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Abstract
Android app testing is challenging and time-consuming be-
cause fully testing all feasible execution paths is difficult.
Nowadays apps are usually tested in two ways: human test-
ing or automated testing. Prior work compared different auto-
mated tools. However, some fundamental questions are still
unexplored, including (1) how automated testing behaves
differently from human testing, and (2) whether automated
testing can fully or partially substitute human testing.
This paper presents our study to explore the open ques-

tions. Monkey has been considered one of the best automated
testing tools due to its usability, reliability, and competitive
coverage metrics, so we applied Monkey to five Android
apps and collected their dynamic event traces. Meanwhile,
we recruited eight users to manually test the same apps and
gathered the traces. By comparing the collected data, we re-
vealed that i.) on average, the two methods generated similar
numbers of unique events; ii.) Monkey created more system
events while humans created more UI events; iii.) Monkey
could mimic human behaviors when apps have UIs full of
clickable widgets to trigger logically independent events;
and iv.) Monkey was insufficient to test apps that require
information comprehension and problem-solving skills. Our
research sheds light on future research that combines human
expertise with the agility of Monkey testing.
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1 Introduction
As Android devices become popular, many new apps are
built every day. In year 2016 alone, developers published
1.3 million new Android apps on Google Play [1], which
can be translated to 3,561 new apps every day. Traditionally,
software professionals test such apps by randomly clicking
buttons or exploring different features shown in the User
Interfaces (UIs). As new apps significantly increase day-by-
day, it is almost infeasible for humans to quickly test all apps
or reveal all of the scenarios when app failures occur.
Tools were built to automatically test Android apps [4,

5, 10, 11, 14, 16, 17, 22, 23]. For instance, Monkey treats an
Android app as a black box, and randomly generates UI
actions (e.g., click and touch) as test inputs. GUIRipper [10]
dynamically builds a GUI model of the app under testing to
trigger GUI events in a depth-first search (DFS) manner [10].
ACTEve uses concolic testing to iteratively (1) create an
event based on symbolic execution, (2) monitor any concrete
execution triggered by the event, and (3) negate some path
constraints to cover more execution paths.

Choudhary et al. conducted an empirical study to compare
14 automated testing tools [13]. The researchers showed that
Monkey is the best because it (1) achieves the highest code
coverage, (2) triggers the most software failures within a
time limit, (3) is easy to use, and (4) is compatible with any
Android framework version. Patel et al. further characterized
the effectiveness of random testing by Monkey in five as-
pects (e.g., stress testing and parameter tuning), and reported
that Monkey is on par with manual exploration in terms of
code coverage at various granularity levels (e.g., block, state-
ment) [19]. Machiry et al. showed that Monkey’s coverage
of UI events is comparable to that of the peer tools [16]. Nev-
ertheless, it is still unknown how automated tools test
Android apps differently from human testers.

This paper is intended to empirically contrast automated
testing with human testing. Prior work shows that Monkey
generally works at least as effectively as other automated
tools [13, 18, 20], so we used Monkey as a representative au-
tomated testing tool. Specifically, we chose five Android apps
from different domains, and executed the apps with Monkey.

https://doi.org/10.1145/3316482.3326342
https://doi.org/10.1145/3316482.3326342


LCTES ’19, June 23, 2019, Phoenix, AZ, USA Mostafa Mohammed, Haipeng Cai, and Na Meng

Meanwhile, we recruited eight developers to manually test
these apps. With prior work Droidfax [12], we instrumented
each app to log any UI event (e.g., onClick()), lifecycle event
(e.g., onCreate(...)), or system event (e.g., onLocationChanged())
triggered in the execution. In this way, we collected the event
traces for Monkey testing and human testing, and compared
the traces. We investigated three research questions:

RQ1: DoesMonkey always triggermore diverse eventswhen
it runs an app for a longer time?

RQ2: Does Monkey trigger more or fewer unique events
than humans within the same period of time?

RQ3: Can Monkey produce certain events more or less ef-
fectively than humans?

