
Systematic Editing:
Generating Program Transformations from an Example

Na Meng Miryung Kim Kathryn S. McKinley
The University of Texas at Austin

mengna152173@gmail.com, miryung@ece.utexas.edu, mckinley@cs.utexas.edu

Abstract
Software modifications are often systematic—they consist of simi-
lar, but not identical, program changes to multiple contexts. Exist-
ing tools for systematic program transformation are limited because
they require programmers to manually prescribe edits or only sug-
gest a location to edit with a related example. This paper presents
the design and implementation of a program transformation tool
called SYDIT. Given an example edit, SYDIT generates a context-
aware, abstract edit script, and then applies the edit script to new
program locations. To correctly encode a relative position of the
edits in a new location, the derived edit script includes unchanged
statements on which the edits are control and data dependent. Fur-
thermore, to make the edit script applicable to a new context us-
ing different identifier names, the derived edit script abstracts vari-
able, method, and type names. The evaluation uses 56 systematic
edit pairs from five large software projects as an oracle. SYDIT has
high coverage and accuracy. For 82% of the edits (46/56), SYDIT

matches the context and applies an edit, producing code that is 96%
similar to the oracle. Overall, SYDIT mimics human programmers
correctly on 70% (39/56) of the edits. Generation of edit scripts
seeks to improve programmer productivity by relieving develop-
ers from tedious, error-prone, manual code updates. It also has the
potential to guide automated program repair by creating program
transformations applicable to similar contexts.

Categories and Subject Descriptors D.2.7 [Software Engineer-
ing]: Distribution, Maintenance, and Enhancement—restructuring

General Terms Algorithm, Measurement, Experimentation

Keywords Software evolution, program transformation, program
differencing, empirical study

1. Introduction
A typical software life-cycle begins with design, prototyping,
and new code development. After deployment, software enters
a phase where developers spend time fixing bugs, refactoring,
and adding functionality to existing code. Recent work observes
that many changes are systematic—programmers add, delete, and
modify code in numerous classes in similar, but not identical
ways [15, 16, 25]. For example, Kim et al. find that on average,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PLDI’11, June 4–8, 2011, San Jose, California, USA.
Copyright c© 2011 ACM 978-1-4503-0663-8/11/06. . . $10.00

75% of structural changes to mature software are systematic. They
find that these changes are not identical, but that their contexts
have similar characteristics, such as calling the same method or
accessing the same field. Nguyen et al. find that 17% to 45% of
bug fixes are recurring fixes that involve similar edits to numer-
ous methods [25]. Another class of systematic changes occur when
API changes require all the API clients to update their code [12].
Performing systematic edits is currently tedious and error prone.

Existing tools offer limited support for systematic edits. The
search and replace feature in a text editor is the most popular
approach, but it supports only simple text replacements and can-
not handle non-contiguous edits, nor edits that require customiza-
tion for different contexts. Integrated Development Environments
(IDEs), such as Eclipse, help with refactorings, but are confined
to a predefined set of semantics-preserving transformations. Re-
cent work proposes approaches for systematic editing, but none
derive and apply context-aware edit scripts that use different vari-
able, method, and type names in a new context. Nguyen et al.
suggest new locations to edit based on changes to similar code
fragments with an example, but require programmers to edit the
code manually [23, 25]. With simultaneous editing, programmers
edit pre-specified clones in parallel, naı̈vely propagating exactly
the same edit to all clones without regard to context, which leads
to errors [7, 22, 29]. Programmers can also encode systematic ed-
its in a formal syntax using a source transformation language, but
this approach forces programmers to plan edit operations in ad-
vance [4, 5]. Andersen and Lawall’s patch inference derives a more
general edit from diff output, but its expressiveness is confined to
term-replacements [1, 2]. Furthermore, it does not model the con-
trol and data dependence context of edits, and it does not encode
the edit positions with respect to relevant context nodes.

This paper describes the design and implementation of an auto-
mated program transformation tool called SYDIT. SYDIT generates
edit scripts from program differences and their context, and then ap-
plies scripts to similar code fragments. SYDIT characterizes edits as
Abstract Syntax Tree (AST) node additions, deletions, updates, and
moves. It uses control and data dependence analysis to capture the
AST change context, i.e., relevant unchanged program fragments
that depend on the edits or on which edits depend. It abstracts edit
positions and the names of variables, methods, and types to create a
generalized program transformation that does not depend on exact
locations nor concrete identifiers. We call these transformations,
abstract, context-aware edit scripts. Given a new target location,
SYDIT generates concrete AST transformations customized to the
new context. SYDIT then transforms the code accordingly.

To evaluate SYDIT, we create an oracle test suite of 56 sys-
tematic edit pairs—where two method locations are at least 40%
similar in terms of their syntactic contents, and experience at
least one common edit between two program versions. We draw
this test suite directly from systematic updates performed by pro-

329

grammers in jEdit, Eclipse JDT core, Eclipse debug, Eclipse
core.runtime and Eclipse compare plug-ins. SYDIT takes as in-
put a source exemplar edit, which consists of an old and a new
program fragment, and generates an edit script. In this study, the
programmer selects the target, and SYDIT generates concrete edits
and applies them to the target. SYDIT produces syntactically valid
transformations for 82% of the target methods (46/56). It perfectly
mimics developer edits on 70% (39/56) of the targets. Syntactic
program differencing considers the human generated version and
the SYDIT generated version 96% similar. Therefore, it would likely
require only modest manual effort to correct SYDIT’s version. SYDIT

achieves similar results on a suite of six systematic edits applied to
five or more method locations from open-source projects. The key
contributions of this paper are: (1) how to generalize a program
transformation from an example to make it applicable to similar
but not identical contexts, and (2) a rigorous empirical validation
of SYDIT.

Our systematic editing approach seeks to improve programmer
productivity when developers fix similar bugs, refactor multiple
methods similarly, migrate code when APIs change [12, 23, 27],
and add similar features to multiple related code locations. This
approach is very flexible since developers can first develop and
test a modification in a single context and then apply it to multi-
ple contexts. Although in this paper, the programmer is required to
select the target edit location and then examine the results, we en-
vision more automated use cases as well. Given an example trans-
formation, additional analysis could automate finding potential edit
locations based on code similarity. By integrating SYDIT with au-
tomated compilation and testing, developers can have more con-
fidence about the correctness of generated edits before reviewing
them. Furthermore, this functionality could help guide automatic
program repair by creating transformations applicable to similar
contexts, applying them, and running regression tests on the SYDIT

generated program version.
The rest of the paper is organized as follows. Section 2 illus-

trates SYDIT’s edit script generation and application on a motivat-
ing example from the Eclipse debug plug-in. Section 3 presents our
algorithms for edit script generalization and application. Section 4
shows the effectiveness of SYDIT using a test suite of independently
developed systematic changes gathered from open-source projects.
Section 5 compares our approach to related work and Section 6 dis-
cusses the limitations of our approach and ways to improve SYDIT’s
precision.

2. Motivating Example
This section overviews our approach with a running exam-

ple drawn from revisions to org.eclipse.debug.core on 2006-10-
05 and 2006-11-06. Figure 1 shows the original code in black,
additions in bold blue with a ’+’, and deletions in red with a
’-’. Consider methods mA and mB: getLaunchConfigurations-

(ILaunchConfigurationType type) and getLaunchConfigura-

tions(IProject project). These methods iterate over elements
received by calling getAllLaunchConexfigurations(), process
the elements one by one, and when an element meets a certain
condition, add it to a predefined list.

Suppose that Pat intends to apply similar changes to mA and mB.
In mA, Pat wants to move the declaration of variable config out of
the while loop and add code to process config as shown in lines
4, and 6-10 in mA. Pat wants to perform a similar edit to mB, but on
the cfg variable instead of config. This example typifies system-
atic edits. Such similar yet not identical edits to multiple methods
cannot be applied using the search and replace feature or existing
refactoring engines in IDE, because they change the semantics of
a program. Even though these two program changes are similar,

Aold to Anew

1. public ILaunchConfiguration[] getLaunchConfigurations
(ILaunchConfigurationType type) throws CoreException {

2. Iterator iter = getAllLaunchConfigurations().iterator();
3. List configs = new ArrayList();
4. + ILaunchConfiguration config = null;
5. while (iter.hasNext()) {
6. - ILaunchConfiguration config =

(ILaunchConfiguration)iter.next();
7. + config = (ILaunchConfiguration)iter.next();
8. + if (!config.inValid()) {
9. + config.reset();
10. + }
11. if (config.getType().equals(type)) {
12. configs.add(config);
13. }
14. }
15. return (ILaunchConfiguration[])configs.toArray

(new ILaunchConfiguration[configs.size()]);
17.}

SYDIT’s replication of relevant edits on Bold, resulting in Bnew

1. protected List getLaunchConfigurations(IProject project) {
2. Iterator iter = getAllLaunchConfigurations().iterator();
3. + ILaunchConfiguration cfg = null;
4. List cfgs = new ArrayList();
5. while (iter.hasNext()) {
6. - ILaunchConfiguration cfg =

(ILaunchConfiguration)iter.next();
7. + cfg = (ILaunchConfiguration)iter.next();
8. + if (!cfg.inValid()) {
9. + cfg.reset();
10. + }
11. IFile file = cfg.getFile();
12. if (file != null && file.getProject().equals(project)) {
13. cfgs.add(cfg);
14. }
15. }
16. return cfgs;
17.}

1. … … method_declaration(… …){
2. T1 v1 = m1().m2();
3. … …
4. while(v1.m3()){

5. UPDATE: T2 v2 = (T2)v1.m4();
6. TO: T2 v2 = null;

7. INSERT: v2 = (T2)v1.m4();

8. INSERT: if(!v2.m5()){
9. INSERT: v2.m6();
10. }

11. … …
12. }
13. … …
14. }

!
MOVE

Abstract edit script

Figure 1. Systematic edit from revisions of org.eclipse.debug.core

without assistance, Pat must manually edit both methods, which is
tedious and error-prone.

