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Abstract With the usage of version control systems, many bug fixes have accumulated over
the years. Researchers have proposed various automatic program repair (APR) approaches
that reuse past fixes to fix new bugs. However, some fundamental questions, such as how
new fixes overlap with old fixes, have not been investigated. Intuitively, the overlap between
old and new fixes decides how APR approaches can construct new fixes with old ones.
Based on this intuition, we systematically designed six overlap metrics, and performed an
empirical study on 5,735 bug fixes to investigate the usefulness of past fixes when compos-
ing new fixes. For each bug fix, we created delta graphs (i.e., program dependency graphs
for code changes), and identified how bug fixes overlap with each other in terms of the con-
tent, code structures, and identifier names of fixes. Our results show that if an APR approach
knows all code name changes and composes new fixes by fully or partially reusing the con-
tent of past fixes, only 2.1% and 3.2% new fixes can be created from single or multiple
past fixes in the same project, compared with 0.9% and 1.2% fixes created from past fixes
across projects. However, if an APR approach knows all code name changes and composes
new fixes by fully or partially reusing the code structures of past fixes, up to 41.3% and
29.7% new fixes can be created. By making the above observations and revealing other ten
findings, we investigated the upper bound of reusable past fixes and composable new fixes,
exploring the potential of existing and future APR approaches.
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1 Introduction

With the usage of version control systems, many bug fixes have accumulated over the years.
Researchers conducted various empirical studies to understand bug fixes (Kim et al. 2006;
Nguyen et al. 2010, 2013; Ray and Kim 2012; Negara et al. 2014; Higo et al. 2015). For
example, Nguyen et al. found that bugs can be repetitive (Nguyen et al. 2010), indicating that
it is feasible to fix new bugs using past fixes. Based on such observations, other researchers
proposed some automatic program repair (APR) approaches that reuse past fixes to fix new
bugs. For example, Kim et al. extracted fix patterns from thousands of bug fixes (Kim et al.
2013). Martinez and Monperrus mined repair models from past bug fixes to guide the repair
process (Martinez and Monperrus 2013). Long et al. trained a model with past fixes to
automatically generate patches for repairing incorrect applications (Long and Rinard 2016).
Although these approaches show promising results, they are limited in the following two
aspects:

1. Existing empirical studies are based on manual or simple automatic analysis. To
understand the overlap between bug fixes, researchers usually first check out bug-
fixing revisions in software version histories, and then identify source files modified
for bug fixes. Some researchers manually compared fixes for recurring bug-fixing pat-
terns (Kim et al. 2013; Tan et al. 2014). However, this process is tedious, error-prone,
and subject to human bias. Some other researchers analyzed bug fixes (Martinez and
Monperrus 2013; Zhong and Su 2015; Yue et al. 2017) leveraging tools like ChangeDis-
tiller (Fluri et al. 2007), PPA (Dagenais and Hendren 2008), and CCFinder (Kamiya
et al. 2002). For instance, Martinez et al. used ChangeDistiller to represent changes
as edit scripts to the abstract syntax trees (ASTs) of modified source files, and then
extracted common edit operations (Martinez and Monperrus 2013). Zhong et al. used
PPA to perform type inference on partial Java programs (Zhong and Su 2015). Yue et
al. used CCFinder to compare the textual diff regions in modified files for repeated
fixes (Yue et al. 2017). However, none of these tools is able to correlate changes applied
in different software entities (i.e., classes, methods, and fields) based on their data-
or control- dependence relationships; neither can existing studies investigate the more
sophisticated bug fixing patterns that involve multiple software entities.

2. Some hypotheses of APR approaches are not fully explored. For instance, Kim et al.
(2013) and Long and Rinard (2016) generated new fixes from past fixes based on the
following hypothesis: the successful human patches applied in the version history of
different software share certain characteristics. This hypothesis is built on previous
studies by Barr et al. (2014) and Martinez et al. (2014). In particular, Barr et al. (2014)
reported that 11% bug fixes could be fully reconstituted from existing code, and Mar-
tinez et al. (2014) observed that 3% to 17% bug fixes are temporally redundant, when
they split bug fixes into code lines. However, the two studies may over- or under- esti-
mate the graftability or redundancy of bug fixes for two reasons. First, when they split
code changes into snippets, and match snippets between new fixes and existing code or
fixes purely based on similar text, these studies lose the syntactic structures of changes,
and any dependency relationship or identifier usage between relevant changes. As a
result, they overestimated the reusability of past fixes, because it is very unlikely that
any APR approach will generate patches by enumerating all possible combinations
of code lines in existing codebases or applied fixes. Second, when fixes are matched
purely based on the textual similarity, these studies can miss textually dissimilar, but
syntactically similar fixes, underestimating the reusability of past fixes. Therefore, it is
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still unknown how bug fixes overlap in terms of code structures and identifier names of
classes, methods, and fields. Although the current hypothesis is correct in some cases,
we do not know how well it generalizes.

In this study, we aim to further investigate the reusable hints from past fixes. Our study
does not suffer from the above two problems, since it does not split bug fixes into snippets
before comparison, and it introduces more advanced code analysis for comparison. The
benefits of our study are as follows:

Benefit 1. The answers can deepen our knowledge on bugs and how to fix bugs effec-
tively. For example, while many programmers believe that it is quite difficult to fix bugs,
some recent studies (Nguyen et al. 2010) show contradicted evidences. With the answers,
we can reduce such controversies.
Benefit 2. The answers can provide insights on the potential of this research area,
which can reduce superficial expectations and motivate repair approaches that fulfill the
potential.

Since some existing APR approaches construct fixes from past fixes (Kim et al. 2013;
Long and Rinard 2016), we performed an empirical study to investigate the usefulness of
past fixes by measuring the overlap between past fixes and current fixes. Hypothetically,
the more overlap a current fix has with past fixes, the more likely that it can be constructed
from those fixes. To compute the overlap, we have to overcome the following challenges:

Challenge 1. Bug fixes are difficult to understand. As a bug fix may involve modifi-
cations to multiple methods, many prior empirical studies are done via manual code
inspection (Lu et al. 2008; Yin et al. 2011a; Jin et al. 2012). However, such manual
checking process is not scalable, and may suffer from human bias. To make our study
objective and comprehensive, we need to automate the process.
Challenge 2. Existing program comprehension tools are not sufficient. Although static
analysis frameworks (e.g., WALA1 and Soot2) can conduct inter-procedural analysis
to correlate code in different methods, they require for a whole program—including
all source code and every library on which the program depends—to reason about the
data- and control- dependency relationships inter-procedurally. To analyze such depen-
dency relationships between code changes for each revision committed by developers in
a timely manner, we cannot afford the exorbitant analysis time cost of applying whole-
program analysis to both the before- and after- version of the revision, especially when
most of the time is spent in resolving library dependencies and analyzing unchanged
code. Partial Program Analysis (PPA) is a framework that performs partial type inference
and uses heuristics to recover the declared type of expressions and resolve ambiguities
in partial Java programs (Dagenais and Hendren 2008; Nguyen et al. 2013)). However,
it does not support inter-procedural program analysis to correlate changes, neither does
it detect code changes. ChangeDistiller (Fluri et al. 2007) and Unix diff (Myers 1986)
detect code changes without identifying the dependency relationships between changes.

