdan Vasilescu, Yue Yu, Huaimin Wang, Premkumar Devanbu, and Vladimir Filkov. 2015. Quality and Productivity Outcomes Relating

to Continuous Integration in GitHub. In Proceedings of the 2015 10th Joint Meeting on Foundations of Software Engineering (Bergamo,

Italy) (ESEC/FSE 2015). ACM, New York, NY, USA, 805ś816. https://doi.org/10.1145/2786805.2786850

[58] R. Yuzuki, H. Hata, and K. Matsumoto. 2015. How we resolve conlict: an empirical study of method-level conlict resolution. In 2015

IEEE 1st International Workshop on Software Analytics (SWAN). 21ś24. https://doi.org/10.1109/SWAN.2015.7070484

[59] Fengmin Zhu and Fei He. 2018. Conlict Resolution for Structured Merge via Version Space Algebra. Proc. ACM Program. Lang. 2,

OOPSLA, Article 166 (Oct. 2018), 25 pages. https://doi.org/10.1145/3276536

ACM Trans. Softw. Eng. Methodol.

https://doi.org/10.1145/2889160.2889223
https://doi.org/10.1145/3360596
https://www.microsoft.com/en-us/research/publication/verified-three-way-program-merge/
https://www.microsoft.com/en-us/research/publication/verified-three-way-program-merge/
https://doi.org/10.1145/2786805.2786850
https://doi.org/10.1109/SWAN.2015.7070484
https://doi.org/10.1145/3276536

	Abstract
	1 Introduction
	2 Background
	2.1 Terminology
	2.2 Existing Tools for Software Merge

	3 Study Approach
	3.1 Phase I: Automatic Detection of Conflicts
	3.2 Phase II: Manual Inspection

	4 Study Results on Textual Conflicts
	4.1 RQ1: Root Causes of Conflicts
	4.2 RQ2: Resolutions of Conflicts
	4.3 RQ3: Discussion on Existing Tool Design

	5 Study Results on Build Conflicts
	5.1 RQ1: Root Causes of Build Conflicts
	5.2 RQ2: Resolutions of Build Conflicts
	5.3 RQ3: Discussion on Existing Tool Design

	6 Study Results on Test Conflicts
	6.1 RQ1: Root Causes of Test Conflicts
	6.2 RQ2: Resolutions of Test Conflicts
	6.3 RQ3: Discussion on Existing Tool Design

	7 Our Recommendations
	8 Related Work
	8.1 Empirical Studies on Merge Conflicts
	8.2 Change Recommendation Systems

	9 Threats to Validity
	10 Conclusion
	References

