
Highlights

ConflictBench: A Benchmark to Evaluate Software Merge Tools

Bowen Shen, Na Meng

• We created a new dataset to characterize merge conflicts in Java programs.

• We empirically compared five software merge tools by applying them to

our dataset.

• We defined three novel metrics to assess different aspects of software merge

tools.

• Our experiments show that KDiff3 has the best applicability.

• Our study reveals limitations of the state-of-the-art merge tools.

ConflictBench: A Benchmark to Evaluate Software
Merge Tools

Bowen Shen, Na Meng∗

Virginia Polytechnic Institute and State University, Blacksburg VA 24060, USA

Abstract

In collaborative software development, programmers create branches for simul-

taneous program editing, and merge branches to integrate edits. When branches

divergently edit the same text, the edits conflict and cannot get co-applied.

Tools were built to automatically merge software branches, to detect conflicts,

and to resolve conflicts along the way. However, there is no third-party bench-

mark or metric to comprehensively evaluate or compare those tools.

This paper presents ConflictBench, our novel benchmark to evaluate software

merge tools. ConflictBench consists of 180 merging scenarios extracted from 180

open-source Java projects. For each scenario, we sampled a conflicting chunk

(i.e., conflict) reported by git-merge. Because git-merge sometimes wrongly

reports conflicts, with our manual inspection, we labeled 136 of the 180 chunks

as true conflicts, and 44 chunks as false conflicts. To facilitate tool evaluation,

we also defined a systematic method of manual analysis to analyze all program

versions involved in each merging scenario, and to summarize the root causes as

well as developers’ resolution strategies. We further defined three novel metrics

to evaluate merge tools. By applying five state-of-the-art tools to ConflictBench,

we observed that ConflictBench is effective to characterize different tools. It

helps reveal limitations of existing tools and sheds light on future research.

Keywords:

Empirical, software merge, conflict, benchmark

∗Corresponding author
Email addresses: bowenshe@vt.edu (Bowen Shen), nm8247@vt.edu (Na Meng)

Preprint submitted to Journal of Systems and Software April 25, 2024

1. Introduction

In collaborative software development, programmers can create software

branches for tentative feature addition and bug fixing. Periodically, they may

merge (i.e., integrate) the program changes from distinct branches to release

software with new features or bug fixes. Unfortunately, such a merge process is5

not always smooth due to the existence of conflicts. Here, conflict means that

when branches edit the same text in divergent ways, the edits are incompatible

with each other and cannot get co-applied to the same version of software [1].

For instance, as shown in Figure 1, l-branch deletes a for-loop while r-branch

updates the loop header. The two sets of edits cannot get applied simultane-10

ously, so they conflict. Ghiotto et al. [2] showed that 8%–21% of the merge

trials in 5 open-source projects fail due to conflicts.

Changes in local (l) branch Changes in remote (r) branch

- for (BlockNode b : blocks) {
- if (b.predecessors().isEmpty())
- {…}
- }

- for (BlockNode b : blocks) {
+ for (BlockNode b : mth.getBlocks()) {
 if (b.predecessors().isEmpty())
 {…}
 }

Figure 1: An exemplar merge conflict

Version control systems (e.g., git) provide the basic tools (e.g., git-merge [3])

to merge branches and detect conflicts. Such tools treat programs as plain

text and merge edits line-by-line. However, because they neglect the domain15

knowledge of programming languages and have implementation flaws, prior work

pinpoints that these tools are weak in expressing differences and handling con-

flicts [4, 5, 6]. To overcome the limitations of basic merge tools, researchers

proposed new tools that observe the Java program syntax, to improve over the

basic tools when merging Java programs [5, 7, 8, 6]. Although the syntax-20

based merge tools have different approach design, little is known about the

empirical comparison among those tools. When creating a software merge tool,

researchers typically construct their own dataset to evaluate their own tool. No

2

third-party benchmark is available to comprehensively evaluate all merge tools,

and no systematic investigation has been done to compare those tools.25

We believe that it is always important to define a third-party benchmark

of software merge data for two reasons. First, by evaluating merge tools on

the same third-party benchmark, researchers can empirically compare tools in

a fair manner. Second, by revealing the limitations of existing tools, the bench-

mark can help reveal new directions for future tool design and implementation.30

Therefore, for this paper, we created a benchmark of real-world software merge

conflict data. Before constructing the benchmark, we conducted a literature

review for existing merge tools [5, 7, 8, 6, 9, 10] and empirical studies on merge

techniques [11, 12, 13, 14]. We observed and discussed how merge tools were

evaluated, identifying the following requirements that a good benchmark should35

satisfy:

• Diversity: It should cover a wide range of scenarios where merge happens,

so that the dataset is representative.