Using SYDIT, Pat applies the change only to mA and then SYDIT

creates an edit script and applies it to mB. SYDIT applies a syntac-
tic program differencing algorithm to mAold and mAnew and then
characterizes the exemplar edit (lines 4, and 6-10) in terms of a se-
quence of inserts, deletes, moves, and updates. For each edit, it per-
forms data and control dependence analysis to determine the edit’s
corresponding context. It then abstracts variable, method, and type
names and encodes edit positions relative to the extracted context.
This identifier and edit position abstraction makes the edits appli-
cable to similar yet not identical contexts.

330

Pat next identifies mB as a target for this edit script. Based on the
extracted context and the abstract names in the edit script, SYDIT

matches the extracted context against the mB target and identifies
relevant code fragments that the edits are applicable to (i.e., lines 2,
5, and 6 in mB). It then creates concrete edits customized to mB, and
applies them to mB.

The bottom of Figure 1 illustrates the content of the abstract edit
script derived from the two versions of mA. Currently, SYDIT does
not guarantee to generate an edit script containing the fewest edits.

Context extraction. SYDIT extracts the context of edits through
data and control dependence analysis, which makes it possible
to apply the edit script to code fragments that share similar data
and control flows but are not identical to mA. For example, the
location of the updated ILaunchConfiguration declaration is the
child position 0 inside the while loop. Position 0 means the first
AST child node of the while loop. The updated statement is control
dependent on the while (line 5), and data dependent on the iterator
declaration (line 2). We therefore include both lines 2 and 5 in the
abstract context of this update.

Identifier abstraction. SYDIT abstracts all variable, method, and
type names to make the edits applicable to contexts that use differ-
ent identifier names. For instance, in the example, it abstracts the
config variable in mA to v2.

Edit position abstraction. SYDIT encodes the syntactic position of
each edit with respect to the extracted context nodes. For example,
the source of the moved ILaunchConfiguration declaration is child
position 0 of the while (i.e., its first AST child node), and the target
is child position 1 of the method declaration node (i.e., its second
AST child node).

Edit script application. To apply an abstract edit script to a tar-
get context, SYDIT matches the abstracted context against the target
method and concretizes the abstract identifier names and edit posi-
tions with respect to the target method. For example, it concretizes
v2 to cfg, and encodes the target move position as the child posi-
tion 1 of mB’s method declaration node.

This automatic program transformation approach offers a flex-
ible mechanism for improving programmer productivity. System-
atic editing simplifies the tedious task of applying similar changes
to multiple locations. Context abstraction and concretization in-
creases the chance to apply systematic edits correctly and consis-
tently. In this paper, the programmer selects both the source and tar-
get method and audits the result. With integration with automated
compilation and testing, examining the correctness of SYDIT gener-
ated edits could be further automated. In all cases, the programmer
should audit SYDIT generated versions through testing, inspection,
or both. The coverage and accuracy of the edit scripts depend on the
choice of the source exemplar edit, how context and abstract names
are represented, and the algorithm that matches the extracted edit
context to a target.

3. Approach
This section describes the two phases of SYDIT. Phase I takes as
input an old and new version of method mA as its exemplar edit,
and creates an edit script from mAo and mAn. Phase II applies the
edit script to a new context, mB, producing a modified method mBs.
We first summarize the steps in each phase and then describe each
step in detail.

Phase I: Creating Edit Scripts

• SYDIT compares an exemplar edit, mAo and mAn, and describes
the differences as a sequence of insertions, deletions, updates,
and moves: ∆A = {eo, e1, . . . , en}.

• SYDIT identifies the context of the edit ∆A based on data,
control, and containment dependences between each ei and
other statements in mAo and mAn.
• SYDIT abstracts the edit, ∆, by encoding each ei position

with respect to its extracted context and by replacing all con-
crete variable, method, and type names with abstract identifier
names.

Phase II: Applying Edit Scripts

• SYDIT matches the abstract context for ∆ to mB’s syntax tree.
• If they match, SYDIT generates a concrete edit ∆B by translat-

ing abstract edit positions in ∆ into concrete positions in mB and
abstract identifiers in ∆ into concrete identifiers in mB.
• SYDIT then applies ∆B to mB, producing mBs.

3.1 Phase I: Creating Abstract Edit Scripts
This section explains how SYDIT create an abstract edit script.

3.1.1 Syntactic Program Differencing
SYDIT compares the syntax trees of an exemplar edit, mAo and
mAn, using a modified version of ChangeDistiller [9]. ChangeDis-
tiller generates deletes, inserts, moves, and updates. We chose
ChangeDistiller in part because it produces concise AST edit op-
erations by (1) representing related node insertions and deletions
as moves and updates and (2) aggregating multiple fine-grained
expression edits into a single statement edit.

ChangeDistiller computes one-to-one node mappings from the
original and new AST trees for all updated, moved, and unchanged
nodes. If a node is not in the mappings, ChangeDistiller generates
deletes or inserts as appropriate. It creates the mappings bottom-up
using: bigram string similarity for leaf nodes (e.g., statements and
method invocations), and subtree similarity for inner nodes (e.g.,
while and if statements). It first converts each leaf node to a string
and computes its bigram—the set of all adjacent character pairs.
The bigram similarity of two strings is the size of their bigram set
intersection divided by the average of their sizes. If the similarity is
above an input threshold, σ, ChangeDistiller includes the two leafs
in its pair-wise mappings. It then computes subtree similarity based
on the number of leaf node matches in each subtree, and establishes
inner node mappings bottom up.

We modify ChangeDistiller’s matching algorithms in two ways.
First, we require inner nodes to perform equivalent control-flow
functions. For instance, the original algorithm sometimes mapped
a while to an if node. We instead enforce a structural match,
i.e., while nodes only map to while or for nodes. Second, we
match leaf nodes to inner nodes using bigram string similarity. This
change overcomes inconsistent treatment of blocks. For example,
ChangeDistiller treats a catch clause with an empty body as a leaf
node, but a catch clause with a non-empty body is an inner node.

Given a resulting set of AST node mappings, SYDIT describes
edit operations with respect to the original method mAo as follows:

delete (Node u): delete node u from mAo.

insert (Node u, Node v, int k): insert node u and position it as the
(k + 1)th child of node v.

move (Node u, Node v, int k): delete u from its current position
in mAo and insert u as the (k + 1)th child of v.

update (Node u, Node v): replace u in mAo with v. This step in-
cludes changing the AST type in the resulting tree to v’s type
and maintaining any of u’s AST parent and children relation-
ships in v.

331

The resulting sequence of syntactic edits is ∆A = {ei|ei ∈ {delete
(u), insert (u,v,k), move (u,v,k), update (u,v)}}. We use a total order
for ei to ease relative positioning of edits.

Figure 2 presents the mapping for our example, where ’O’ is a
node in the old version mAo and ’N’ is a node in the new version
mAn. Below we show the concrete edit script ∆A that transforms
mAo into mAn for our example:

1. update (O6, N4)
O6 = ‘ILaunchConfiguration config =

(ILaunchConfiguration) iter.next();’

N4 = ‘ILaunchConfiguration config = null;’
2. move (O6, N1, 2)
3. insert (N7, N5, 0)

N7 = ‘config = (ILaunchConfiguration) iter.next();’
4. insert (N8, N5, 1) N8 = ‘if (!config.inValid())’
5. insert (N9, N8, 0) N9 = ‘then’
6. insert (N10, N9, 0) N10 = ‘config.reset();’

3.1.2 Extracting Edit Contexts
SYDIT extracts relevant context from both the old and new versions.
For each edit ei ∈ ∆A, SYDIT analyzes mAo and mAn to find the
unchanged nodes on which changed nodes in ei depend. These
dependences include containment dependences and the source and
sink of control and data dependences. We call these nodes context.

Context information increases the chance of generating syntac-
tically valid edits and also serves as anchors to position edits cor-
rectly in a new target location. First, in order to respect the syntax
rules of the underlying programming language, we include AST
nodes that the edits require. For example, insertion of a return
statement must occur inside a method declaration subtree. This
context increases the probability of producing a syntactically valid,
compilable program. Second, we use control dependences to de-
scribe the position to apply an edit, such as inserting a statement at
the first child position of while loop. While the edit may be valid
outside the while, positioning the edit within the while increases
the probability that the edit will be correctly replicated. Third, con-
text helps preserve data dependences. For example, consider an edit
that inserts statement S2: foo++; after S1: int foo = bar;.
If we require S1 to precede S2 by including S1 in the context of
S2, the resulting edit will guarantee that foo is defined before it is
incremented. However, including and enforcing more dependence
requirements in the edit context may decrease the number of target
methods that will match and thus may sacrifice coverage.

Formally, node y is context dependent on x if one of the follow-
ing relationships holds:

• Data dependence: node x uses or defines a variable whose value
is defined in node y. For example, N10 uses variable config,
whose value is defined in N7. Therefore, N10 is data dependent
on N7.
• Control dependence: node y is control dependent on x if y may

or may not execute depending on a decision made by x. For-
mally, given a control-flow graph, node y is control dependent
on x, if: (1) y post-dominates every vertex p in x ; y, p 6= x,
and (2) y does not strictly post-dominate x [6].
• Containment dependence: node y is containment dependent on
x if y is a child of x in the AST. For instance, N4 is containment
dependent on N1.

To extract the context for an edit script, we compute control, data,
and containment dependences on the old and new versions. The
context of an edit script ∆A is the union of these dependences. The
containment dependence is usually redundant with immediate con-
trol dependence of x, except when loops contain early returns. To
combine dependences, SYDIT projects nodes found in the new ver-

sion mAn onto corresponding nodes in the old version mAo based
on the mappings generated by the modified version of ChangeDis-
tiller. For each ei ∈ ∆A, we determine relevant context nodes as
follows.

delete (u): The algorithm computes nodes in mAo that depend on
the deleted node, u.

insert (u, p, k): Since u does not exist in mAo, the algorithm first
computes nodes in mAn on which u depends and then projects
them into corresponding nodes in mAo.

move (u, v, k): The algorithm finds the dependent nodes in both
mAo and mAn related to u. The nodes in the new version help
guarantee dependence relationships after the update. It projects
the nodes from mAn into corresponding nodes in mAo and then
unions the two sets.

update (u, v): The algorithm finds the dependent nodes in mAo
related to the updated node, u. It also finds dependent nodes
in mAn related to the node v. It projects the nodes from mAn into
corresponding nodes in mAo and then unions the two sets.