To overcome the above challenges, we leverage our prior work, GRAPA (Zhong
and Meng 2017), which combines ChangeDistiller, WALA, and PPA, to perform inter-
procedural dependency analysis on code changes, and to create delta graphs for related

1http://wala.sourceforge.net
2https://github.com/Sable/soot

http://wala.sourceforge.net
https://github.com/Sable/soot
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changes in different methods. By comparing each fix’s delta graphs produced by GRAPA,
we performed a comprehensive empirical study on 5,735 bug fixes in four popular projects:
Aries, Cassandra, Derby, and Mahout. Our comparison checks for six types of overlap met-
rics between bug fixes. Namely, a bug fix may fully or partially overlap with one or multiple
fixes in terms of code content, syntactic structures, and identifier names. Imagining that all
such overlap metrics can be leveraged by existing or future tools to automate patch genera-
tion, we explore how helpful past bug fixes can be when synthesizing new fixes. Our study
provides the following insights:

– Extent of constructing fixes from past fixes. Bug fixes have more overlap in terms
of syntactic structures than code content and identifier names (Findings 1 and 3). The
syntactic structures of 41% fixes can be synthesized from the syntactic structures of
multiple past fixes (Finding 2). A new fix is often relevant to only several useful past
fixes (Findings 5 and 10). However, if we require exact matches, only 3% fixes can be
constructed from past fixes (Finding 1), since most bugs need creative repairs that never
appear in past fixes (Finding 4).

– Preparing a repository of past fixes. We consider a bug fix to be useful, if it is repet-
itive. If we build the repository from fixes of the same project, most fixes are useful
(Finding 6), but it can be challenging to extract useful repair actions, since a fix typi-
cally has both useful repair actions and useless repair actions (Finding 7). However, the
usefulness of a repository may not increase, with the increasing of collected bug fixes
(Finding 10), and with more collected fixes, it is more difficult to identify useful ones
(Finding 11). It is worthy identifying useful fixes, since an identified fix can be useful
to repair many fixes (Finding 12).

– Learning from other projects. From other projects, it is feasible to learn as many
code structure changes, but the combination of multiple past fixes do not achieve as
good results as from fixes of the same projects. Furthermore, from other projects, as
other projects typically have different client code names, it becomes more challenging
to learn how to replace those API elements with correct ones (Findings 8 and 9).

Here, Application Programming Interface (API) code is a set of classes and methods pro-
vided by frameworks or libraries, and client code is application code that reuses or extends
API classes and methods provided by API libraries. Our study does not draw any conclu-
sions on the capability of existing patch generation tools. Instead, we try to explore the
hypotheses underneath existing tools, such as how many useful hints can be learnt from past
fixes, and how significant the divergence can be between current fixes and past fixes.

2 Open Questions

In this section, we break our research goal into the following research questions:

OP1: How many fixes can be fully constructed from past fixes?
Kim et al. (2013) show that both code structure changes and name changes are use-

ful to fix new bugs, and Long and Rinard (2016) show that new fixes can be constructed
from past fixes. However, it is unclear to what degree such fix patterns can be mined
from past bug fixes. Here, we care about the potential, and assume that researchers
can propose advanced approaches that reuse a change, even if its instance appears only
once in past bug fixes. Under this assumption, this research question investigates what
can be learnt from past fixes, if we push mining techniques to their limits. Section 4.1
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presents our answer to this question, which can be useful to design more effective
mining techniques.
OP2: How creative is a bug fix?

Many programmers believe that it is difficult to fix bugs, since it takes even years
to fix some bugs (e.g., MySQL Bug #207863). Although many researchers admit the
complexity of fixing bugs, some recent studies present contradicted evidences. For
example, Nguyen et al. (2010) show that bug fixes can be repetitive, but Zhong and Su
(2015) show that many bug fixes need complicated repair actions. This research ques-
tion mainly concerns the explanation for the contradicted evidences. It is related to the
first question, but focuses on those changes that do not have overlaps. Here, we con-
sider that a repair action is creative, if it does not appear in previous fixes. For each
bug, we investigate how many of its nodes and methods can be covered by past fixes.
If a change never appears in past fixes, it shall be more difficult to be fixed and needs
more creative activities. In addition, if a bug needs to refer multiple past fixes, it shall
be more difficult than those bugs that need to refer to only a past fix. For each bug,
we investigate how many past fixes contribute to generating its current fix. Section 4.2
presents our answers to this question.
OP3. What are the challenges when preparing the repository of bug fixes?

For a bug under fixing, it needs to locate its related past fixes, before we can learn
useful knowledge. For example, Long and Rinard (2016) train a model to locate related
bug fixes, before they use such fixes to guide the fixing process. This research question
concerns how difficult it is to retrieve useful past fixes for a bug, which is reflected
by the ratio from the useful past fixes to the total past fixes. In addition, for each past
fix, we investigate how many fixes it can contribute and to what degree these fixes
are useful. Section 4.3 presents our answers to this research question. For a mining
technique, our results present the usefulness of past fixes, and can provide insights on
designing effective mining techniques.
OP4. What is the potential to learn from other projects?

A project can have only limited past bug fixes, especially when the project is new.
A natural way to handle this problem is to learn from other projects, but its effective-
ness is largely unknown, since no previous approaches explored that and contradicted
evidences are found in the related work. On one side, many approaches (e.g., Zhong
et al. 2009) are proposed to mine specifications that define API usages across projects;
on the other side, researchers find that some rules are specific to projects (e.g., Liang
et al. 2013). When investigating the previous three research questions, for each bug, we
consider fixes on other bugs as past bug fixes, and we do not consider the commit time
of bug fixes for simplicity. To investigate the fourth research question, we replace the
past bug fixes with bug fixes from other projects, and redo the previous evaluations.
Section 4.4 presents our answers to this research question.

3 Methodology

In this section, we present our dataset (Section 3.1), the underlying tool (Section 3.2), the
major steps (Section 3.3), and our overlap metrics (Section 3.4). Like what Martinez et al.
(2014) did in their study, we compare a bug fix with known fixes to estimate whether it is

3https://www.youtube.com/watch?v=oAiVsbXVP6k

https://www.youtube.com/watch?v=oAiVsbXVP6k
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Table 1 Dataset
Name Fix LOC File

Aries 442 492,349 2,423

Cassandra 2,463 9,683,554 19,918

Derby 2,392 17,601,539 26,359

Mahout 438 538,277 3,712

Total 5,735 28,315,719 52,412

feasible to construct the bug fix based on known bug fixes. However, our comparison is more
detailed and accurate, since (1) our underlying tool compares system dependency graphs
(SDGs) for their deltas while their study compares textual contents and (2) we do not split
bug fixes as they did. As we compare SDGs, code structure changes refer to any changes
to edges, and code name changes refer to any changes to node labels. When comparing bug
fixes, we envision three types of reusable components, such as code structure changes, code
names changes, or their combinations, and we imagine two ways to leverage the reusable
components: finding a matching component, or merging several components.

3.1 Dataset

We reuse the data set mentioned in prior work (Zhong and Su 2015). Each commit has a
message. Based on messages, we define the following two criteria to identify bug fixes:

1. Issue number. All the projects in Table 1 have their issue trackers to track various
issues (e.g. bugs, improvements, new features, tasks, and sub-tasks). Their commit
messages typically contain corresponding issue number. For example, in Cassandra,
a commit’s message says “implement multiple index expressions. patch by jbellis;
reviewed by Nate McCall for CASSANDRA-1157”. In the issue tracker, the page of
the issue4 lists its description, the discussions among programmers, and the relations
to other issues. In the Apache projects, when writing issue number to messages, pro-
grammers typically use the “name-number” pattern, where name denotes the name of a
project, and number denotes the issue number. We rely on this pattern to extract issue
number, and checks issue trackers to determine whether a commit is a bug fix.