• True Conflicts: It should include true conflicts between branch edits, to

assess whether merge tools can identify the conflicts when two branches40

edit the same text in different ways.

• False Conflicts: It should include false conflicts, to assess whether a

merge tool wrongly reports conflicts when the branches do not edit the

same text simultaneously.

• Conflict Resolutions: It should include developers’ resolutions to re-45

ported conflicts, to evaluate whether the tool-generated resolutions match

human-crafted ones.

To satisfy all requirements mentioned above, we created our benchmark by

crawling 208 popular open-source Java repositories [9]. For each repository,

we randomly sampled a commit that attempts to merge software branches via50

git-merge, and manually inspected the conflicts reported by git-merge to pick

3

one satisfying our selection criteria (see Section 3). After including all picked

conflicts into our dataset, we formulated our benchmark named ConflictBench.

Among the 180 conflicts it contains, there are 136 true conflicts and 44 false ones.

To facilitate tool comparison, we also classified conflicts based on the types of55

branch edits, the types of edited files, and developers’ resolution strategies.

We applied five state-of-the-art merge tools to ConflictBench, to check whether

our benchmark is effective in characterizing tools’ effectiveness and in reveal-

ing differences between tools. The tools include KDiff3 [15], FSTMerge [16, 5],

JDime [7], IntelliMerge [6], and AutoMerge [8]. We observed the following inter-60

esting phenomena in our experiments. KDiff3 has wider applicability than the

other tools. JDime reported conflicts with the highest precision (92%), while

AutoMerge reported the fewest conflicts (i.e., 17). KDiff3 achieved the highest

resolution desirability (83%), meaning that the majority of merged versions it

produces match developers’ hand-crafted versions.65

In this paper, we made the following research contributions:

• We defined a novel systematic method to classify merge-conflict data, and

applied that method to manually create a benchmark of merge-conflict

data named ConflictBench. This benchmark includes 180 merging scenar-

ios with labeled true/false conflicts, types of branch edits, types of edited70

files, and developers’ resolution strategies. No prior work characterizes

conflicts in such a comprehensive and rigorous way.

• We defined three novel metrics to evaluate software merge tools: tool

applicability, detection precision, and resolution desirability.

• We comprehensively evaluated five state-of-the-art software merge tools75

using ConflictBench, and observed interesting phenomena in terms of tool

applicability, conflict-detection precision, and conflict-resolution desirabil-

ity. No prior work does such an empirical evaluation of these tools or

presents the novel findings we have.

In the following part of our paper, we will introduce the technical background80

4

”git merge cj”Main
branch

Bug-fixing branch

The merged version
(m) manually checked
in by developers

Local (l)

Remote (r)

Base (b)
cd ce cf

cg

ch

ci cj

ck
Am

Figure 2: Text-based merge tools (e.g., git-merge) can be used to merge software branches

and reveal conflicts

(Section 2), our methodology of benchmark creation (Section 3), the Conflict-

Bench dataset (Section 4), and experiments with ConflictBench (Section 5).

2. Background

This section first clarifies the terms used in software merge (Section 2.1).

It then describes the three-way merge approach implemented by textual merge85

tools (e.g., git-merge), and tree-based software merge tools (Sections 2.2 and 2.3).

Finally, it introduces the studies conducted to assess software merge tools, lim-

itations of current studies, and our research motivation (Section 2.4).

2.1. Terminology

In software repositories, basic merge tools (e.g., git-merge) can be used to90

tentatively merge software branches, and to detect conflicts in this process.