Consider insert (N7, N5, 0) from Figure 2. The inserted node
N7 is control dependent on N5, and data dependent on N2 and
N4. Mapping these nodes to the old version yields the context
node set {O2, O4, O6}. The move (O6, N1, 2) operation is more
complicated because O6 depends on the node set C1 = {O4, O2}
in the old version, while N4, N1’s child at position 2, depends on
the node set C2 = {N1} in the new version. After deriving the two
sets, we project C2 onto nodes in mAo, which yields C3 = {O1}.
Finally, we union C1 and C3 to get the context node set {O1, O2,
O4} for the move operation. Figure 2 illustrates the result, marking
irrelevant nodes with dotted lines and context nodes in gray.

SYDIT allows the user to configure the amount of context. For
example, the number of dependence hops, k, controls how many
surrounding, unchanged nodes to include in the context. Setting
k = 1 selects just the immediate control and data dependent
nodes. Setting k = ∞ selects all control and data dependent nodes.
We can restrict dependences to reaching definitions or include the
nodes in a chain of definitions and uses depending on k. SYDIT

differentiates upstream and downstream dependences. Upstream
dependences precede the edit in the text, whereas downstream
dependences follow the edit. The default setting of SYDIT is k = 1
with control, data, and containment upstream dependences, which
was best in practice. Section 4 shows how varying context affects
SYDIT’s coverage and accuracy.

3.1.3 Abstracting Identifiers and Edit Positions
At this point, the edit script and its context use concrete identifier
names and edit positions from the exemplar edit. To make the
edit script more applicable, we abstract identifier names and edit
positions in the edit script.

To abstract identifiers, we replace all concrete variable, method,
and type names with equivalent abstract representations: Tx, mx,
and v$x respectively. Each unique concrete identifier corresponds
to a unique abstract one. For example, we convert the concrete
expression !config.inValid() in Figure 2 to !v2.m5() in Figure 3.

We abstract the position of edits to make them applicable to
code that differs structurally from the original source example. We
encode an edit position as a relative position with respect to all
the context nodes, instead of all nodes in the original syntax tree.
For example, we convert the concrete edit move (O6, N1, 2) to
an abstract edit move (AO4, AN1, 1). In this case, the abstract
edit position is child position 1 of the while because the context
of the edit includes the definition of ILaunchConfiguration at
abstract child position 0 and no other dependences. This relative
position ensures that ILaunchConfiguration is defined by some

332

!

"#$%&'('#)*!

+$#,('#)*!)&-.+/0('#)*! 1%+*#(0$"$! ,#$2,-(0$"$!

)&-.+/('#)* +.(0$"$!

$%#-!

)&-.+/0("+!

34!

35! 36! 37! 38!

39! 3:!

3;!

3<!

"#$%&'('#)*!

+$#,('#)*! 1%+*#(0$"$! ,#$2,-(0$"$!

=4!

=5! =6! =8! =9!
)&-.+/0('#)*!

)&-.+/(>0/- +.(0$"$!

$%#-!

)&-.+/0("+!

+-0#,$?=;@=8@4A!

=45!

=46!

)&-.+/('#)*!

+.(0$"$

$%#-

)&-.+/("+

+-0#,$?=:@=8@BA!

+-0#,$?=<@=;@BA!

+-0#,$?=4B@=<@BA!
C#/#-'!
'#)*D!'#)*>,>$+&-!
0$"$D!0$>$#"#-$!
"+D!"#$%&'!+-E&)>$+&-!
>0/-D!>00+/-"#-$!
!!!!!!!!!!!!

2F'>$#?39@=7A!
"&E#?39@!=4@!!5A!

=:!
=;!

=7!

!"#$!"%$

=44!

G&,,#0F&-'#-)#0D!
?34@!=4A@!?35@!=5A@!?36@!=6A@!?37@!=8A@!?38@!=9A@!
?39@!=7A@!?3:@!=44A@!?3;@!=45A@!?3<@!=46A!

! context node

! irrelevant node

! updated node insert

containment, data and
control dependence

move

! new node

=4B!

=<!

Figure 2. Syntactic edit extraction for mA

!"#$%&'&"()*

+,-*

+,.* +,/*

+,0*

!"#$%&'&"()*

+1-*

+1.* +10*

234"5#6+178*+108*-9*

#$"3
insert(AN7, AN6, 0)

insert(AN8, AN7, 0)

:;&<#"6+,08*+1/9*

!%="6+,08*+1-8*-9*

+1>* +17*

+1?*

+1@*

+1/*

!"#$%&'$()*$+,$-)./0 !"#$%&'$()*$+,$-*+10

A%55";%3&"3("B*
6+,-8*+1-98*6+,.8*+1.98*6+,/8*+1098*6+,08*+1/9**

C$2)"6=-D!/699*
C$2)"'4#!#*

 ILaunchConfiguration'&"()*
* E.*=.*F*6E.9*=-D!069G*

E-*=-F*!-6*9D!.6*9G*
H#"5<#%5D&"()*

E-*=-*F*!-6*9D!.6*9G*
H#"5<#%5D&"()* ILaunchConfiguration'&"()*

* E.*=.*F*3:))G*
C$2)"'4#!#*

C$2)"6=-D!/699*

ILaunchConfiguration*'<4I3
*******************=.F*6E.9*=-D!0*69G*

2J'4#!#
******************2J6=.D!>699*

ILaunchConfiguration*'!2
=.D!769G*

234"5#6+1>8*+108*K9*

Figure 3. Abstract edit script

!

"#$%&'('#)*!

+$#,('#)*!)-./('#)*! 0%+*#(/$"$! ,#$1,2(/$"$!

)-.('#)* +-(/$"$!

$%#2!

)-./("+!

34!

35! 36! 37! 38!

39! 3:!

3;!

34<!

"#$%&'('#)*!

+$#,('#)*! 0%+*#(/$"$! ,#$1,2(/$"$!

=4!

=5! =6! =8! =9!

)-./('#)*!

)-.(>/.2 +-(/$"$!

$%#2!

)-./("+!

=46!

=47!

)-.('#)*!

+-(/$"$

$%#2

)-.("+

+2/#,$?=;@=A@<B!

+2/#,$?=4<@=;@<B!

1C'>$#?39@=6B!

"&D#?39@!=4@!!4B! =:!

=A!

=;!

=4<!

=7!

=45!
-+*#('#)*!

-+*#('#)*!

3A!
=44!

E&,,#/C&2'#2)#/F!
?34@!=4B@!?35@!=5B@!?36@!=6B@!?37@!=8B@!
?38@!=9B@!?39@!=6B@!?3:@!=44B@!?3A@!=45B@!
?3;@!=46B@!?34<@!=47B!

!"#$!"%$

G#,+D#'!">CC+2./F!!
H4!IIterator!!
H5!IILaunchConfiguration!
D4!Iiter!
D5!I!cfg!J!

+2/#,$?=:@=8@<B! +2/#,$?=A@=8@4B!

Figure 4. Syntactic edit suggestion for mB

statement before it is used, but requires no other statements in the
while. When we apply the edit, we require the context to match
and apply edits relative to the context position in the target, not the
concrete positions in the original method. Abstracting edit positions
is essential for applying an edit when the target method satisfies
the context dependences, regardless of the exact positions of the
statements in the code.

3.2 Phase II: Applying Abstract Edits
This section describes how SYDIT applies an edit script ∆ to a
method mB, producing a modified method mBs.

3.2.1 Matching Abstract Contexts
The goal of our matching algorithm is to find nodes in the target
method that match the context nodes in ∆ and that induce one-to-
one mappings between abstract and concrete identifier names. To
simplify this process, we first abstract the identifiers in mB. We use

333

the procedure as described in Section 3.1.3 to create mBAbstract

from mB. For concision in this section, we simply use mB instead of
mBAbstract.

This problem can be posed as the labeled subgraph isomorphism
problem. Although we experimented with an off-the-shelf imple-
mentation [20], adapting it to match nodes while simultaneously
requiring one-to-one symbolic identifier mappings is difficult. Yet
these two features are essential requirements for applying edits to
new contexts. See Section 3.2.2 for more details. The algorithm
we propose below tolerates inexact label matches for unchanged
context nodes while enforcing one-to-one symbolic identifier map-
pings.

The intuition behind our algorithm is to first find candidate
leaf matches and then use them to match inner nodes. We find
as many candidate matches as possible between leaf nodes in the
abstract context and leaf nodes in the target tree, x ∈ AC, y ∈ mB,
where x and y form an exact match, i.e., the equivalent AST
node types and node labels (see below). Based on these exact
matches (x, y), we add node matches (u, v), where u and v are
on paths from the respective root nodes, u ∈ (rootAC ; x)
and v ∈ (rootmB ; y). We add (u, v) type matches bottom-
up, requiring only their node types to be equivalent. Finally for
each unmatched leaf in the abstract context, we find additional type
matches based on the established set of matches. We repeat these
steps until the set of candidate leaf matches, CL, does not increase
any more. We define two types of node matches and one type of
path matches:

Type match: Given two nodes u and v, (u,v) is a type match if their
AST node types match. For example, both are ifs or one is a
while and the other is a for. The conditions need not match.

Exact match: Given two nodes u and v, (u,v) is an exact match
if it is a type match and their AST labels are equivalent. We
define the label as the abstract strings in the statements and
ignore numerics in abstract identifiers. For example, ‘T1 v1 =

null;’ and ‘T2 v2 = null;’ are equivalent since we ignore
the numeric and convert them both to ‘T v = null;’.

Path match: Given two paths p1 and p2, (p1, p2) is a path match
if for every node u on p1, there exists node v on p2 where
(u, v) is a type match. For example, given two leaf nodes x
and y, the paths match if parent(x) and parent(y) type match,
parent(parent(x)) and parent(parent(y)) type match, and so on.