Our experiments show that there is no correlation between
Monkey’s event coverage and execution time. As execu-
tion time increases, Monkey inputs triggered more or fewer
unique events between different runs of the same app. Addi-
tionally, we applied both Monkey testing and human testing
to the same set of apps for the same periods of time (e.g. 15
minutes). Although humans were slower to generate test
inputs, we observed no significant difference between the
numbers of unique events triggered by different methods.
Furthermore, we found Monkey to effectively trigger more
system events but fewer UI events than humans, probably
because Monkey has no domain knowledge of the app usage.

Our study corroborates some of the observations by prior
work [13, 19]. More importantly, we quantitatively and quali-
tatively analyzed the behavioral differences betweenMonkey
and humans. Our findings not only provide insights on how
developers should test apps to complement Monkey testing,
but also shed lights on future research that integrates human
expertise into automated testing.

2 Methodology
For our study, we selected five Android apps from different
application domains. These apps are:

• Amazon [2]: an online shopping app;
• Candy Crush [3]: a game app to earn scores by moving,
matching, and crushing candies;

• Spotify [7]: an entertainment app to listen to music;
• Twitter [8]: a social media app for users to broadcast
text messages and live streams; and

• Viber [9]: a call app for people to make free phone
calls or send messages through the Internet.

The idea behind selecting these apps is to compare Monkey
testing and human testing in different application scenarios.

Monkey Testing.We used Monkey to test the apps. Mon-
key ran each app five times with different lengths of execu-
tion time (i.e., 15, 20, 25, 30, and 60 minutes).

Human Testing. We invited eight students at Virginia
Tech to use the apps. These students include five CS PhDs,
an ECE PhD, a CS Master, and a CS Bachelor. To thoroughly

compare Monkey and humans in various contexts, we inten-
tionally asked the users to test apps in the following way (see
Table 1). We required each user to spend in total two hours
in testing all apps to limit their time contribution. However,
to diversify the human-testing periods of each app, we asked
each user to test 1 app for 15 minutes, 1 app for 20 minutes,
1 app for 25 minutes, and 2 apps each for 30 minutes.

Table 1. Minutes spent by each user to test the five apps
Candy Crush Amazon Twitter Spotify Viber

User 1 30 15 20 25 30
User 2 15 20 25 30 30
User 3 30 15 20 25 30
User 4 30 30 15 20 25
User 5 25 30 30 15 20
User 6 20 25 30 30 15
User 7 15 20 25 30 30
User 8 30 30 15 20 25

Droidfax [12].When Monkey or humans tested Android
apps, we used an existing tool—Droidfax—to instrument apps
and to generate execution traces. Given an app’s apk file,
Droidfax instruments the app’s Dalvik bytecode and collects
various dynamic execution information, such as triggered
events, invoked methods, and involved Inter-Component
Communications (ICCs). We used Droidfax’s event tracing
feature to log all triggered events, including UI events, life-
cycle events, and system events. UI events (e.g., onClick(...))
are directly triggered by users’ operations (e.g., button click)
to use apps. Lifecycle events (e.g., onPause()) are triggered
when an app’s component has its status changed (e.g., stopped).
System events are produced when any component of the An-
droid system has its status changed (e.g., onNetworkActive()).

After instrumenting the apps with Droidfax, we installed
the instrumented apps to an Android emulator [6] on a Linux
laptop. When an instrumented app was tested by Monkey
or a human, we used the command “adb logcat” to save
log information to a file. For any run of any app, Droidfax
created an event-trace log file. We analyzed these log files to
investigate our research questions.

3 Major Findings
We present our investigation results for the research ques-
tions separately in Section 3.1-3.3.
3.1 Correlation between Monkey’s Event Coverage

and Testing Time
Table 2 reports the number of unique events covered by dif-
ferent runs of Monkey testing, with each cell corresponding
to one Monkey testing run. From the table, we do not see
any correlation betweenMonkey’s event coverage and
testing time. As the time period increases, Monkey testing
triggered more or fewer unique events. For instance, the
20-minute run of Candy Crush covered 24 unique events,
which number is larger than the number of events produced
by any other run of the same app. Among these 24 events,
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there were 2 events never triggered by any of the other 4
runs: onBind(...) and onReceive(...).
Table 2.Numbers of unique events covered by different runs
of Monkey testing
Time
Span