Figure 2 illustrates such a merge process. In this figure, the two horizontal lines

visualize two software branches in a repository: the main branch and bug-fixing

branch. Each node (except Am) represents a program commit checked in. When

a developer uses the command “git merge cj” to incorporate changes from the95

named commit cj to the current commit ch, git-merge treats the developer’s

commit ch as local version (l), considers the named commit cj as remote

version (r), locates the common ancestor (i.e., predecessor) of both commits

as base version (b), in order to conduct three-way merge (see Section 2.2) and

produce an automatically merged version (Am).100

If git-merge detects no conflict, Am shows the merged software that incor-

porates all edits. Otherwise, if conflicts are detected, Am also denotes conflicts

5

…
 <version>1.8.1</version>
 …

…
 <version>1.9.7</version>
 …

…
 <version>1.9.3</version>
 …

…
<<<<<<<
 <version>1.9.7</version>
 =======
 <version>1.9.3</version>
 >>>>>>>
…

Local Version (l)
Remote Version (r)

Conflicting
Chunk in The
Automatically

Merged
Version (Am)

“git merge …”

Base Version (b)

Figure 3: A conflict reported by git-merge

with specialized marks. For instance, Figure 3 shows a conflict reported by

git-merge, due to the divergent updates applied by l and r; git-merge gener-

ates a conflicting chunk in Am to mark the conflicting edits. The tool uses105

“<<<<<<<” and “=======” to mark the unique edits from l; it also uses

“=======” and “>>>>>>>” to mark the unique edits from r. Depend-

ing on their needs, developers may further edit Am before committing a final

merged version m to the repository. Therefore, m may be identical to or differ-

ent from Am. We use merging scenarios to refer to developers’ merge trials.110

In software repositories, a typical merging scenario involves five program ver-

sions: the base b, the local l, the remote r, the automatically merged version

Am, and developers’ merged version m.

2.2. Line-Based Three-Way Merge

Given three program versions (i.e., base b, local l, remote r), the three-way115

merge approach in basic tools takes two steps to produce the automatically

merged version Am. First, it locates the textual difference between l and b and

that between r and b, treating them as line-based edits by individual branches.

Second, if l and r apply identical edits, the common edits are applied once to

produce Am; if only one version applies edits to a particular line, the edits120

are integrated into Am; otherwise, conflicts are reported as the branches apply

6

(a) A wrongly reported conflict due to the incorrect alignment of lines
Changes in local l:
- import rx.operators.OperationAll;
- import rx.operators.OperationAny;
 import rx.operators.OperationAsObservable;

Changes in remote r:
 import rx.operators.OperationAll;
 import rx.operators.OperationAny;
- import rx.operators.OperationAsObservable;
+ import rx.operators.OperatorAsObservable;

Conflict reported by git-merge:
 <<<<<<<
 import
rx.operators.OperationAsObservable;
 =======
 import rx.operators.OperationAll;
 import rx.operators.OperationAny;
 import
rx.operators.OperatorAsObservable;
 >>>>>>>

(b) A conflict reported due to insufficient capabilities of combining edits
Changes in local l:
- public void onError(HDI hdi, CI ci, T t) {
+ public void onError(HDI hdi, T t) {

Changes in right r:
- public void onError(HDI hdi, CI ci, T t) {
+ public void onChunkError(HDI hdi, CI ci, T t) {

Conflict reported by git-merge:
 <<<<<<<
 public void onError(HDI hdi, T t) {
 =======
 public void onChunkError(HDI hdi,
CI ci, T t) {
 >>>>>>>

Figure 4: Two exemplar conflicts to show limitations of line-based three-way merge

divergent edits to the same line(s).

Line-based three-way merge has two major limitations: (1) content misalign-

ment and (2) insufficient capabilities of combining edits. First, when it incor-

rectly aligns lines from different versions, the reported conflicts can be wrong.125

For instance, Figure 4 (a) is a wrongly reported conflict for a real-world merging

scenario [17], where l deletes two lines and r updates a third line. Although the

edits manipulate different lines and have no conflict, a typical line-based merge

tool git-merge incorrectly aligns them and reports a conflict. Second, when

branches simultaneously edit distinct parts of the same line, line-based merge130

cannot integrate those edits. As shown in Figure 4 (b), l updates the parameter

list of a declared method and r updates the method name. Line-based merge

considers both edits applied to the same text and thus reports a conflict. These

limitations motivated current research of creating better merge tools.