We use these definitions to map the nodes in the abstract context AC
in ∆ to mB in the following four steps, which Algorithm 1 describes
procedurally.

1. SYDIT finds all exact leaf matches between AC and mB and adds
each (x, y) pair to a set of candidate leaf matches, CL.

2. Based on CL, SYDIT then tries to find the best path match for
each leaf node x where (x, y) ∈ CL and finds node matches
based on the best path match. Let p1 = rootAC ; x and
p2 = rootmB ; y. This step is broken into three cases, for
each node match (x, y) in CL,

(a) If there exists one path match (p1, p2) between AC and mB,
we add all its constituent node matches (u, v) on these paths
to M.

(b) If there exists multiple path matches, e.g., (p1, (rootmB ;

y1)) and (p1, (rootmB ; y2)), and one of these path
matches contains more constituent nodes already in the
set established matches M, we select the best of these path
matches and add constituent (u, v) matches to M.

(c) If there exists multiple path matches with the same num-
ber of constituent node matches in M, SYDIT leverages sib-

Algorithm 1: Matching Abstract Context to Target Tree
Input: AC, mB /* abstract context and abstract target

tree */

Output: M /* a set of node matches from AC to mB */

/* 1. create candidate leaf exact matches */

CL := ∅;
M := ∅;
foreach leaf node x ∈ AC do

foreach leaf node y ∈ mB do
if exactMatch(x, y) then

CL:= CL ∪ {(x, y)};
end

end
end
repeat

/* 2(a). create matches based on path matches */

foreach (x, y) ∈ CL such that 6 ∃ (x, z) ∈ CL ∧ y 6= z do
p1 = (rootAC ; x);
p2 = (rootmB ; y);
if pathMatch(p1, p2) then

M:= M ∪ {(u, v) | u ∈ p1 , where (u,v) is a type
match and v ∈ p2 and u and v appear in the same
position on paths p1 and p2};

end
end
/* 2(b). select the best path match and add new

node matches it induces */

foreach (leaf node x ∈ AC such that (x, y) ∈ CL ∧ (x,y) /∈M)
do

p1 = (rootAC ; x);
p2 = (rootmB ; y);
select y with the maximum pathMatchScore(p1, p2,
M);
M:= M ∪{(u, v) | u ∈ p1 and v ∈ p2, where (u,v) is a
type match and u and v appear in the same position on
paths p1 and p2};

end
/* 2(c). disambiguate path matches based on the

sibling order of matched leaf nodes in M */

foreach (leaf node x ∈ AC such that (x, y) ∈ CL ∧ (x,y) /∈M)
do

select y with the maximum LCSMatchScore(x,y,M);
M:= M ∪{(u, v) | u ∈ p1 and v ∈ p2, where (u,v) is a
type match and u and v appear in the same position on
paths (rootAC ; x) and (rootmB ; y};

end
/* 3. establish symbolic identifier mappings */

S:= ∅;
foreach (u, v) ∈M do

S:= S ∪ {(Tn, Tm), (vi, vj), and/or (mk, ml)
that are supported by (u, v)};

end
removeConflicts(S, M);
/* 4. relax constraints to add leaf candidates

*/
CL:= CL ∪ relaxConstraints(AC, M);

until CL reaches its fix point ;

ling ordering relationships among the leaf nodes to dis-
ambiguate the best path match. Given a leaf node x ∈
AC, suppose that path p1 matches with multiple paths, e.g.,
(p2 = rootmB ; y2), (p3 = rootmB ; y3), with the
same score and assume that y2 precedes y3 in sibling order.
If a node match (u, v) exists in M in which u precedes x in
terms of sibling order, and v is a sibling between y2 and y3,
SYDIT prefers a path match ((rootAC ; x), (rootmB ;

y3)), since this choice is consistent with an already estab-

334

lished match (u, v). Similarly, based on this path match,
we add constituent node matches on the matched paths to
M. While this approach is similar to how the longest com-
mon subsequence (LCS) algorithm align nodes [14], our ap-
proach matches leaf nodes based on established matches in
M.

3. SYDIT establishes mappings between symbolic identifiers in AC
and mB by enumerating all node matches in M. For example,
if the label of matched nodes are ‘T1 v1 = null;’ and ‘T2

v2 = null;’, we add the symbolic identifier mappings (T1,
T2) and (v1, v2) to S. While collecting identifier mappings,
the algorithm may encounter inconsistencies, such as (T1,
T3), which violates an already established mapping from T1
to T2. To remove the conflict between (T1, T2) and (T1,
T3), SYDIT counts the number of node matches that support
each mapping. It keeps the mapping with the most support, and
removes other mappings from S and all their supporting node
matches from M.

4. SYDIT leverages the parent-child relationship of matched nodes
in M to introduce type matches for unmatched leaf(s) in AC. For
each unmatched leaf z in AC, SYDIT traverses bottom-up along
its path to root in order to find the first ancestor u which has a
match (u, v) ∈M . Next, if it finds an unmatched node w in the
subtree rooted at v and if (z, w) is a type match, SYDIT adds it
into CL. We repeat steps 2 to 4 until step 4 does not add any to
CL.

At any point in this process, if every node in the abstract context
AC has a match in M, then we proceed to derive concrete edits
customized to mB, described in Section 3.2.3. If we fail to find a
match for each node, SYDIT reports to the user that the edit context
does not match and it cannot replicate the edit on the target context.

3.2.2 Alternative matching algorithms
Standard labeled subgraph isomorphism is a promising alternative
approach for matching abstract context in ∆ to a new target method
mB that we also explored. We formulated both the abstract con-
tent and target method as graphs in which nodes are labeled with
their AST node types, and edges are labeled with constraint rela-
tionships between nodes, such as containment, data, and control
dependences. To preserve a one-to-one mapping between abstract
and concrete identifiers, we included additional labeled nodes to
represent the sequence of symbols appearing in the statement. We
included variable names, method names, type names, as well as
constants like null and operators like = as node labels. Next, we
connected all the identifiers with the same name with edges labeled
“same name.” We thus converted our problem to finding an isomor-
phic labeled subgraph in the target method’s graph for the abstract
context’s graph.

Function pathMatch(path p1, path p2)
t1 := p1’s bottom-up iterator;
t2 := p2’s bottom-up iterator;
while t1.hasPrev() ∧ t2.hasPrev() do

u := t1.prev();
v := t2.prev();
if !EquivalentNodeType(u, v) then

return false;
end

end
if t1.hasPrev() then

return false;
end
return true;

Function pathMatchScore(path p1, path p2, matches M)

counter := 0;
t1 := p1’s bottom-up iterator;
t2 := p2’s bottom-up iterator;
while t1.hasPrev() ∧ t2.hasPrev() do

u := t1.prev();
v := t2.prev();
if (u, v) ∈M then

counter ++;
end

end
return counter;

Function LCSMatchScore(node x, node y, matches M)

score := 0;
/* identify left siblings of x and y */

l1 := left children(parent(x), x);
l2 := left children(parent(y), y);
/* identify right siblings of x and y */

r1 := right children(parent(x), x);
r2 := right children(parent(y), y);
/* compute the size of longest common sequences of

l1 and l2 and r1 and r2 respectively with respect
to M. */

score := LCS(l1, l2,M) + LCS(r1, r2,M);
return score;

Function removeConflicts(mappings S, matches M)

foreach (s1, s2) ∈ S do
T = {t | (s1, t) ∈ S };
if |T | > 1 then

select t with the most supporting matches;
T = T - (s1, t);
foreach s2 ∈ T do

S := S −{(s1, s2)};
M := M− {(u, v)|(u, v) supports (s1, s2)};

end
end

end

Function relaxConstraints(context AC, matches M)

CL := ∅
foreach leaf node z ∈ AC such that 6 ∃(z, w) ∈ M do

u := z;
repeat

u := parent(u);
until u=null ∨∃(u, v) ∈ M ;
if u 6=null then

CL := CL ∪{(z, w)|w is a node in the subtree rooted at v,
where (z, w) is a type match and w is not matched};

end
end
return CL;

A problem with this direct conversion is that it requires each
symbol in the abstract context must match a symbol in the target
method. This requirement is needlessly strict for the unchanged
context nodes. For instance, consider inserting a child of an if in
the target. When the guard condition of the target if is a little differ-
ent from the known if, i.e., field != null vs. this.getField()
!= null, exact graph isomorphism fails in this case. Although our
algorithm is a little messy compared with an off-the-shelf labeled

335

subgraph isomorphism algorithm [20], the heuristics for identifier
replacements and siblings alignment work well in practice. Spec-
ifying which node matches to relax, and when and how to relax
them is the key contribution of the algorithm we present above.

3.2.3 Generating Concrete Edits
To generate the concrete edit script ∆B for mB, SYDIT substitutes
symbolic names used in ∆ and recalculates edit positions with
respect to the concrete nodes in mB. This process reverses the
abstraction performed in Section 3.1.3.

The substitution is based on the symbolic identifier mappings
established in Section 3.2.1, e.g., (T1, T2), and the abstract-
concrete identifier mappings established in Section 3.1.3, e.g.,
(T1, int), (T2, int). For this specific case, each time T1 oc-
curs in ∆, SYDIT uses int in ∆B .

Some edits in ∆ use symbolic identifiers that only exist in the
new version, thus the name does not exist in the original code of
mAo or mBo and this name thus has no match. In this case, we borrow
the identifier name from mAn. For example, the identifier inValid
used in Figure 1 only exists in mAn, and is not in mBo, nor should
we ever expect it to appear in mAo. We thus just use the name from
mAn, stored in ∆ for ∆B .

We make edit positions concrete with respect to the concrete
nodes in mB. For instance, with the node match (u, v), an abstract
edit which inserts a node after u is translated to a concrete edit
which inserts a node after v. Using the above algorithms, SYDIT

produces the following concrete edits for mB (see Figure 4).