Candy
Crush Amazon Twitter Spotify Viber Average

15 min 18 36 52 38 56 40
20 min 24 45 48 35 56 42
25 min 23 40 45 34 63 41
30 min 22 47 48 36 63 43
60 min 22 44 55 45 57 45

3.2 Event Coverage Comparison between Monkey
Testing and Human Testing

Table 3 presents the average numbers of unique events cov-
ered by different runs of human testing. If one app was tested
by multiple users for the same period of time (e.g., 30 min-
utes), we reported the average number of unique events
covered in the multiple log files. If an app was tested by only
one user for a certain period of time (e.g., only User 1 ran
Amazon for 15 minutes), we reported the number of unique
events covered by the single log file.
Table 3. Average numbers of unique events covered by dif-
ferent runs of human testing
Time
Span

Candy
Crush Amazon Twitter Spotify Viber Average

15 min 26 46 51 39 43 41
20 min 15 46 48 39 54 40
25 min 17 38 49 36 54 39
30 min 31 41 52 37 57 44

Similar to the observation in Section 3.1, we also found
that there was no correlation between humans’ event
coverage and testing time. As the time period increased,
human testing triggered more or fewer unique events. One
possible reason is that humans tested apps in a random way.
Although users tried to investigate as many features as possi-
ble for an app, sometimes their investigation was still limited
to a subset of the features to test. Consequently, longer test-
ing time does not necessarily lead to higher coverage.

Comparing Table 2 and Table 3, we found that when test-
ing the same app for the same period of time, Monkey cov-
ered more or fewer unique events than humans. To decide
whether one approach outperforms the other in general,
we conducted Student’s t-test [15] to compare the event
coverage metrics of both approaches for each app. Table 4
shows our comparison results. Mean ∆ = MeanMonkey −

Meanhuman . To calculateMean ∆ for each app, we first com-
puted themean event coverage of each approach for each app,
and then deductedMeanhuman fromMeanMonkey . p-value
is a probability ranging in [0, 1]. Its value reflects whether
the distributions of two data groups are significantly differ-
ent. At the significance level of α = 0.05, if p-value ≤ 0.05,
the mean difference is significant.

Table 4.Mean event coverage comparison
Candy Crush Amazon Twitter Spotify Viber

Mean ∆ -0.5 -0.75 -1.75 -2.0 7.5
p-value 0.9045 0.8210 0.3434 0.1289 0.0881

According to Table 4, we observed that all distribution
differences are insignificant. On average, human testing cov-
ered more events than Monkey testing for four apps (i.e.,
Candy Crush, Amazon, Twitter, and Spotify) and Monkey
testing covered more for one app (i.e., Viber). All p-values
are greater than 0.05. This implies that Monkey testing
works indistinguishably differently from human test-
ing with respect to event coverage.
3.3 Event Frequency Comparison between Monkey

Testing and Human Testing
To further compare how frequently Monkey and humans
generated different kinds of events, we classified events
into three categories: lifecycle events, UI events, and sys-
tem events. We clustered the recorded events accordingly
for each log file. Suppose a file contains N1 lifecycle events,
N2 UI events, and N3 system events, we further normalized
the event frequencies by computing the ratio of each type of
events among all logged events, i.e.,

ratioi =
Ni

(N1 + N2 + N3)
, (i ∈ [1, 3]).

In this way, we could uniformly compute the average event
frequency distribution of each approach. As shown in Fig-
ure 1,M bars correspond to Monkey testing, while H bars
are for human testing. Each stacked bar usually has three
parts to manifest the ratios of lifecycle, UI, and system events.
We observed three phenomena in Figure 1.
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Figure 1. Normalized event frequency comparison
First, inmost scenarios, systemeventswere themost

frequently generated events. To trigger such events, users
may check for or modify the phone’s status or settings (e.g.,
GPS and wifi). System events dominated the events triggered
by Monkey, taking up to 54-99% of the overall generated
events among the five apps. Although such events were also
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the dominant events triggered by humans for four apps, we
observed an exception for Candy Crush. As Candy Crush is
an interaction-intensive video game, it requires users to (1)
first respond to pop-up dialogs by selecting or entering in-
formation, and (2) frequently use the mouse to move objects.
Figure 2 presents the first UI to which users need to re-

spond by clicking the “Play!” button. Although such testing
behaviors look naïve to humans, they seem not well sup-
ported by Monkey testing. Two possible reasons can explain
such insufficiency. First, Monkey cannot read dialogs, neither
can it smartly make decisions or enter necessary informa-
tion to proceed in the game. Second, Monkey does not know
the game rules. It does not recognize candies, so it cannot
movemouse around to drag-and-drop candies. Consequently,
Monkey cannot play the game for testing.