2.3. Tree-Based or Syntax-Based Software Merge Tools135

Various tree-based merge tools [5, 7, 8, 6] were recently created to overcome

the two limitations mentioned above for line-based merge tools. For instance,

FSTMerge [5] and IntelliMerge [6] parse Java programs, and create simplified

7

parsing trees or graphs to represent the parent-child relationship between pro-

gram entities (i.e., classes, methods, and fields). By matching entities across140

versions based on entity names and/or code content, both tools attempt to

avoid entity-level misalignment. JDime [7] and AutoMerge [8] create abstract

syntax trees (ASTs) to model all syntactic constructs in Java code; they both

compare and integrate branch edits based on tree-node matching to overcome

the two limitations mentioned above. However, it is unknown how well these145

state-of-the-art tools overcome the limitations of line-based merge tools or how

they compare with each other. Although some researchers conducted experi-

ments to assess merge tools’ capabilities of conflict detection [11, 12, 13, 14],

they did not leverage any benchmark that labels true/false conflicts to measure

the precision of tools’ conflict detection capability. Also, existing studies do150

not leverage any benchmark that labels developers’ manual conflict resolution

strategies, to assess the desirability of tool-generated conflict resolutions.

2.4. Current Assessments of Software Merge Tools

A few studies were done to empirically compare software merge tools [11,

12, 13, 14]. Specifically, Cavalcanti et al. [11] applied a line-based tool and a155

semistructured merge tool to the same set of subject programs, to compare the

number of conflicts reported. However, they did not analyze conflict reports

to characterize false alarms. Another study by Cavalcanti et al. [12] conducts

pattern matching, to estimate the number of scenarios where FSTMerge and

KDiff3 (a line-based merge tool similar to git-merge) can have false positives160

or false negatives. As described in the paper, the pattern-matching approach

is designed to overestimate the additional false positives and false negatives of

FSTMerge, while underestimating the additional false positives and false nega-

tives of KDiff3. Thus, the estimates cannot precisely quantify the effectiveness

comparison between tools. Two studies [13, 14] involve the manual inspection165

of 54–92 merging scenarios, to explore the false positive and false negative issues

in conflicts detected by variants of the same tool or two distinct tools.

Existing studies have three limitations. First, they do not often examine

8

the precision of the conflict detection capability for merge tools; the only two

studies that inspected false positives and false negatives so far [13, 14] focused170

on a relatively small set of merging scenarios (i.e., 54–92 scenarios). We be-

lieve it necessary to characterize the limitations of current tools with more rigor

by defining more metrics and using well-labeled datasets, so that researchers

can come up with better tools in the future to detect or resolve conflicts more

effectively. Second, no existing study examines how well the tool-generated175

conflict resolutions match developers’ resolutions. If tools always generate reso-

lutions differently from developers, developers cannot fully trust tool-generated

merge results. Third, each of the current studies compared two or three ap-

proaches/tools simultaneously. We believe it necessary to compare more tools

on the same dataset, to better understand the advantages or disadvantages of180

different tool implementations and merge algorithms.

The datasets used by existing studies only record the merging commits

in various open-source projects. They do not label any merging scenario to

have true/false conflicts, neither do they summarize or label developers’ manual

conflict resolution strategies. Thus, these datasets do not quite help researchers185

assess the precision of conflict detectors, neither do they facilitate people to

evaluate the desirability of conflict resolutions proposed by merge tools.

The limitations of current studies and datasets motivated us to create a large-

scale labeled dataset for the evaluation of software merge tools. The ground-

truth labels should include merging scenarios with true conflicts as well as false190

conflicts, scenario characterizations in terms of branch-edit types or file types,

and the merged versions produced by developers for those scenarios. We envision

with such a benchmark, researchers and tool developers can better characterize

the strengths and weaknesses of various merge tools, characterize the scenarios

where certain tools succeed or fail, create better tools, and fairly compare tools195

in terms of conflict detection as well as resolution.

9

…

208 software
repositories

1. Search
for

Merging
Commits

Repeat for each merging commit c

Y

5. Discard the commit

4. Does
m have

any
conflict?

YN

N

Scenarios with
conflicts reported by

git-merge and resolved
by developers

5. Manual
inspection

ConflictBench

2. Restore
the merging

scenario

3. Does
Am have

any
conflict?

Figure 5: Our crawling process takes five steps to identify conflict samples

3. Methodology

This section first introduces our process of benchmark creation (Section 3.1),

and then explains our manual analysis—the most important and challenging

part in the whole process (Section 3.2).200

3.1. The Whole Process of Benchmark Creation

As mentioned in Section 1, we considered four requirements when building

the benchmark: diversity, true conflicts, false conflicts, and conflict resolution.