1. update (O6, N3), N3 = ‘ILaunchConfiguration cfg = null;’
2. move (O6, N1, 1)
3. insert (N7, N5, 0),

N7 = ‘cfg = (ILaunchConfiguration) iter.next();’
4. insert (N8, N5, 1), N8 = ‘if (!cfg.inValid())’
5. insert (N9, N8, 0), N9 = then
6. insert (N10, N9, 0), N10 = ‘cfg.reset();’

This edit script shows that mB is changed similarly to mA. It differs
because of the move (O6, N1, 1), which puts the designated node
in a different location compared to mA. This difference does not
compromise the edit’s correctness since it respects the relevant data
dependence constraints encoded in ∆. SYDIT then converts ∆B to
Eclipse AST manipulations to produce mBs.

4. Evaluation
To assess the coverage and accuracy of SYDIT, we create an ora-
cle data set of 56 pairs of example edits from open source projects,
which we refer to simply as the examples. To examine the capabil-
ities of SYDIT, we select a range of simple to complex examples,
and show that SYDIT produces accurate edits across the examples.
We compare SYDIT to common search and replace text editor func-
tionality and demonstrate that SYDIT is much more effective. We
evaluate the sensitivity of SYDIT to the source and target method.
Most correct edits are insensitive to this choice, but when there is a
difference, choosing a simpler edit as the source method typically
leads to higher coverage. We also study the best way to character-
ize edit context. We find that more context does not always yield
more accurate edits. In fact, minimal, but non-zero context seems
to be the sweet spot that leads to higher coverage and accuracy.
Configuring SYDIT to use an upstream context with k = 1 yields
the highest coverage and accuracy on our examples.

For the evaluation data set, we collected 56 method pairs that ex-
perienced similar edits. We included 8 examples from a prior study
of systematic changes to code clones from the Eclipse jdt.core
plug-in and from jEdit [16]. We collected the remaining 48 exam-
ples from 42 releases of the Eclipse compare plug-in, 37 releases of
the Eclipse core.runtime plug-in, and 50 releases of the Eclipse

Single node Multiple nodes
Contiguous Non-contiguous

Identical SI CI NI

examples 7 7 11
matched 5 7 8
compilable 5 7 8
correct 5 7 8

coverage 71% 100% 73%
accuracy 71% 100% 73%
similarity 100% 100% 100%

Abstract SA CA NA

examples 7 12 12
matched 7 9 10
compilable 6 8 9
correct 6 6 7

coverage 100% 75% 83%
accuracy 86% 50% 58%
similarity 86% 95% 95%

Total coverage 82% (46/56)
Total accuracy 70% (39/56)
Total similarity 96% (46)

Table 1. SYDIT’s capabilities, coverage, and accuracy for k=1,
upstream control and data dependences

debug plug-in. For each pair, we computed the syntactic differ-
ences with Change Distiller. We identified method pairs mA and mB
that share at least one common syntactic edit between the old and
new version and their content is at least 40% similar. We use the
following similarity metric:

similarity(mA, mB) =
|matchingNodes(mA,mB)|
size(mA) + size(mB)

(1)

where matchingNodes(mA, mB) is the number of matching AST
node pairs computed by ChangeDistiller, and size(mA) is the num-
ber of AST nodes in method mA.

We manually inspected and categorized these examples based
on (1) whether the edits involve changing a single AST node
vs. multiple nodes, (2) whether the edits are contiguous vs. non-
contiguous, and (3) whether the edits’ content is identical vs. ab-
stract. An abstract context requires type, method, or variable name
abstraction. To test this range of functionality in SYDIT, we chose
at least 7 examples in each category. Table 1 shows the number of
examples in each of these six categories. The systematic change
examples in the data set are non-trivial syntactic edits that include
on average 1.66 inserts, 1.54 deletes, 1.46 moves, and 0.70 updates.

Coverage and accuracy. For each method pair (mAo, mBo) in the
old version that changed similarly to become (mAn, mBn) in the
new version, SYDIT generates an abstract, context-aware edit script
from mAo and mAn and tries to apply the learned edits to the target
method mBo, producing mBs. In Table 1, matched is the number of
examples for which SYDIT matches the learned context to the target
method mBo. The compilable row is the number of examples for
which SYDIT produces a syntactically-valid program, and correct
is the number of examples for which SYDIT replicates edits that
are semantically identical to what the programmer actually did.
Coverage is matched

examples
, and accuracy is correct

examples
. We also measure

syntactic similarity between SYDIT’s output and the expected output
according to the above similarity formula (1).

This table uses our best configuration of k=1, upstream context
only, i.e., one source node for each control and data dependence
edge in the context, in addition to including a parent node of each
edit. For this configuration, SYDIT matches the derived abstract

336

Aold to Anew

private void paintSides(GC g, MergeSourceViewer tp,
Canvas canvas, boolean right) {
...

- g.setLineWidth(LW);
+ g.setLineWidth(0 /* LW */);
...
}

Bold to Bnew

private void paintCenter(Canvas canvas, GC g) {
...
if (fUseSingleLine) {

...
- g.setLineWidth(LW);
+ g.setLineWidth(0 /* LW */);
...
} else {

if(fUseSplines){
...

- g.setLineWidth(LW);
+ g.setLineWidth(0 /* LW */);

...
} else {

...
- g.setLineWidth(LW);
+ g.setLineWidth(0 /* LW */);
}
} ...

}

Figure 5. A non-contiguous identical edit script (NI) for which
SYDIT cannot match the change context (org.eclipse.compare:
v20060714 vs. v20060917)

Aold to Anew

1. public IActionBars getActionBars() {
2. + IActionBars actionBars = fContainer.getActionBars();
3. - if (fContainer == null) {
4. + if (actionBars == null && !fContainerProvided) {
5. return Utilities.findActionBars(fComposite);
6. }
7. - return fContainer.getActionBars();
8. + return actionBars;
9. }

Bold to Bnew

1. public IServiceLocator getServiceLocator() {
2. + IServiceLocator serviceLocator

= fContainer.getServiceLocator();
3. - if (fContainer == null) {
4. + if (serviceLocator == null && !fContainerProvided) {
5. return Utilities.findSite(fComposite);
6. }
7. - return fContainer.getServiceLocator();
8. + return serviceLocator;
9. }

Bold to Bsuggested

1. public IServiceLocator getServiceLocator() {
2. + IServiceLocator actionBars

= fContainer.getServiceLocator();
3. - if (fContainer == null) {
4. + if (actionBars == null && !fContainerProvided) {
5. return Utilities.findSite(fComposite);
6. }
7. - return fContainer.getServiceLocator();
8. + return actionBars;
9. }

Figure 6. A non-contiguous, abstract edit script for which SYDIT

produces edits equivalent to the developer’s (org.eclipse.compare:
v20061120 vs. v20061218)

SI: single, identical edit
8 targets 8 matched 8 correct
100% coverage (8/8) 100% accuracy (8/8) 100% similarity

CI: contiguous, identical edits
5 targets 4 matched 4 correct
80% coverage (4/5) 80% accuracy (4/5) 100% similarity

NI: non-contiguous, identical edits
6 targets 4 matched 0 correct
67% coverage (4/6) 0% accuracy (0/6) 67% similarity

SA: single, abstract edit
5 targets 5 matched 5 correct
100% coverage (5/5) 100% accuracy (5/5) 100% similarity

CA: contiguous, abstract edits
4 targets 4 matched 4 correct
100% coverage (4/4) 100% accuracy (4/4) 100% similarity

NA: non-contiguous, abstract edits
4 targets 4 matched 4 correct
100% coverage (4/4) 100% accuracy (4/4) 100% similarity

Table 2. Replicating similar edits to multiple contexts

context for 46 of 56 examples, achieving 82% coverage. In 39 of
46 cases, the edits are semantically equivalent to the programmer’s
hand editing. Even for those cases in which SYDIT produces a
different edit, the output and the expected output are often similar.
For the examples SYDIT produces edits, on average, its output is
96% similar to the version created by a human developer.

In the examples where SYDIT cannot match the abstract con-
text, the target method was usually very different from the source
method, or the edit script needs to be applied multiple times
in the target method. In Figure 5 (from org.eclipse.compare:
v20060714 vs. v20060917), g.setLineWidth(LW) was replaced
with g.setLineWidth(0) once in the source method. The same edit
needs to be replicated in three different control-flow contexts in the
target. Additional user assistance would solve this problem.

Figure 6 shows a complex example (from org.eclipse.compare
v20061120 vs. v20061218) that SYDIT handles well. Although the
methods mAo and mBo use different identifiers, SYDIT successfully
matches mBo to the abstract context AC derived from mA, creating
a version mBs, which is semantically equivalent to the manually
crafted version mBn.

In addition to these 56 pairs, we collected six examples that
perform similar edits on multiple contexts—on at least 5 different
methods. Table 2 shows the results. In four out of six categories,
SYDIT correctly replicates similar edits to all target contexts. In the
CI category, SYDIT misses one of five target methods because the
target does not fully contain the inferred abstract context. In the
NI category, SYDIT produces incorrect edits in two out of six tar-
gets because it inserts statements before the statements that define
variables used by the inserts, causing a compilation error. To pre-
vent undefined uses, SYDIT should, and in the future will, adjust its
insertion point based on data dependences.

Comparison with search and replace. The search and replace
(S&R) feature is the most widely used approach to systematic edit-
ing. Though SYDIT’s goal is not to replace S&R but to complement
it, we nevertheless compare them to assess how much additional ca-
pability SYDIT provides for automating repetitive edits. 32 of the 56
examples in our test suite require non-contiguous and abstract edit
scripts. S&R cannot perform them in a straightforward manner be-
cause even after a developer applies one or more S&R actions, he or
she would have to customize either the type, method, and/or vari-
able names. For those 32 examples, SYDIT produces correct edits
in 20 cases. For the remaining 24 examples, we categorize typical
user-specified S&R sophistication into three levels:

337

• Level 1: Search for a single line and replace it.
• Level 2: Search for several contiguous lines and replace them.
• Level 3: Perform multiple S&R operations to modify several

non-contiguous lines.

On the remaining 24 examples, SYDIT handles 7 of 11 Level 1
examples, 5 of 5 in Level 2, 7 of 8 in Level 3. Even though Level
1 examples are straightforward with S&R, SYDIT misses cases like
the one in Figure 5. Overall, SYDIT is much more effective and
accurate than S&R.