Figure 2. Snapshot of Candy Crush’s starting UI
Second, Monkey usually generated lower percent-

ages of UI events. Among the five apps, Monkey triggered
0.1-14.7% UI events, while humans triggered 5.4-61.6% such
events. In our categorization, UI events include any user’s
interaction with the UI elements like menu bars, dialogs,
media players, views, and various widgets (e.g., information
widget). As a general-purpose random UI exerciser, Monkey
does not intelligently locate any operable UI element [21];
instead, it randomly tries different pixels in a screen.

When the business logic of different apps varies a lot, the
UI elements related to application logic have various layouts.
However, the UI elements related to system configurations
usually have simpler and fixed layouts. Between the two
types of UIs, it seems easier for Monkey to “accidentally”
trigger system events than application-specific UI events. For
example, we observed that Monkey frequently succeeded in
opening and manipulating a panel of shortcuts for system
settings. Such operations could produce many system events.

Third, Monkey could mimic human behaviors for
certain apps like Amazon, Twitter, and Viber. In partic-
ular for Viber, Monkey obtained the percentages of lifecycle,
UI, and system events as 40.8%, 4.8%, and 54.4%; while hu-
mans obtained quite close percentages: 38.3%, 5.4%, 56.3%.
For Twitter, Monkey’s event distribution is: 24.5%, 14.7%, and
60.8%; while humans’ event distribution is: 26.8%, 7.0%, and
66.3%. For Amazon, the distributions are less similar. Mon-
key’s event distribution is 14.5%, 2.5%, and 83.0%; and hu-
mans’ average event distribution is 12.6%, 11.1%, and 76.2%.

Figure 3. Snapshot of Viber’s contact UI

Two possible reasons can explain why Monkey worked
as effectively as humans for these apps. First, with lots of
clickable items in each UI, these apps are simple to navigate.
For instance, the Viber app only supports users to call or
message people. It has a few UIs. Especially in the contact
UI shown in Figure 3, almost every pixel corresponds to a
clickable UI element. Therefore, even though Monkey knows
nothing about the UI, its actions on different pixels can al-
ways effectively trigger events. Second, more importantly,
there is no implicit constraint on the sequence of user actions.
No matter how random the generated actions are, Monkey
can always successfully trigger events and make progress.
Monkey worked less effectively than humans when test-

ing Candy Crush and Spotify. As mentioned in Section 3.1,
Candy Crush requires users to first click the “Play!” button
to start the game. If Monkey keeps wasting time clicking
pixels irrelevant to the button or pressing keys, it cannot
even start the game for testing. Similarly, the Spotify app
requires users to first click a button “Play” to listen to a se-
lected song, and then to navigate the Media Player buttons
(e.g., “Fast Forward”) to control how music is played. Such
button-clicking sequence constraints are intuitive to humans,
but unknown to Monkey. Therefore, Monkey did not work
well for apps requiring for (1) UI element recognition, and
(2) action sequences following certain patterns.

4 Conclusion
We observed that Monkey is good at testing simple apps
(1) with UIs full of operable widgets and (2) requiring no
sequential ordering between any events triggered in the same
UI. Developers can apply Monkey testing to simple apps
multiple times to explore distinct usage scenarios. Monkey
is not good at testing complex apps that require for domain
knowledge and decision making. Developers can focus their
manual effort on such complex apps. In the future,while
humans test complex apps, we will instrument apps to gather
the user inputs and triggered events. By inferring the cause-
effect relationship between inputs and events, we can further
extract app-specific usage patterns, generalize those patterns,
and build automated tools to better mimic human testers.
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