To satisfy all requirements, we started our benchmark-construction process with

the 208 open-source Java repositories mentioned by prior work [9]. Shen et al. [9]205

recently created a dataset of 208 open-source repositories that have merge con-

flicts. Specifically, the researchers ranked Java projects on GitHub based on

their popularity (i.e., star counts), and cloned repositories for the top 1,000

projects as their initial dataset. They then refined the dataset with two heuris-

tics. First, they only kept the projects that can be built with Maven, Ant, or210

Gradle to ensure high software quality and program executability. Second, they

removed tutorial projects as those projects are not real Java applications and

may not show real-world merging scenarios. By crawling these repositories, we

intended to quickly locate and extract diverse merging scenarios.

To investigate the representativeness of program data from Shen et al.’s215

work [9], after downloading the 208 repositories from GitHub, we measured 3

10

Table 1: Statistics of the 208 open-source repositories

#of Stars
Repository

Lifetime

of Con-

tributors

of

Commits

Program

Size (KB)

Minimum 2,225 4 yrs 8 mos 1 5 77

Maximum 71,169 14 yrs 10 mos 403 45,983 5,147,485

Median 6,046 9 yrs 7 mos 61 1,550 16,355

0

5

10

15

20

25

30

of merging
scenarios
with conflicts

of projects

(0
, 2

]
(2

, 2
2]

(2
2 , 2

3]
(2

3 , 2
4]

(2
4 , 2

5]
(2

5 , 2
6]

(2
6 , 2

7]
(2

7 , 2
8]

(2
8 , 2

9]
(2

9 , 2
10

]
(2

10
, 2

11
]

(2
11

, 2
12

]
(2

12
, 2

13
]

(2
13

, 2
14

]

[0
, 0

]

Figure 6: Project distribution based on the number of merging scenarios with conflicts

aspects of the projects: project popularity (i.e., number of stars), project matu-

rity (i.e., lifetime of repositories), and level of development activity (e.g., number

of contributors, number of commits, and program size). As of November 2023,

all projects have been very popular, receiving 2,225 – 71,169 stars. As shown in220

Table 1, these projects also seem mature, with their lifetime spanning between

4 years 8 months and 14 years 10 months. Each project has 1–403 contributors.

The number of commits also varies a lot, in the range [5, 45,983]. The dataset

has programs of very small sizes (e.g., 77 kilo bytes) and programs with very

big sizes (e.g., 5,147,485 kilo bytes). The diversity of numeric measurements we225

obtained for individual projects implies the representativeness of this dataset.

We further clustered projects based on the number of conflicting merging sce-

narios they contain. As shown in Figure 6, 25 of the projects contain no merge

11

conflict in their repositories, 19 project repositories contain single conflicting sce-

narios, and 164 project repositories have multiple conflicting scenarios. Apache230

Cassandra contains the largest number of conflicting merging scenarios: 4,172.

All these numbers motivated us to sample one conflicting merging scenario in

each repository, because (1) the number of conflicting merging scenarios varies

so much across projects, and (2) our sample dataset can cover diverse scenarios

from more repositories when each repository has a scenario sampled.235

For the repositories downloaded from GitHub, we took five steps to search

for merging scenarios in each repository, and to sample conflict data in those

scenarios (see Figure 5). With more details, in each repository, if a program

commit has two parent commits (predecessors), we name it a merging commit,

and use it to retrieve or restore the five program versions (l, r, b, Am, m)240

related to a merging scenario. Namely, the two parent commits are used as

local version l and remote version r; the common ancestor of the parents is

treated as base version b; Am is restored as git-merge is applied to l and r; the

merging commit is considered as developers’ merged version m. In Step 3, if the

automatically merged version Am shows no conflicting chunk, we discard the245

merging scenario as it contains no conflict-related data. Otherwise, in Step 4,

we further check whether m has any conflicting chunk reported by git-merge. If

so, we discard the merging scenario because it lacks information of developers’

conflict resolutions. At the end of Step 4, we obtained refined sets of conflict-

related merging scenarios in 182 of the 208 repositories. Note that 26 of the250

repositories were filtered out because they have no merging commit satisfying

the requirements mentioned above.