2. Keyword. Issue trackers do not store all the bug fixes. In some cases, programmers
may bypass issue trackers, especially when they believe that a change is trivial. When
they commit a change, programmers may write a message to describe the fix. For exam-
ple, in Aries, the message of a commit says “Fix broken service registration listener”.
We determine a commit as a bug fix, if its message contains words such as “bug” or
“fix”. The preceding commit was identified as a bug fix, since its message contains the
keyword “fix”. The heuristic is simple, and a number of previous studies (e.g. Kim et al.
2007) used the same technique to extract bug fixes.

Our tool analyzes only source code (see Section 3.2 for details), so we ignore those bug
fixes that do not modify code. In addition, we ignore bug fixes on test code, since their
implementations are different from production code. Table 1 shows the collected bug fixes

4https://issues.apache.org/jira/browse/CASSANDRA-1157

https://issues.apache.org/jira/browse/CASSANDRA-1157
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in our study. Column “Name” shows names of our subjects. All the projects are from the
Apache software foundation,5 and are written in Java. Column “Bug Fix” lists number of
collected bug fixes. Column “LOC” lists lines of code. Column “File” lists number of files.
In total, we collected more than five thousand bug fixes. The large quantity ensures the
representativeness of our study.

3.2 GRAPA

It needs precise analysis to build such graphs, but due to many unknown code names, par-
tial code analysis is typically inaccurate. In our previous work (Zhong and Meng 2017),
we implement a tool, called GRAPA, that is able to build accurate delta graphs for par-
tial code. The key insight of GRAPA is that we can leverage complete-code tools such as
WALA to analyze partial code, if we fully fix unknown names for partial code. To achieve
this goal, GRAPA extends the inference strategies of PPA (Dagenais and Hendren 2008). In
addition, many projects provide all their releases. For example, the Derby project provides
a page for downloading all its current and archive versions.6 GRAPA implements a tech-
nique that compares used code elements with declared elements in releases to locate the
context versions for a piece of partial code. With located versions, GRAPA fixes remain-
ing unknown code names. GRAPA then integrates WALA to builds an SDG for each
method.

Before building SDGs WALA translates source code into its internal representation (IR),
which is similar to Java bytecode. As a result, in a SDG of an method, a node denotes
an instruction in the IR. These nodes can be quite different from the source code. WALA
generates a label for each node to describe its content. For example, a label can be:

invoke special...java/util/HashMap, <init>()V

Here, the node calls the default constructor of the java.util.HashMap class.
With the support of the Hungarian algorithm (Kuhn 1955), GRAPA is able to detect the

differences between two given graphs. Our previous work (Zhong and Wang 2017) show
that GRAPA correctly detects the differences for more than 90% of fixes.

3.3 The Procedure

Given a fix fb and a set of past fixes F = {f1, . . . , fn}, we investigate whether fb can be
constructed from F by taking the following three steps:

Step 1. Building system dependency graphs for each pair of modified methods. For
each fix, we first identify its pairs of modified methods, and build two system
dependency graphs for each pair of modified methods 〈gl, gr 〉. We use P to denote
the graph pairs that are built from a fix. Here, the definition of system dependency
graphs is as follow:

Definition 1 A system dependency graph (SDG) is defined as g = 〈V, E〉, where V is a set
of nodes, and E ⊆ V × V is a set of edges. Each node denotes an instruction in the IR of
WALA. A 〈v1, v2〉 edge denotes that there exists a data or control dependency from v1 to v2.

5http://www.apache.org/
6http://db.apache.org/derby/derby downloads.html

http://www.apache.org/
http://db.apache.org/derby/derby_downloads.html
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GRAPA enables WALA to build SDGs for bug fixes. Typically, a SDG is huge. When we
analyze bug fixes, we focus on deltas, instead of whole graphs. As a result, we apply only
intra-procedural analysis, when we build SDGs. The strategy reduces sizes of SDGs, but
does not lose information. As we compare all methods, if called methods are modified, their
deltas are extracted, when we analyze such called methods.

Step 2. Building delta graphs for different overlap metrics. Based on our previous
study on bug fixes (Zhong and Su 2015), we identify two types of changes:

1. Code structure changes involve modifications of program structures.
For example, LUCENE-15107 says that the following code throws
NullPointerException

return new byte[0];

Programmers change its code structure, and add an if statement:
if (norms == null)

return new byte[0];

2. Code name changes involve changes on code names. For example,
CASSANDRA-2174 says that it fails to read saved files, and the faulty line is
as follow:

in = new ObjectInputStream(...);

The above code call an incompatible API. To fix the bug, programmers choose
another API, and the modified line was as follow:

in = new DataInputStream(...);

The above fix changes API code names. The other fixes can change client
code names. For example, ARIES-1078 says that the buggy code checks a
wrong value:

public Object addingService(ServiceReference ref)
ServiceReference reference = ...
if(ref)...

The fixed code checks the correct value:
public Object addingService(ServiceReference ref)

ServiceReference reference = ...
if(reference)...

Kim et al. (2013) implement fix patterns both for code structure changes (e.g.,
obj.m() if(obj!=null) obj.m() and for code name changes (e.g., replacing a
method call with any method calls, if they have compatible parameters).

After we build SDGs from source code, code structure changes refer to the graph struc-
ture, and code name changes refer to any change to a node’s label. To detect code changes,
GRAPA builds delta graphs for two given SDGs, and the definition of a delta graph is as
follow:

Definition 2 A delta graph is defined as a triple, δ = 〈SGl, SGr, L〉, where SGl is a set of
subgraphs of a system dependency graph gl ; SGr is a set of subgraphs of another system

7https://issues.apache.org/jira/browse/LUCENE-1510. To save space, in the rest of the paper, we present only
ids of fixes, but do not present their urls. All the fixes come from Apache, and their urls can be generated by
replacing the id in the above url.

https://issues.apache.org/jira/browse/LUCENE-1510
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dependency graph gr ; and L ⊆ Gl × Gr is a set of edges. Each node of a delta graph is a
node from a system dependency graph. A 〈sgl1, sgr1〉 edge denotes that sgl1 is modified to
sgr1.

In the above definition, each node in a graph is unique, and associated with a unique
identification number. For two system dependency graphs, their delta graphs show their
modified nodes and the mappings between such nodes. To compare gl and gr , we need to
define the distance between their nodes (m in gl and n in gr ). In the optimization research,
the assignment problem (Munkres 1957) is to assign agents to their proper tasks, and the
Hungarian algorithm is a classical algorithm that solves the assignment problem. Initially,
the algorithm calculates the distances between agents and tasks. In each iteration, it selects a
pair with the minimum distance, and updates the distances until all the pairs are selected. We
consider the comparison of system dependency graphs as the assignment problem. For each
pair of modified methods (ml and mr ) in a bug fix, GRAPA builds two system dependency
graphs, gl and gr . GRAPA compares gl and gr with the support of the Hungarian algorithm
(Kuhn 1955), and creates a delta graph. When GRAPA compares both code structures and
code names, we define the distance as follow:

dis(m, n) = |i(m) − i(n)|
i(m) + i(n)

+ |o(m) − o(n)|
o(m) + o(n)

+ d(l(m), l(n)) (1)

In this equation, i(m) returns the indegree of m; o(m) returns the outdegree of m; l(m)

returns m’ label that is generated by WALA; and d(l1, l2) returns the Levenshtein edit dis-
tance. Here, we calculate indegrees and outdegrees both on built system dependency graph.
We notice that although two code snippets are identical, their graphs can be different, since
their locations can be different. To detect such similar code, we remove identifications of
statements and locations from generated labels before comparing graphs. We consider that
two nodes are matched, if their distance is zero by Equation (1). We merge all the delta
graphs of each fix into a delta graph δ.