Self application of a derived edit script. To assess whether SYDIT

generates correct program transformations from an example, we
derive an edit script from mAo and mAn and then apply it back
to mAo. We then compare the SYDIT generated version with mAn.
Similarly, we derive an edit script from mBo and mBn and compare
the application of the script to mBo with mBn. In our experiments,
SYDIT replicated edits correctly in all 112 cases.

Selection of source and target method. SYDIT currently requires
the user to select a source and target method. To explore how robust
SYDIT is to which method the user selects, we switched the source
and target methods for each example. In 35 of 56 examples (63%),
SYDIT replicates edit scripts in both directions correctly. In 9 of
56 examples (16%), SYDIT could not match the context in either
direction. In 7 out of 56 examples (13%), SYDIT replicates edit
scripts in only one direction. In the failed cases, the source method
experiences a super set of the edits needed in the target. Additional
user guidance to select only a subset of edits in the source would
solve this problem.

Context characterization. Table 3 characterizes the number of
AST nodes and dependence edges in each edit script with the best
configuration of k = 1 upstream only dependences. On average, an
edit script involves 7.66 nodes, 2.77 data dependence edges, 5.63
control dependence edges, 5.04 distinct type names, 4.07 distinct
method names, and 7.16 distinct variable names. These results
show that SYDIT creates and uses complex abstract contexts.

Table 4 explores how different context characterization strate-
gies affect SYDIT’s coverage, accuracy, and similarity for the 56
examples. These experiments vary the amount of control and data
dependence context, but always include the containment context
(see Section 3.1.2).

The first part of the table shows that SYDIT’s results degrade
slightly as the number of hops of control and data dependence
chains in the context increases. k = 1 selects context nodes with
one direct upstream or downstream control or data dependence
on any edited node. We hypothesized that the inclusion of more
contextual nodes would help SYDIT produce more accurate edits
without sacrificing coverage. Instead, we found the opposite.

The second part of Table 4 reports on the effectiveness of iden-
tifier abstraction for variable (V), method (M), and type (T) names.
As expected, abstracting all three leads to the highest coverage,
while no abstraction leads to the lowest coverage.

The third part of the same table shows results when varying the
setting of upstream and downstream dependence relations for k =
1. All uses both upstream and downstream dependence relations to
characterize the context, containment only neither uses upstream
nor downstream data or control dependences, and upstream only
uses only upstream dependence relations. Surprisingly, upstream
only—which has neither the most nor fewest contextual nodes—
gains the best coverage and accuracy.

ChangeDistiller similarity threshold. SYDIT uses ChangeDis-
tiller to compute AST-level edits between two program versions.
When comparing the labels of AST nodes, ChangeDistiller uses a
bigram similarity threshold and if the similarity between two node

Size Min Max Median Average

nodes 1 56 3.5 7.66
data dependences 0 34 0.5 2.77
control dependences 1 38 3 5.63

Abstraction

types 0 17 4 5.04
methods 0 17 2 4.07
variable 0 26 4.5 7.16

Table 3. SYDIT’s context characterization

matched correct % coverage % accuracy % similarity

Varying the number of dependence hops

k=1 44 37 79% 66% 95%
k=2 42 35 75% 63% 95%
k=3 42 35 75% 63% 95%

Varying the abstraction settings

abstract V T M 46 39 82% 70% 96%
abstract V 37 31 66% 55% 55%
abstract T 37 31 66% 55% 55%

abstract M 45 38 80% 68% 96%
no abstraction 37 31 66% 55% 55%

Control, data, and containment vs. containment only vs. upstream only

all (k=1) 44 37 79% 66% 95%
containment only 47 38 84% 68% 90%

upstream only (k=1) 46 39 82% 70% 96%

Table 4. SYDIT’s sensitivity to context characterization

σ matched correct % coverage % accuracy % similarity

0.6 46 39 82% 70% 96%
0.5 46 39 82% 70% 96%
0.4 46 39 82% 70% 96%
0.3 46 39 82% 70% 96%
0.2 45 33 80% 59% 86%

Table 5. SYDIT’s sensitivity to input threshold σ used in
ChangeDistiller

labels is greater than σ, it matches the nodes. Our experiments use
a default setting of 0.5 for σ. Since our edit script generation capa-
bility depends heavily on ChangeDistiller’s ability to compute syn-
tactic edits accurately in the source example, we experimented with
different settings of σ. Table 5 shows that when σ is in the range
of 0.3 to 0.6, SYDIT’s accuracy does not change. When σ is 0.2,
the relaxed similarity criterion leads AST node mismatches, which
produce incorrect updates or moves, and consequently SYDIT’s cov-
erage, accuracy and similarity decrease.

In summary, SYDIT has high coverage and accuracy, and is
relatively insensitive to the thresholds in ChangeDistiller and the
number of dependences in the context. The best configuration is
upstream with k = 1 for SYDIT and σ = 0.5 for ChangeDistiller,
which together achieve 82% coverage, 70% accuracy, and 96%
similarity.

5. Related Work
The related work includes program differencing, source transfor-
mation languages, simultaneous text editing, and example-based
program correction.

Program differencing. Program differencing takes two program
versions and matches names and structure at various granularities,

338

e.g., lines [14], abstract syntax tree nodes [9, 32], control-flow
graph nodes [3], and program dependence graph nodes [13]. For
example, the ubiquitous tool diff computes line-level differences
per file using the longest common subsequence algorithm [14]. JD-
iff computes CFG-node level matches between two program ver-
sions based on similarity in node labels and nested hammock struc-
tures [3]. ChangeDistiller computes syntactic differences using a
hierarchical comparison algorithm [9]. It matches statements, such
as method invocations, using bigram string similarity, and con-
trol structures using subtree similarity. It outputs tree edit opera-
tions—insert, delete, move, and update. More advanced tools group
sets of related differences with similar structural characteristics and
find exceptions to identify potentially inconsistent updates [15, 17].
SYDIT extends ChangeDistiller and goes beyond these approaches
by deriving an edit script from program differences, abstracting the
script, and then applying it elsewhere.

Refactoring. Refactoring is the process of changing a software
system that does not alter the external behavior of the code, yet
improves the internal structure [21]. Refactorings often require ap-
plying one or more elementary transformations to multiple code
locations, and refactoring engines in IDEs automate many com-
mon types of refactorings such as replace a magic number with a
constant [10, 26]. While refactoring engines are confined to pre-
defined, semantic-preserving transformations, SYDIT can automate
semantic-modifying transformations.

Source transformation languages. Source transformation tools
reduce programmer burden by exhaustively applying repetitive,
error-prone updates. Programmers use special syntax to specify the
code location and transformation [8, 11, 18, 27, 30]. The most ubiq-
uitous approach is simple text substitution, e.g., find-and-replace in
Emacs. More sophisticated systems use program structure informa-
tion. For example, A* and TAWK expose syntax trees and primitive
data structures, and Stratego/XT uses algebraic data types and term
pattern matching [11, 18, 30]. TXL borrows syntax from the under-
lying programming language to express systematic tree edits [5].
These tools require programmers to understand low-level program
representations. To make this approach easier for programmers,
Boshernitsan et al. provide a visual language and an interactive
source transformation tool [4]. All these tools require programmers
to plan and create edit scripts, whereas SYDIT generates an abstract
program transformation from an example edit.

Simultaneous editing. Simultaneous text editing automates repet-
itive editing [7, 22, 29]. Users interactively demonstrate their edit
in one context and the tool replicates identical lexical edits on the
pre-selected code fragments. In contrast, SYDIT learns an edit script
from program differences and performs similar yet different edits
by instantiating a syntactic, context-aware, abstract transformation.
The Clever version control system detects inconsistent changes in
clones and propagates identical edits to inconsistent clones [24].
While Clever and SYDIT both replicate similar edits, SYDIT exploits
program structure and generates abstracts edits applicable to con-
texts using different identifiers.

Suggesting edit locations. LibSync helps client applications mi-
grate library API usages by learning migration patterns [23] with
respect to a partial AST with containment and data dependences.
Though it suggests what code locations to examine and shows ex-
ample API updates, it is unable to transform code. Furthermore,
its flexibility is limited by its inability to abstract variable, method,
and type names.

FixWizard identifies code clones based on object usage and in-
teractions, recognizes recurring bug-fixes to the clones, and sug-
gests a location and example edit [25]. FixWizard identifies edit lo-
cations automatically only in pre-identified clones. It does not gen-
erate syntactic edits, nor does it support abstraction of variables,

methods, and types. These limitations leave programmers with the
burden of manually editing the suggested fix-location, which is
error-prone and tedious.

Example based program migration and correction. Program-
ming-by-example [19] (PBD) is a software agent-based approach
that infers a generalized action script that corresponds to user’s
recorded actions. SMARTedit [19] instantiates this PBD approach
to automate repetitive text edits by learning a series of functions
such as ’move a cursor to the end of a line.’ However, this approach
is not suitable for editing a program as it does not consider a
program’s syntax, control, or data dependences.

The most closely related work focuses on API migration [2, 23].
Andersen and Lawall find differences in the API usage of client
code, create an edit script, and transform programs to use updated
APIs [1, 2, 27]. Compared to SYDIT, their approach is limited in
two respects: the edit scripts are confined to term-replacements and
they only apply to API usage changes. Similar to our approach,
Andersen and Lawall use control and data dependence analysis
to model the context of edits [1]. However, the context includes
only inserted and deleted API method invocations and control and
data dependences among them. Their context does not include un-
changed code on which the edits depend. Thus, when there is no
deleted API method invocation, the extracted context cannot be
used to position edits in a target method. SYDIT is more flexible
because it computes edit context that is not limited to API method
invocations and it can include unchanged statements related to ed-
its. Therefore, even if the edits include only insertions, SYDIT can
correctly position edits by finding corresponding context nodes in
a target method. Furthermore, Andersen and Lawall only evaluate
their approach on a few examples, whereas we perform a compre-
hensive evaluation on open-source applications.