When we compare only code structures, we revise the distance function to compare delta
graphs:

dis(m, n) = |i(m) − i(n)|
i(m) + i(n)

+ |o(m) − o(n)|
o(m) + o(n)

+ d(μ(m), μ(n)) (2)

If we compare only edges, it can produce false mappings, since two different types of nodes
can have the same input and output edges. To reduce the false mappings, in the above
equation, we compare types of nodes with d(μ(m), μ(n)). Here, μ(m) is defined as follow:

μ(v) =

⎧
⎪⎪⎨

⎪⎪⎩

invoke method, v invokes a method.
get field, v gets a field.
put field, v puts a field.
type(v), otherwise.

(3)

Here, type(v) returns the type of a node that is defined by WALA.8

Although we do not intend to define an abstract graph, the above equation transfers delta
graphs into a more abstract format. A specific repair tool can have a different abstraction
granularity. Indeed, to the best of our knowledge, existing tools cannot synthesize patches
only based on our abstract granularity. However, our study does not evaluate the repair
capabilities of specific tools. Instead, based on our abstraction, our study provides evidences

8http://wala.sourceforge.net/javadocs/trunk/

http://wala.sourceforge.net/javadocs/trunk/
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to answer the open questions as listed in Section 2, and our corresponding results provide an
upper bound for the future repair approaches, if they reuse past fixes to synthesize patches.

When we compare only code names, the distance function is revised as follow:

dis(m, n) = d(l(m), l(n)) (4)

For the two metrics, we merge all the delta graphs of each fix into a delta graph β.

Step 3. Comparing delta graphs for overlaps. We revise Equation (1) to compare two
delta graphs:

dis ′(m, n) =
{
dis(m,n), m, n are on the same side.
∞, otherwise.

(5)

For different metrics, dis(m, n) is defined in Step 2. Each delta graph consists of two sides
(SGl and SGr ). The modification ensures that nodes of the two sides cannot be wrongly
matched.

3.4 Overlap Metrics

As shown in Table 2, when defining our overlap metrics, we envision three types of reusable
components: (1) code structure changes, (2) code names changes, or (3) their combinations,
and we imagine two ways to leverage the reusable components: (1) finding a match-
ing component, or (2) merging several components. We next formally define our overlap
metrics.

Suppose that there are a set of past fixes F = {f1, . . . , fn)}, and a new bug fix fb. Their
delta graphs are � = {δ1, . . . , δn}, and δb. Intuitively, if δb is a subgraph of δi(i ∈ [1..n]),
or a super graph which can be composed of subgraphs in �, fb can be generated from F . In
our empirical study, we use GRAPA to compare bug fixes, and define six overlap metrics in
correspondence with the six strategies. Ideally, if fb is similar to F according to a specific
metric, the corresponding strategy will effectively generate fb from F . We next present the
formal definitions of our overlap metrics:

1. Fully overlapped bug fixes (FI): A previous fix δi covers both the structure and

name changes of δb, i.e., δb

I⊆ δi . For example, we find that δCASSANDRA−5644
I⊆

δCASSANDRA−6258, and Fig. 1a shows the overlapped fixes. As for the above two fixes,
CASSANDRA-5644 complains a swallowed exception, and CASSANDRA-6258 com-
plains that the root cause of an exception is not presented. Our result shows that the two
related bugs have common fixes. The two fixes in Fig. 1a are fully identical (FI), since
their delta graphs are the same.

Table 2 Overlap metrics

Reusable component Strategy

Both structure and code changes FI. Searching for the best single match.

PI. Searching for the maximum coverage.

Code structure changes FS. Searching for the best single match.

PS. Searching for the maximum coverage.

Code name changes FN. Searching for the best single match.

PN. Searching for the maximum coverage.
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invoke special …
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new <Source,Lorg/apache/

cassandra/exceptions/Conf

igurationException

left

right
CASSANDRA-5644

invoke special …

ConfigurationException, 

<init>(Ljava/lang/String;)

left

CASSANDRA-6258

invoke special … 

ConfigurationException, 

<init>(Ljava/lang/String;Lja

va/lang/Throwable;)

new <Source,Lorg/apache/

cassandra/exceptions/Conf

igurationException

right

invoke special … 

ConfigurationException, 

<init>(Ljava/lang/String;Lja

va/lang/Throwable;)

invokestatic … 

Lorg/apache/cassandra/utils/

FBUtilities, timestampMicros()

left

invokestatic … 

Ljava/lang/System, 

currentTimeMillis()

invokestatic … 

Ljava/lang/System, 

nanoTime()

CASSANDRA-4925

CASSANDRA-4432

CASSANDRA-6822

right

invokestatic … 

Ljava/lang/System, 

currentTimeMillis()

invokestatic … 

Lorg/apache/cassandra/utils/

FBUtilities, timestampMicros()

left

invokestatic … 

Ljava/lang/System, 

currentTimeMillis()

right

left

invokestatic … 

Ljava/lang/System, 

nanoTime()

right

invokestatic … 

Ljava/lang/System, 

currentTimeMillis()

(a)

(b)

Fig. 1 Sample code for FI and PI

2. Partially overlapped bug fixes (PI): No previous fix can cover both the structure
and name changes of δb, but the composition of some fixes cover both types of

changes, i.e., δb

I⊆ δm ∪ . . . ∪ δn. For example, we find that δCASSANDRA−4432
I⊆

δCASSANDRA−6822 ∪δCASSANDRA−4925. As shown in Fig. 2b. In CASSANDRA-4432,
programmers modified two method invocations. The first change is identical with the
changes in CASSANDRA-6822, and the second change is identical with the changes
in CASSANDRA-4925.

With Equation (3), we transfer delta graphs into abstract graphs as A = {α1, . . .,
αn}, and αb. We define the following two overlap metrics relevant to structure changes:
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CASSANDRA-4279 ( )

CASSANDRA-6618 ( )

The structure changes

get field

right

Invoke method

CASSANDRA-4279

left Invoke method

Invoke method

get field

right

Invoke method

CASSANDRA-6618

left Invoke method

Invoke method

(a)FS ( )

ARIES-1304 ( )

ARIES-682 ( )

ARIES-703 ( )

The structure changes

left

ARIES-1304

invoke method

get field

ARIES-682

invoke method

Invoke method

invoke method

invoke method

right

left

invoke 

method

invoke 

method

Invoke 

method

right

ARIES-703

left

invoke 

method

get field

Invoke 

method

right

Invoke 

method

get field

(b) PS ( )

Fig. 2 Sample code for FS and PS

3. Fully overlapped structure changes (FS): The structure changes of a previous fix

αi cover the structure changes of αb, i.e., αb

S⊆ αi . For example, αCASSANDRA−4279
S⊆ αCASSANDRA−6618, as shown in Fig. 2a. Although the their delta graphs are different,
after we use Equation (3) to map the labels, all the delta graphs are reduced to the same
abstract graph.

4. Partially overlapped structure changes (PS): αb is composed of known structure

changes, i.e., αb

S⊆ αm ∪ . . . ∪ αn. For example, αARIES−1304
S⊆ αARIES−682 ∪

αARIES−703, as shown in Fig. 2b. In ARIES-1304, the first fix adds a method invoca-
tion, and the second fix modifies a method invocation. The structure of the first fix can
be constructed from ARIES-682, and the structure of the second fix can be constructed
from ARIES-703.
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Bug fixes can involve code name changes. We define a function θ(δ) to collect code
name changes:

θ(δ) = {(nameo, namen)} (6)

where nameo denotes an original code name, and namen denotes its modified new code
name. For F and fb, the extracted names changes are represented as B = {β1, . . . , βn}
and βb. The following two overlap metrics are defined for name changes:

5. Fully overlapped name changes (FN): The name changes of a previous fix βi cover

the name changes of βb, i.e., βb

N⊆ βi . For example, although in Fig. 3a, CASSANDRA-
1681 and CASSANDRA-1701 do not the same code structure changes, both replace an
API, array() with the correct API, byteBufferToByteArray() .

6. Partially overlapped name changes (PN). βb is composable of known name changes,

i.e., βb

N⊆ β1 ∪ . . . ∪ βn. For example, in Fig. 3b, the code name changes of
CASSANDRA-2625 can be constructed from CASSANDRA-536, CASSANDRA-

1829, and CASSANDRA-2057, i.e., βCASSANDRA−2625
N⊆ βCASSANDRA−536 ∪

βCASSANDRA−1829 ∪ βCASSANDRA−2625.

CASSANDRA-1681 ( )

CASSANDRA-1701 ( )

The code name changes

CASSANDRA-1681:
1.

2.
CASSANDRA-1701:
1.

2.
3.

(a) FN ( )

CASSANDRA-2625 ( )

CASSANDRA-536 ( )

CASSANDRA-1829 ( )

CASSANDRA-2057 ( )

The code name changes

CASSANDRA-2625:
1.
2.
3.
4.
CASSANDRA-536:
1.
2.
CASSANDRA-1829:
1.
2.
CASSANDRA-2057:
1.
2.

(b) PN ( )

Fig. 3 Sample code for FN and PN



2534 Empir Software Eng (2018) 23:2521–2549

In summary, FI and PI concern both code structure changes and name mappings. FS
and PS concern only code structure changes; and FN and PN concern only code name
mappings. FI, FS, and FN compare individual fixes, and PF, PS, and PN compare multiple
fixes.

Our overlap metrics are not exclusive nor symmetric. Indeed, our study does not aim to
classify bug fixes into exclusive categories, but explores the potential of using hints from
past fixes. When defining our overlap metrics, we consider two aspects of repair capabilities
in future repair approaches. First, a repair approach can use either single fix or multiple
fixes to construct a new fix. We define fully overlapped and partial overlapped (F and P )
for this capability. Second, a repair approach can use repetitive code changes, only structure
changes, or only code name changes, when it constructs new fixes. We define I , S, and N

to denote the three types of repair capabilities. The relationship of I , S, and N is as follow:

δb

I⊆ δm ∪ . . .∪ δn ⇒ δb

S⊆ δm ∪ . . .∪ δn ∧ δb

N⊆ δm ∪ . . .∪ δn, but δb

S⊆ δm ∪ . . .∪ δn ∧ δb

N⊆
δm ∪ . . .∪δn � δb

I⊆ δm ∪ . . .∪δn, since the mappings of nodes in S and N can be different.

For bug fixes without code name changes, δb

I⊆ δm ∪ . . . ∪ δn ⇔ δb

S⊆ δm ∪ . . . ∪ δn, since

δb

N⊆ δm ∪ . . . ∪ δn always holds. Similarly, for bug fixes without code structure changes,

δb

I⊆ δm ∪ . . . ∪ δn ⇔ δb

N⊆ δm ∪ . . . ∪ δn, since δb

S⊆ δm ∪ . . . ∪ δn always holds.
Meanwhile, S and N is irrelevant, since they focus on two different types of code changes,

i.e., δb

S⊆ δm ∪ . . . ∪ δn � δb

N⊆ δm ∪ . . . ∪ δn. In total, the combination of the above two
aspects produces six overlap metrics (e.g., FI and PI ).

Our overlap metrics do not consider the contexts and semantics of deltas, although we
agree that such information is useful to locate useful fixes. However, no matter how an
approach repairs bugs, its synthesized fixes shall follow our overlap metrics, if it reuses
known fixes. When comparing structure changes, we have to define the transfer function
Equation (3). We understand that the granularity is not aligned to a specific approach. To
the best of our knowledge, our granularity is coarser than any existing approaches. Here, we
positively believe that some future approaches can achieve our granularity, and we provide
an estimation for their potentials. We next present our support tool that detects overlapped
bug fixes for different metrics.

We envisage that future automatic-program-repair approaches can fully or partially
implement the components in Table 2. Before researchers realize such approaches, our
empirical results are useful for them to estimate the potential of their proposed approaches.
For example, if a proposed approach uses only one past fix at a time and it needs changes of
both code structures and code names from past fixes, we can use the results of FI to esti-
mate the repair potential of such an approach. As another example, if a proposed approach
can fully resolve code structure changes from other sources and needs only code name
changes from past fixes, we can estimate its potential, based on the results of FN and PN .

Our defined overlap metrics do not cover all the relationships between new fixes and
past fixes, but it is feasible to define more overlap metrics that cover more types of relation-
ships. For example, a future approach can focus on constructing a specific type of bug fixes
(e.g., API-related bug fixes) from past fixes. Before such an approach is proposed, we can
estimate its potential by defining another overlap metric, and such a metric corresponds to
another relationship between new fixes and past fixes.
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Table 3 Overall result of
learning from the same project
(Part 1)

Project Both Fix

FI % PI %

Aries 8 1.8% 10 2.3% 442

Cassandra 68 2.8% 115 4.7% 2,463

Derby 37 1.5% 44 1.8% 2,392

Mahout 9 2.1% 14 3.2% 438

Total 122 2.1% 183 3.2% 5,735

4 Empirical Result

In this section, we present our answers to the four open questions in Section 2. For a project,
in each iteration, we consider one of its fixes as a fix under analysis. For each fix under
analysis, in Sections 4.1, 4.2, and 4.3, we consider all the other fixes of the same project as
past known fixes; and in Section 4.4, we consider all the fixes of the other projects as past
known fixes. As introduced in Section 3.3, for each fix under analysis, we compare its delta
graphs with the delta graphs of all the past known fixes. The follow-up sections present our
results.

4.1 OP1. Repair Potential

Tables 3 and 4 show the overall result.9 Column “Project” lists names of projects. Columns
“Both”, “Structure”, and “Code Name” list matched bugs with corresponding overlap met-
rics. Column “Fix” lists number of collected fixes. In total, Column “Both” shows that only
several percents of bug fixes can be constructed from past fixes, if an approach requires
both structure changes and code name mappings from past fixes. Column “Code Name”
shows slightly better results, but Column “Structure” shows that more bug fixes can be
constructed, if a repair approach requires only structure changes from past fixes. Here, as
discussed in the end of Section 3.4, we assume that such an approach can fully resolve the
missing information from other sources. The results lead to our first finding:

Finding 1. In total, there are 2.1% FI, 12.5% FS, and 3.8% FN similar bug fixes,
indicating that if an repair approach only reuses the contents, the structure changes,
or name changes from past fixes, at most 2.1%, 12.5%, and 3.8% new bugs can be
constructed in such ways, correspondingly.

If an approach needs both structure changes and code name mappings from past fixes,
our results show that only 2.1% bugs can be fixed in this way.