Automatic program repair generates candidate patches and
checks correctness using compilation and testing [28, 31]. For
example, it generates patches that enforce invariants observed in
correct executions but are violated in erroneous executions [28].
It tests patched executions and selects the most successful patch.
Weimer et al. [31] generate their candidate patches by replicating,
mutating, or deleting code randomly from the existing program
and thus far have focused on single line edits. SYDIT automates
sophisticated multi-line edits that can add functionality or fix bugs.
Integrating SYDIT into a testing framework to automate validation
is a promising future direction.

6. Discussions and Conclusions
SYDIT is the first tool to perform non-contiguous, abstract edits to
different contexts, significantly improving the capabilities of the
state-of-the-practice developer tools such as line-based GNU patch
or the search and replace feature in text editors. This approach is
however amenable to additional user guidance and automation.

To learn and apply a systematic edit, users must provide a
source and target method. It would be relatively straight-forward
to extend SYDIT to help programmers select a subset of edits to
be replicated. Users may also want to configure SYDIT to update
multiple locations within a target method, or to select a specific
location to perform learned edits.

SYDIT does not recognize naming patterns between related types
and variables such as IServiceLocator and serviceLocator, as
shown in Figure 6. Thus, developers may not easily understand
the output, even when SYDIT produces semantically equivalent
code. By leveraging systematic naming patterns in program dif-
ferences [17], it should be possible to produce edits that better
mimic human developers.

SYDIT relies on ChangeDistiller to detect syntactic differences
between two versions. In some cases, ChangeDistiller fails to re-

339

port a minimal concrete edit and thus SYDIT’s derived edit script
may include superfluous contextual nodes. For example, instead of
selecting one contextual node relevant to an update, it may select
multiple contextual nodes relevant to an insert and a corresponding
delete. We leave to future work how the choice of program differ-
encing algorithm affects the flexibility of the learned edit scripts.

This paper focuses on single method updates, but it may be pos-
sible to generalize the approach for higher-level changes. For ex-
ample, Kim et al. show that a large percentage of API-level refac-
torings and class hierarchy changes consist of similar edits to dif-
ferent class and method contexts [15, 17]. For instance, the extract
super class refactoring moves a set of related fields and methods
from subclasses to a super class. This type of functionality will re-
quire more sophisticated context representations and matching al-
gorithms.

Another area for future work is automated target selection. For
example, exhaustively examining every method in the program
may prove useful. When a programmer fixes a bug, SYDIT could
generate an edit, then apply it to all applicable code regions, and
test the SYDIT generated version. While prior work suggests edit
locations for recurring bug-fixes [25], SYDIT could actually apply
the edit, automating some program repair and modification tasks.
Furthermore, library component developers could use SYDIT to
automate API usage updates in client applications by shipping an
edit script together with changed library components.

In summary, SYDIT provides needed functionality that helps de-
velopers make simple and complex changes that span large pro-
grams. By using context extraction, identifier abstraction, and edit
position abstraction, SYDIT learns and applies edits with high cov-
erage and accuracy. This approach for program evolution opens a
new way of providing higher confidence to developers when they
add features and fix bugs.

A. Appendix
We include example edits to show the limitations and power of the
current implementation of SYDIT.

Figure 7 shows one of the reasons that prevent SYDIT from
mapping an abstract context with a target method. Both source and
target share all changes except deletion of line 14 and insertion of
line 19. In mA, line 14 is a return statement, while in mB, line 14
is an expression statement. The two statements have different AST
node types. As a result, they cannot be matched by SYDIT.

Figure 10 shows an example in which SYDIT establishes matches
successfully but produces incorrect edits. In this case, both mA and
mB have a method invocation replaced with the other method in-
vocation. However, when calling the new method, mA and mB pass
different input arguments: monitor object in the source vs. null
in the target. The target method does not provide enough clues on
why null must be passed as an argument.

Figure 8 shows an example that SYDIT produces edits that are
not entirely identical to the programmer’s actual edits, because
the context and the edit content are slightly different between the
source and the target. In both methods, the programmer updates
some statements, moves some statements out of the for loop, and
inserts and deletes some statements within the loop to make pro-
grams more concise. However, the task involves different number
of edits in the two methods. When SYDIT replicates learned edits
to the target, three lines in mBsuggested diverge from mBnew (see
Figure 9): (1) line 19 is incorrectly inserted with LIST ENTRY; (2)
line 22 is not deleted since it does not have a counterpart in the
abstract context and there is no edit dealing with it; (3) line 25 is
incorrectly inserted since map.put(...) is not mapped correctly to
list.add(...). Despite the three incorrect edits, SYDIT still makes
the rest of the edits correctly in mB, alleviating part of this program-
ming task.

Aold to Anew

1. public boolean isMigrationCandidate
(ILaunchConfiguration candidate) throws CoreException {

2. - if(getAttribute(MIGRATION_DELEGATE) != null) {
3. - if(fDelegates == null) {
4. - fDelegates = new Hashtable();
5. - }
6. - Object delegate = fDelegates.get(MIGRATION_DELEGATE);
7. - if(delegate == null) {
8. - delegate = getConfigurationElement()
9. .createExecutableExtension(MIGRATION_DELEGATE);
10. - fDelegates.put(MIGRATION_DELEGATE, delegate);
11. - }
12. - if(delegate instanceof
13. ILaunchConfigurationMigrationDelegate) {
14. - return ((ILaunchConfigurationMigrationDelegate)
15. delegate).isCandidate(candidate);
16. - }
17. + initializeMigrationDelegate();
18. + if(fMigrationDelegate != null) {
19. + return fMigrationDelegate.isCandidate(candidate);
20. }
21. return false;
22.}

Bold to Bnew

1. public void migrate(ILaunchConfiguration candidate)
throws CoreException {

2. - if(getAttribute(MIGRATION_DELEGATE) != null) {
3. - if(fDelegates == null) {
4. - fDelegates = new Hashtable();
5. - }
6. - Object delegate = fDelegates.get(MIGRATION_DELEGATE);
7. - if(delegate == null) {
8. - delegate = getConfigurationElement()
9. .createExecutableExtension(MIGRATION_DELEGATE);
10. - fDelegates.put(MIGRATION_DELEGATE, delegate);
11. - }
12. - if(delegate instanceof
13. ILaunchConfigurationMigrationDelegate) {
14. - ((ILaunchConfigurationMigrationDelegate)
15. delegate).migrate(candidate);
16. - }
17. + initializeMigrationDelegate();
18. + if(fMigrationDelegate != null) {
19. + fMigrationDelegate.migrate(candidate);
20. }
21. return false;
22.}

Figure 7. A contigous, abstract edit script (CA) for which SYDIT

cannot match the change context

Acknowledgments
This work was supported in part by the National Science Founda-
tion under grants CCF-1043810, SHF-0910818, and CCF-0811524.
We thank anonymous reviewers for their thorough comments on
our earlier version of the paper.

References
[1] J. Andersen. Semantic Patch Inference. Ph.D. Dissertation, University

of Copenhagen, Copenhagen, Nov. 2009. Adviser-Julia L. Lawall.

[2] J. Andersen and J. L. Lawall. Generic patch inference. In ASE ’08:
Proceedings of the 2008 23rd IEEE/ACM International Conference on
Automated Software Engineering, pages 337–346, Washington, DC,
USA, 2008. IEEE Computer Society. ISBN 978-1-4244-2187-9.

[3] T. Apiwattanapong, A. Orso, and M. J. Harrold. A differencing al-
gorithm for object-oriented programs. In ASE ’04: Proceedings of
the 19th IEEE International Conference on Automated Software En-
gineering, pages 2–13, Washington, DC, USA, 2004. IEEE Computer
Society. ISBN 0-7695-2131-2.

340

Aold to Anew

1. protected void setMapAttribute(Element element)
throws CoreException {

2. - String listKey = element.getAttribute("key");
3. + String listKey = element.getAttribute(KEY);
4. NodeList nodeList = element.getChildNodes();
5. int entryCount = nodeList.getLength();
6. List list = new ArrayList(entryCount);
7. + Node node = null;
8. + Element selement = null;
9. for (int i = 0; i < entryCount; i++) {
10. - Node node = nodeList.item(i);
11. + node = nodeList.item(i);
12. - short type = node.getNodeType();
13. - if (type == Node.ELEMENT_NODE) {
14. - Element subElement = (Element) node;
15. - String nodeName = subElement.getNodeName();
16. - if (!nodeName.equalsIgnoreCase("listEntry")) {
17. + if (node.getNodeType() == Node.ELEMENT˙NODE) {
18. + selement = (Element) node;
19. + if (!selement.getNodeName().

equalsIgnoreCase(LIST ENTRY)) {
20. throw getInvalidFormatDebugException();
21. }
22. - String value = getValueAttribute(subElement);
23. - list.add(value);
24. + list.add(getValueAttribute(selement));
25. }
26. }
27. setAttribute(listKey, list);
28.}

Bold to Bnew

1. protected void setMapAttribute(Element element)
throws CoreException {

2. - String mapKey = element.getAttribute("key");
3. + String mapKey = element.getAttribute(KEY);
4. NodeList nodeList = element.getChildNodes();
5. int entryCount = nodeList.getLength();
6. Map map = new HashMap(entryCount);
7. + Node node = null;
8. + Element selement = null;
9. for (int i = 0; i < entryCount; i++) {
10. - Node node = nodeList.item(i);
11. + node = nodeList.item(i);
12. - short type = node.getNodeType();
13. - if (type == Node.ELEMENT_NODE) {
14. - Element subElement = (Element) node;
15. - String nodeName = subElement.getNodeName();
16. - if (!nodeName.equalsIgnoreCase("mapEntry")) {
17. + if (node.getNodeType() == Node.ELEMENT˙NODE) {
18. + selement = (Element) node;
19. + if (!selement.getNodeName().

equalsIgnoreCase(MAP ENTRY)) {
20. throw getInvalidFormatDebugException();
21. }
22. - String key = getKeyAttribute(subElement);
23. - String value = getValueAttribute(subElement);
24. - map.put(key, value);
25. + map.put(getKeyAttribute(selement),

getValueAttribute(selement));
26. }
27. }
28. setAttribute(mapKey, map);
29.}

Figure 8. A non-contiguous, abstract edit script example

[4] M. Boshernitsan, S. L. Graham, and M. A. Hearst. Aligning develop-
ment tools with the way programmers think about code changes. In
CHI ’07: Proceedings of the SIGCHI conference on Human factors
in computing systems, pages 567–576, New York, NY, USA, 2007.
ACM. ISBN 978-1-59593-593-9.