Column “Structure” shows that PS corresponds to more fixed bugs than FS, and Columns
“Both” and “Code Name” show that PI and PN also have more fixed bugs than FI and FN,
respectively, but the difference is less significant. The results lead to our second finding:

9PI is more restricted than PS and PN, but not the combination of the two. As a result, Column PI is not the
sum of Columns PS and PN.
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Table 4 Overall result of
learning from the same project
(Part 2)

Project Structure Code name

FS % PS % FN % PN %

Aries 38 8.6% 144 32.6% 16 3.6% 37 8.4%

Cassandra 383 15.6% 1,202 48.8% 126 5.1% 327 13.3%

Derby 249 10.4% 865 36.2% 63 2.6% 169 7.1%

Mahout 47 10.7% 155 35.4% 12 2.7% 29 6.6%

Total 717 12.5% 2,366 41.3% 217 3.8% 562 9.8%

Finding 2. In total, there are 3.2% PI, 41.3% PS, and 9.8% PN similar bug fixes.
Compared with Finding 1, the improvements implies that a repair approach that
combines multiple fixes is promising to repair much more bugs, especially for
learning code structure changes.

In summary, only about 2.1% of bugs can be fixed, if a repair approach requires identical
matches from past fixes. Composing multiple fixes does not improve the results. However,
if a repair approach requires only structure changes from past fixes, it can fix about 10%
bugs, and composing multiple can fix 30% of bugs.

4.2 OP2. Creativity in Fixing Bug

Section 4.1 shows that many bugs cannot be fully fixed, and they have unmapped nodes.
If a method has unmapped nodes, we consider the method as unfixed. We measure the
challenges in fixing a bug with the metrics such as node coverage, method coverage, and
candidate length as follows:

1. Node coverage presents the coverage of matched nodes:

node coverage(f ) = |mapped nodes|
|total nodes| (7)

Figure 4a shows boxplots of our results. The horizontal axis lists the combinations of
projects and overlap metrics. For example, “aries-FI” denotes the node coverage, when
we use FI to compare fixes of aries. The vertical axis lists corresponding node coverage.
Figure 4a shows that about thirty percents of nodes can be covered, if we require both
structure changes and code mappings, and their is an improvement of about ten per-
cents, if we combine multiple fixes; about eighty percents of the nodes can be covered,
if we consider only structure changes, and most nodes can be covered, if we combine
multiple fixes; and about half of nodes can be covered on average, if we consider only
code mappings, and there is an improvement of about twenty percents, if we consider
multiple bug fixes. The results lead to our third finding:
Finding 3. Many structure changes can be learnt from past fixes (50% for individual
fixes, and 90% when for multiple fixes), while fewer code mappings can be learnt
from past fixes (40% for individual fixes, and 70% for multiple fixes).

Kim et al. (2013) manually extract fix patterns from thousands of bug fixes. Our
results are largely consistent with their results, since most their extracted fix patterns
are related to structure changes. Although their fix patterns do not include code name
mappings, these patterns provide insights on fixing bugs, when such mappings are
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(b) method coverage
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(c) length of related fixes

Fig. 4 The results for OP2

unavailable. For example, their method-replacer pattern replaces a method call with
another method whose parameters and return type are compatible. This pattern simply
tries all the compatible methods, and tries whether fixed code can pass test cases. It is
feasible to fix specific bugs, but does not cover all code name mappings. For exam-
ple, the code mapping in Section 4.1 has incompatible parameters. As a result, the fix
pattern cannot replace the method call correctly, and their approach cannot fix the two
bugs such as CASSANDRA-1681 and CASSANDRA-1701.

Finding 3 is consistent with prior studies (e.g., Nguyen et al. 2013), since they find
many repetitive changes. However, Finding 3 reveals that most bug fixes consist of both
repetitive changes and non-repetitive changes, since Fig. 4 shows that only outliers are
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fully repetitive. As a result, Findings 1 and 2 show that only a small portion of bug fixes
can be fully constructed from past fixes.

2. Method coverage is defined as follow:

method coverage(f ) = |overlapped methods|
|buggy methods| (8)

Figure 4b shows the boxplots of our results. Its horizontal axis lists the combina-
tions of projects and overlap metrics, and its vertical axis lists corresponding method
coverage. Compared with Fig. 4a, b shows that about 30% of edited nodes are mapped
between fixes, if we require both mappings of code structures and identifier names
between every two fixes. However, if we allow one fix to partially match multiple
fixes in terms of both code structures and identifier names, 10% more edited nodes are
matched. By requiring only code structure mappings between every two fixes, we get
80% edited nodes mapped. If we allow one fix to partially match multiple fixes in terms
of code structures, we can increase the percentage further by 20%. The result leads to
our fourth finding:
Finding 4. As matched nodes and unmatched nodes are evenly distributed in
methods, a fix typically has both recurring fixes and creative fixes.

Nguyen et al. (2010) show that many bug fixes are recurring. Figure 4a is largely
consistent with their results, since most fixes have matched nodes with other fixes.
However, our results reveal that at the method level, only a small portion of bug fixes
are recurring.

3. Length of related fixes presents the length of fixes that have matched nodes with the fix
under analysis. As introduced in Section 3.4, PI, PS, and PN learn from multiple related
fixes. If a bug needs more useful fixes, it can be more difficult to fix the bug, since it
needs to extract useful nodes from more related fixes. Here, we add a known fix into
the related-fix category, only when the fix has additional matched nodes than previous
known fixes. Figure 4c shows the boxplots of our results. We find that the medians of all
the overlap metrics are around ten, but all the overlap metrics have exceptional points,
where a bug has tens and even more than a hundred fixes. The result leads to our fifth
finding:
Finding 5. In most cases, a bug has only about 10 useful fixes, but some exceptional
bugs have tens of useful fixes.

In summary, it is feasible to learn most code structure changes, but it is unlikely
to learn many code name mappings from past fixes. At the method level, a bug typ-
ically has both recurring fixes and creative fixes that never appear in previous fixes.
Furthermore, a bug typically has quite limited fixes that can contribute to its fix.

4.3 OP3. Preparing Fix Repository

In this section, we analyze the challenges in learning past fixes. We measure the chal-
lenges in fixing a bug with the metrics such as usefulness frequency, and recurring nodes as
follows:

1. Frequency of useful past fixes present the value of a past fix:

usef ulness f requency(f ) = |related f ixes|
|total known f ixes| (9)
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This metric analyzes the challenges from the side of past known fixes. For a known
fix f , we calculate the metric as its related fixes over total past fixes. As introduced
before, we consider that two fixes are related, if they have matched nodes. Figure 5a
shows the boxplots of our results. Its vertical axis lists the combinations of projects
and overlap metrics, and its horizontal axis lists corresponding usefulness frequency.
The result shows that for structure changes, the usefulness frequency are about ninety
percents; for code name mappings, the usefulness frequency are about seventy percents;
and for both structure changes and code name mappings, the usefulness frequency are
about forty percents. The result leads to our sixth finding:
Finding 6. If we focus on only structure changes or code name mappings, past fixes
have high usefulness frequency, no matter if we learn from the same project (70%),
or other projects (40%).

2. Recurring nodes present the recurring nodes of a past fix:

recurring node(f ) = |recurring nodes|
|total nodes| (10)

For a known fix, recurring nodes are its nodes that are matched with other fixes, and
total nodes are its total number of nodes. Figure 5b shows the boxplots of our results.
Its horizontal axis lists the combinations of projects and overlap metrics, and its verti-
cal axis lists corresponding recurring nodes. The result in Fig. 5b leads to the seventh
finding:
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cassandra-FS&PS
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(b) recurring node

Fig. 5 The results for OP3



2540 Empir Software Eng (2018) 23:2521–2549

Table 5 Overall result of
learning from other project
(Part 1)

Project Both Fix

FI % PI %

Aries 1 0.2% 3 0.7% 442

Cassandra 30 1.2% 44 1.8% 2,463

Derby 13 0.5% 15 0.6% 2,392

Mahout 6 1.4% 9 2.1% 438

Total 50 0.9% 71 1.2% 5,735

Finding 7. When we learn from bug fixes of the same project, 90% or 70% of nodes
are recurring if we consider only structure changes or only code name mappings,
respectively. Even if we consider both structure changes and code name mappings,
60% of nodes are recurring.

In summary, when learning from the same projects, most fixes are somewhat useful.
Some common structure changes and code name mappings appear in more than one fix.

4.4 OP4. Learning from Other Project

1. Overall results. Tables 5 and 6 show the overall results of learning from other projects.
The columns in Tables 5 and 6 are of the same meanings with Tables 3 and 4. Table 1
shows that aries and mahout both have much fewer fixes than cassandra and derby. As
a result, when learning from other projects, for a fix under analysis, aries and mahout
have much more past known fixes to compare, and the past known fixes of cassandra
and derby do not change as much. The difference allows us investigating the impacts of
more past fixes.

Column “Structure” shows that with much more past fixes, for FS, the matched fixes
of aries and mahout increase several percents. Although their past known fixes also
increase, the matched fixes of cassandra and derby both decrease. For PS, the matched
fixes of all the projects decrease. The results indicate that it is more difficult to learn
multiple fixes. Column “Code Name” shows that for FN and PN, the matched fixes of
all the projects decrease. The results show that it is much more difficult to learn code
mapping from other projects. As a result, Column “Both” shows that when learning
from other projects, although past known fixes become much more, fewer bugs can be
matched. The result leads to our eighth finding:

Table 6 Overall result of
learning from other project
(Part 2)

Project Structure Code name

FS % CS % FN % PN %

Aries 49 11.1% 109 24.7% 4 0.9% 7 1.6%

Cassandra 353 14.3% 813 33.0% 39 1.6% 52 2.1%

Derby 252 10.5% 646 27.0% 18 0.8% 25 1.0%

Mahout 57 13.0% 133 30.4% 10 2.3% 11 2.5%

Total 711 12.4% 1,701 29.7% 71 1.2% 95 1.7%
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(a) node coverage
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(b) method coverage
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Fig. 6 OP4. Replicating OP2 with other projects

Finding 8. Overall, it is more challenging to learn from other projects than from the
same projects.

2. Challenges in fixing bugs. To present details, we calculate the node coverage and
method coverage when learning from other projects. Figure 6a and b show the boxplots
of the two metrics, respectively. As shown in Equation (3), FN transfers code names to
abstract names (e.g., field and method) that are independent on projects. The two figures
show that the medians of FS and FN do not change much. The result indicates that
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most structure changes can be learnt from other projects. The two figures show that the
medians of FN and PN decrease. Based on the availability of source code, we identify
two types of code names such as client-code names and API code names. For client
code, projects often have different names, so it is infeasible to mine such mappings
from other projects. For API code names, projects can use different API libraries, so it
can be difficult to mine such mappings either. In total, only about two percents of fixes
have code name mappings that appear in other projects. After manual inspection, we
find most such mappings define frequent API elements in popular API libraries (e.g.,
J2SE). For example, the three bugs in Section 4.1 all require code mappings of J2SE.
As J2SE is widely used, we find that bug fixes in other projects also require its code
name mappings. For example, CASSANDRA-3751 says that dead locks occur when
committing logs, and the buggy code is as follow:

Set<Table> tablesRecovered = new HashSet<Table>();

The fixed code replaces the called API method:
Set<Table> tablesRecovered = new NonBlockingHashSet<Table>();

We suspect that the mappings of client code are difficult to be learnt. For example,
in Section 4.1, the desirable code name mapping of CASSANDRA-1701 involves a
method that is declared in TBaseHelper class. The class is implemented by the
programmers of cassandra. As other projects do not implement the same class, it is
infeasible to learn such a mapping from their fixes. The results lead to our ninth finding:
Finding 9. When we learn fixes from other projects, compared with from the same
project, most structure changes can still be learnt; some API code mappings can be
learnt; but client code mappings can hardly be learnt.

We further calculate lengths of related fixes, and Fig. 6c shows the boxplots of our
results. We find that their results in Figs. 4c and 6c are quite similar. Although aries and
mahout have much more past known fixes when learning from other projects, Fig. 6c
shows that the medians of the two projects do not increase consequently. Figures 4c and
6c show that for all the projects, most fixes have about ten useful past fixes. The results
lead to our tenth finding:
Finding 10. For most fixes, from certain point, their useful past fixes do not increase
with more past fixes.

This finding says that most bug fixes are limited useful, and more past fixes may not
help. This limitation can touch our second open question, i.e., the creativity of fixing
bugs.

3. Challenges in learning from past fixes. To present challenges in learning from past
fixes of other projects, we calculate usefulness frequency and recurring node. Figure 7a
shows the boxplots of usefulness frequency. We find that for this metric, cassandra and
derby do not change much, but aries and mahout become much smaller. Table 1 shows
that aries and mahout have much fewer fixes than cassandra and derby, and cassandra
has a close number of fixes with derby. Consequently, the known fixes of aries and
mahout become much larger than those in Fig. 5a, and the known fixes of cassandra and
derby do not change much. Here, the upper binds of the usefulness frequency metric
are below one, when learning from other projects. This result leads to our finding:
Finding 11. The usefulness frequency decreases significantly with the increasing of
past known fixes.

Figure 7b shows the boxplots of recurring node. We find that Figs. 7b and 5b are quite
similar. Figure 7a shows that the usefulness frequency of aries and mahout become much
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Fig. 7 OP4. Replicating OP3 with other projects

smaller, but Fig. 7b shows that the recurring nodes of the two projects do not change much.
The results lead to our twelfth finding:

Finding 12. Most fixes have matched nodes with other fixes, and a few common
structure changes and code name mappings may exist in many fixes.

Nguyen et al. (2010) show that recurring fixes exist in the same projects. Figure 7b indi-
cates that even across projects, some fix actions are recurring, but comparing Fig. 7b with
Fig. 5b, we find that across projects, recurring fix actions are fewer. The result is consistent
with the empirical study of Barr et al. (2014), which shows that there are significantly more
recurring fixes within projects than across projects.

In summary, it is more challenging to learn from other projects than from the same
projects. Almost the same percents of structure changes can be learnt from past fixes, but it
learns code name mapping for only about one percent of bugs. By composing multiple fixes,
it is feasible to learn more structure changes, but it shows little improvement on learning
code name mappings. When learning from other projects, past fixes increase significantly,
but the useful fixes for a bug remain almost unchanged. As a result, it becomes much more
difficult to locate useful fixes of other projects. A few common structure changes and code
name mappings may appear in many fixes, but at the method level, it needs creative fixes,
since recurring changes do not cover whole fixes.