[5] J. R. Cordy. The txl source transformation language. Science of
Computer Programming, 61(3):190–210, 2006. ISSN 0167-6423.

Bold to Bsuggested

1. protected void setMapAttribute(Element element)
throws CoreException {

2. - String mapKey = element.getAttribute("key");
3. + String mapKey = element.getAttribute(KEY);
4. NodeList nodeList = element.getChildNodes();
5. int entryCount = nodeList.getLength();
6. Map map = new HashMap(entryCount);
7. + Node node = null;
8. + Element selement = null;
9. for (int i = 0; i < entryCount; i++) {
10. - Node node = nodeList.item(i);
11. + node = nodeList.item(i);
12. - short type = node.getNodeType();
13. - if (type == Node.ELEMENT_NODE) {
14. - Element subElement = (Element) node;
15. - String nodeName = subElement.getNodeName();
16. - if (!nodeName.equalsIgnoreCase("mapEntry")) {
17. + if (node.getNodeType() == Node.ELEMENT˙NODE) {
18. + selement = (Element) node;
19. + if (!selement.getNodeName()

.equalsIgnoreCase(LIST˙ENTRY)) {
20. throw getInvalidFormatDebugException();
21. }
22. String key = getKeyAttribute(subElement);
23. - String value = getValueAttribute(subElement);
24. - map.put(key, value);
25. + map.add(getValueAttribute(selement));
26. }
27. }
28. setAttribute(mapKey, map);
29.}

Figure 9. A non-contiguous, abstract edit script for which SYDIT

produces output different from the developer’s version

Aold to Anew

public void flush(IProgressMonitor monitor){
- saveContent(getInput());
+ flushContent(getInput(), monitor);
}

Bold to Bnew

public void run() {
- saveContent(getInput());
+ flushContent(getInput(), null);
}

Figure 10. A single, abstract edit script (SA) for which SYDIT

cannot produce correct edits

[6] R. Cytron, J. Ferrante, B. Rosen, M. Wegman, and K. Zadeck. Effi-
ciently computing static single assignment form and the control de-
pendence graph. ACM Transactions on Programming Languages and
Systems, 13(4):451–490, Oct. 1991.

[7] E. Duala-Ekoko and M. P. Robillard. Tracking code clones in evolv-
ing software. In ICSE ’07: Proceedings of the 29th International Con-
ference on Software Engineering, pages 158–167, Washington, DC,
USA, 2007. IEEE Computer Society. ISBN 0-7695-2828-7.

[8] M. Erwig and D. Ren. A rule-based language for programming soft-
ware updates. In RULE ’02: Proceedings of the 2002 ACM SIGPLAN
workshop on Rule-based programming, pages 67–78, New York, NY,
USA, 2002. ACM. ISBN 1-58113-606-4.

[9] B. Fluri, M. Würsch, M. Pinzger, and H. C. Gall. Change distilling—
tree differencing for fine-grained source code change extraction. IEEE
Transactions on Software Engineering, 33(11):18, November 2007.

[10] W. G. Griswold. Program Restructuring as an Aid to Software Main-
tenance. PhD thesis, University of Washington, 1991.

341

[11] W. G. Griswold, D. C. Atkinson, and C. McCurdy. Fast, flexible
syntactic pattern matching and processing. In WPC ’96: Proceedings
of the 4th International Workshop on Program Comprehension, page
144, Washington, DC, USA, 1996. IEEE Computer Society. ISBN
0-8186-7283-8.

[12] J. Henkel and A. Diwan. Catchup!: Capturing and replaying refactor-
ings to support api evolution. In ICSE ’05: Proceedings of the 27th
International Conference on Software Engineering, pages 274–283,
New York, NY, USA, 2005. ACM. ISBN 1-59593-963-2.

[13] S. Horwitz. Identifying the semantic and textual differences between
two versions of a program. In PLDI ’90: Proceedings of the ACM
SIGPLAN 1990 conference on Programming language design and
implementation, pages 234–245, New York, NY, USA, 1990. ACM.
ISBN 0-89791-364-7.

[14] J. W. Hunt and T. G. Szymanski. A fast algorithm for computing
longest common subsequences. Communications of the ACM, 20(5):
350–353, 1977. ISSN 0001-0782.

[15] M. Kim and D. Notkin. Discovering and representing systematic
code changes. In ICSE ’09: Proceedings of the 2009 IEEE 31st
International Conference on Software Engineering, pages 309–319,
Washington, DC, USA, 2009. IEEE Computer Society. ISBN 978-1-
4244-3453-4.

[16] M. Kim, V. Sazawal, D. Notkin, and G. Murphy. An empirical study
of code clone genealogies. In ESEC/FSE-13: Proceedings of the 10th
European Software Engineering Conference held jointly with 13th
ACM SIGSOFT International Symposium on Foundations of Software
Engineering, pages 187–196, New York, NY, USA, 2005. ACM. ISBN
1-59593-014-0.

[17] M. Kim, D. Notkin, and D. Grossman. Automatic inference of struc-
tural changes for matching across program versions. In ICSE ’07:
Proceedings of the 29th International Conference on Software Engi-
neering, pages 333–343, Washington, DC, USA, 2007. IEEE Com-
puter Society. ISBN 0-7695-2828-7.

[18] D. A. Ladd and J. C. Ramming. A*: A language for implementing
language processors. IEEE Transactions on Software Engineering, 21
(11):894–901, 1995. ISSN 0098-5589.

[19] H. Lieberman, editor. Your Wish is My Command: Programming by
Example. Morgan Kaufmann Publishers, 2001.

[20] A. Matzner, M. Minas, and A. Schulte. Efficient graph matching
with application to cognitive automation. In A. Schrr, M. Nagl,
and A. Zndorf, editors, Applications of Graph Transformations with
Industrial Relevance, volume 5088 of Lecture Notes in Computer
Science, pages 297–312. Springer Berlin / Heidelberg, 2008.

[21] T. Mens and T. Tourwe. A survey of software refactoring. IEEE
Transactions on Software Engineering, 30(2):126–139, 2004. ISSN
0098-5589.

[22] R. C. Miller and B. A. Myers. Interactive simultaneous editing of
multiple text regions. In Proceedings of the General Track: 2002

USENIX Annual Technical Conference, pages 161–174, Berkeley, CA,
USA, 2001. USENIX Association. ISBN 1-880446-09-X.

[23] H. A. Nguyen, T. T. Nguyen, G. W. Jr., A. T. Nguyen, M. Kim, and
T. Nguyen. A graph-based approach to api usage adaptation. In
OOPSLA ’10: Proceedings of the 2010 ACM SIGPLAN International
Conference on Systems, Programming, Languages and Applications,
page 10 pages, New York, NY, USA, 2010. ACM.

[24] T. T. Nguyen, H. A. Nguyen, N. H. Pham, J. M. Al-Kofahi, and
T. N. Nguyen. Clone-aware configuration management. In ASE
’09: Proceedings of the 2009 IEEE/ACM International Conference on
Automated Software Engineering, pages 123–134, Washington, DC,
USA, 2009. IEEE Computer Society. ISBN 978-0-7695-3891-4. doi:
http://dx.doi.org/10.1109/ASE.2009.90.

[25] T. T. Nguyen, H. A. Nguyen, N. H. Pham, J. Al-Kofahi, and T. N.
Nguyen. Recurring bug fixes in object-oriented programs. In ICSE
’10: Proceedings of the 32nd ACM/IEEE International Conference on
Software Engineering, pages 315–324, New York, NY, USA, 2010.
ACM. ISBN 978-1-60558-719-6.

[26] W. F. Opdyke and R. E. Johnson. Refactoring: An aid in designing
application frameworks and evolving object-oriented systems. In Pro-
ceedings of the Symposium on Object Oriented Programming Empha-
sizing Practical Applications (SOOPPA), 1990.

[27] Y. Padioleau, J. Lawall, R. R. Hansen, and G. Muller. Documenting
and automating collateral evolutions in linux device drivers. In Eu-
rosys ’08: Proceedings of the 3rd ACM SIGOPS/EuroSys European
Conference on Computer Systems 2008, pages 247–260, New York,
NY, USA, 2008. ACM. ISBN 978-1-60558-013-5.

[28] J. H. Perkins, S. Kim, S. Larsen, S. Amarasinghe, J. Bachrach,
M. Carbin, C. Pacheco, F. Sherwood, S. Sidiroglou, G. Sullivan, W.-F.
Wong, Y. Zibin, M. D. Ernst, and M. Rinard. Automatically patching
errors in deployed software. In SOSP ’09: Proceedings of the ACM
SIGOPS 22nd symposium on Operating systems principles, pages 87–
102, New York, NY, USA, 2009. ACM. ISBN 978-1-60558-752-3.

[29] M. Toomim, A. Begel, and S. L. Graham. Managing duplicated
code with linked editing. In VLHCC ’04: Proceedings of the 2004
IEEE Symposium on Visual Languages - Human Centric Computing,
pages 173–180, Washington, DC, USA, 2004. IEEE Computer Soci-
ety. ISBN 0-7803-8696-5.

[30] E. Visser. Program transformation with Stratego/XT: Rules, strate-
gies, tools, and systems in StrategoXT-0.9. Domain-Specific Program
Generation, 3016:216–238, 2004.

[31] W. Weimer, T. Nguyen, C. Le Goues, and S. Forrest. Automatically
finding patches using genetic programming. In ICSE ’09: Proceed-
ings of the 31st International Conference on Software Engineering,
pages 364–374, Washington, DC, USA, 2009. IEEE Computer Soci-
ety. ISBN 978-1-4244-3453-4.

[32] W. Yang. Identifying syntactic differences between two programs.
Software – Practice & Experience, 21(7):739–755, 1991.

342