4.5 Threats to Validity

The threat to internal validity includes the possible errors in extracting delta graphs. To
reduce the threat, we build our tool on WALA, a mature analysis tool for Java, but even
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WALA can produce errors. The threat could be reduced if we leverage more advanced tools
in future work. The threat to internal validity also includes that we do not consider the order
of bug fixes, so we can overestimate the usefulness of past fixes. We notice that previous
studies (e.g., Barr et al. 2014) also share the same threat. Furthermore, in literature, the n-
fold cross validation (Golub et al. 1979) is a common technique to evaluate the effectiveness
of a trained model. During the validation, researchers randomly partition their dataset into
n equal sized subsamples. In each iteration, a single subsample is retained as the validation
data for testing the trained model, and the remaining n-1 subsamples are used as the training
data. Although the training data and validation data are not in a chronological sequence, it
is widely used in various research fields including software engineering. In recent years,
researchers start to explore the impacts of the time order empirically. For example, Tan
et al. (2015) conducted an empirical study to explore the effectiveness of defect prediction
approaches. Their results show that in an extreme case, the fscore is significantly reduced
from 0.54 to 0.073. It is worthy fully exploring the impact of the time order in our future
work, but we have to overcome several challenges. For example, for the in-project bug
fixing suggestion scenario, it is difficult to uniformly define a timeline before which all
fixes are leveraged to infer the fixes applied later. In addition, for the cross-project bug
fixing suggestion scenario, since we can always extract a large number of diverse fixes
from open source projects, our current usage of fixes ignoring time ordering can properly
emulate the usage of past fixes from different projects. The overestimate problem can be
mitigated in the cross-project bug fixing suggestion scenario, when various fixes can be
possibly extracted from other projects. The threat to external validity includes that although
we analyze thousands of fixes, our approach is evaluated on limited projects. The threat
could be further reduced by analyzing more fixes in future work.

5 Discussion and Future Work

Constructing from Multiple Fixes Our study reveals that identical fixes are rare, and it
is more promising to learn from multiple fixes. Although Long and Rinard (2016) mainly
locate and reuse a single fix to repair a new bug, it can be feasible to extend their approach
for reusing multiple fixes. In particular, their extended probabilistic model has to rank mul-
tiple useful fixes, and their extended feature extraction has to learn from multiple fixes.
Besides the direct usage, it is feasible to mine and reuse patterns from multiple fixes. For
example, when Kim et al. (2013) use more than one pattern to repair a bug, their fix is in fact
constructed from multiple fixes. Despite the potential, existing approaches are still insuf-
ficient to compose many fixes, even if they are overlapped with past fixes. Kaleeswaran
et al. (2014) extract repair hints from past fixes, and leave actual repairs to programmers.
In future work, we plan to utilize their hints and our insights, and work on approaches that
better reuse multiple fixes.

Constructing Creative Fixes Tables 3 and 5 show that most fixes cannot be constructed
solely from past fixes. Researchers applied the generation-and-validation strategy to con-
struct creative repair actions. For example, Kim et al. (2013) replace a method call with
arbitrary method calls, if they have compatible parameters. The strategy can generate many
candidates, so existing approaches suffer from the huge search space. However, we argue
that it is feasible to borrow ideas from other research areas. For example, in mutation test-
ing, Zhang et al. (2016) predict whether a mutation can be killed, without executing it. In
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future work, we plan to adapt their approach to reduce the time of validating generated fixes,
which allows constructing more creative fixes.

Extracting More Accurate Changes Due to various technical limitations, our extracted
changes are not fully accurate. On one side, we build a delta graph for each pair of modified
methods. The strategy can lose some changes. For example, a bug fix can modify static code
or modifiers. Our underlying tool ignores these changes, although such changes are rare. On
the other side, a fix can contain irrelevant changes. For example, when programs fix a bug,
they may find bad smells, and eliminate such smells with refactoring tools. After that, they
commit their fixed code, so a commit can contain both fix actions and refactoring actions.
As a result, a delta graph can contain irrelevant subgraphs, which leads to lower percents of
matched nodes. In future work, we plan to improve our extraction tool. For example, Taneja
et al. (2007) propose an approach that detects refactored code. It is feasible to integrate their
tool, so that we can filter irrelevant changes.

6 Related Work

Automatic Program Repair Given a buggy program, automatic program repair gener-
ates candidate patches and searches for a source code-level patch that fixes the bug and
passes all tests (Weimer et al. 2009). Various approaches are proposed to efficiently search
for patches (Weimer et al. 2009; Long and Rinard 2015; Kim et al. 2013; Martinez and
Monperrus 2013; Qi et al. 2014). BugFix (Jeffrey et al. 2009) uses the apriori algorithm
to rank previous fixes. GenProg defines mutate and crossover operators to generate and
evolve patches (Weimer et al. 2009). RSRepair conducts random search (Qi et al. 2014).
PAR extracts repair patterns from past bug fixes and prioritizes patch generation accord-
ingly (Kim et al. 2013). Liu et al. (2013) propose an approach that compares bug reports to
locate similar past fixes for a new bug. Gao et al. (2015) repair crash bugs based on exist-
ing samples from StackOverflow. Prophet generates most popular patches first, but it trains
a machine learning model using past fixes to predict the likelihood of correctness for each
generated patch (Long and Rinard 2015). Rolim et al. (2017) repair bugs based on known
examples. Xiong et al. (2017) learn how to repair if -conditions from code samples and
API documents. Le Goues et al. demonstrate that GenProg can fix 55 out of 105 bugs
(Le Goues et al. 2012), while Qi et al. argue that only 2 of the 55 patches are actually correct
(Qi et al. 2015). Le Goues et al. (2015) prepare a benchmark for the follow-up research in
this research field. Though many approaches rely on hints from existing patches, there are
still fundamental research questions left unanswered, which motivates our empirical study.

Empirical Studies on Bugs and Fixes Many researchers manually inspect code changes
and commit messages to understand bug fixes (Yin et al. 2011a, b; Jin et al. 2012). Such
manual inspection process is too time-consuming to scale, and suffers from human bias.
Some other researchers build tools to automatically comprehend code changes, and find that
a lot of bug fixes are repetitive. For example, Nguyen et al. show that 17–45% bug fixes
are repetitive (Nguyen et al. 2010), but their tool focuses on bug fixes involving API calls.
Ray et al. observe that 11–16% patches are copy-pasted across different BSD products (Ray
and Kim 2012). However, they only leverage textual similarity to identify similar bug fixes.
In real world, nevertheless, many bug fixes may not call any API, and similar bug fixes
may be textually different, but syntactically similar. Relevant to automatic program repair,
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Gabel and Su (2010) found a lot of syntactic redundancy in Sourceforge projects, but their
study does not analyze bug fixes. Barr et al. (2014) report that 11% bug fixes can be fully
reconstituted from existing code. Martinez et al. (2014) report that at the line granularity, 3%
to 17% bug fixes are temporal redundancy. Due the three issues as introduced in Section 1,
we believe that our results better reflect the reality of repetitive bug fixes, since we handled
all the three issues. By conducting this empirical study to explore how useful past fixes can
be given six imaginary ways to reuse past fixes, we are taking a step toward investigating
new automatic program repair approaches.

Automatic Change Comprehension ChangeDistiller parses code changes between the
old and the new versions of a program entity (i.e. class, method, and field) (Fluri et al.
2007). It has been used to automatically comprehend and represent code changes (Nguyen
et al. 2010; Meng et al. 2011; Ray and Kim 2012). However, it does not perform static anal-
ysis to correlate changes. In contrast, static analysis frameworks, such as Soot and WALA,
analyze whole programs without knowing which part is changed. When understanding rela-
tionship between code changes, we need a tool to focus static analysis on modified code
only. PPA is the state-of-the-art tool for partial code analysis (Dagenais and Hendren 2008),
but it does not conduct control or data flow analysis. In order to better understand bug fixes
automatically, we use GRAPA to effectively merge all kinds of tools mentioned above.

7 Conclusion

With decades of software development, many bugs fixes accumulate, and such fixes con-
tain valuable knowledge on fixing new bugs. Recently, researchers propose approaches that
locate useful fixes and use located fixes to guide the fix process of a new bug. Despite their
positive results, their potential is largely unknown, and many questions are still open. In this
paper, we conduct an empirical study on millions lines of code to answer the open questions.
We summarize our results into twelve findings, and provide our insights for the follow-up
research on this topic.
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