In Step 5, we manually inspected the refined set of each repository, to find

conflicts to include into ConflictBench. If multiple scenarios are found in a

repository, we randomly sampled one scenario for further analysis. If the sam-255

pled scenario has multiple conflicts reported by git-merge, we went over the

conflict reports in sequence until finding one that satisfies the following criteria.

1. If both branches revise parts of the same file, we looked for the first con-

12

flicting chunk that involves no more than 20 lines of unique text from

either branch.260

2. If one branch or both branches edit the file as a whole (e.g., by deleting or

moving it), the 20-line limit mentioned above does not apply. We simply

included the conflict into our dataset.

We used the 20-line limit, because conflicts always become harder for com-

prehension and characterization when they involve more edits. Based on our265

experience so far, we are confident to properly analyze the conflicting chunks

that involve no more than 20 lines of unique text by either branch.

At the end of this step, ConflictBench includes 180 conflicts from 180 of

the repositories. We removed 2 repositories from the refined 182 repositories,

because those 2 repositories have no conflict meeting the criteria mentioned270

above. For each conflict, we further labeled (1) whether it is a true conflict, (2)

the types of edits applied by each branch, (3) the types of edited files, and (4)

developers’ resolution strategies. Section 3.2 details on our labeling procedure.

3.2. Details of Our Manual Analysis

In our manual analysis, we took the open coding method to characterize275

and classify conflicts. Specifically, the two authors separately inspected some

merge conflicts reported by git-merge, to come up with four initial classification

methods: conflict classification based on the (1) relative positions of branch

edits (i.e., applied to the same overlapping text regions or not), (2) edit type

contrasts between branches, (3) types of edited files, and (4) developers’ resolu-280

tion strategies. For each merging scenario, we inspected five program versions:

the base b, the local l, the remote r, the automatically merged version Am,

and developers’ merged version m. Afterwards, both authors independently in-

spected all conflicts, to manually characterize and label those conflicts. Finally,

we compared the labels, to discuss and refine classification methods whenever285

divergence occurred. The discussion continued until we reached a consensus.

After several iterations of discussion and reclassification, the authors settled

down all categories and the classification labels.

13

3.2.1. Edit Comprehension

To diagnose whether a reported conflict is true or false, we need to first290

comprehend the branch edits contributing to that conflict. Typically, git marks

l- and r-edits with added lines (denoted with “+”) and/or deleted lines (denoted

with “-”), as shown in Figure 4. However, such denotation is insufficient because

it does not relate added with deleted lines to capture update operations. To

facilitate the edit comparison between branches and conflict diagnosis, we tried295

to identify line updates in given branch edits. If (1) a number of deleted lines are

followed by the same number of added lines, and (2) each added line is similar or

identical to the corresponding deleted line, then we interpret the edits as updates.

Here, to calculate the similarity of two given lines, we computed longest common

character subsequence between those lines, and considered them similar if the300

subsequence contains at least 50% of characters from both lines. By detecting

update operations, we can better align lines and edits across branches, to decide

whether edits are applied to the same, overlapping, or different regions.

Additionally, when a branch revises multiple lines, we used the following

criteria to characterize branch edits:305

• If only one type of edits are applied by a branch, we use I, D, or U to

label the branch edits, which letters separately denote insertion, deletion,

and updates.

• If two types of edits are applied by a branch, we use DI (meaning deletion

and insertion), DU, and IU to label the branch edits.310

• When all three types of edits are applied, we simply use DI to label those

edits for two reasons. First, the updated lines are closely related to sur-

rounding added or deleted lines. Second, our 50%-threshold is imperfect

and sometimes interpret similar edits in divergent ways.

With the labeling criteria mentioned above, we can characterize the edit types315

contributing to each reported conflict, classify samples accordingly to present

14

the dataset diversity, and contrast the effectiveness of merge tools when they

deal with different kinds of conflicts.

3.2.2. Conflict Diagnosis

As git-merge may falsely report conflicts (see Section 2.2), we manually320

applied the following criteria in sequence to compare branch edits and to decide

whether a sampled conflict is true or false:

• If branch edits manipulate different lines and there is no overlap between

the manipulated lines, we label the reported conflict “False”. For instance,

Figure 4 (a) shows a false conflict, because the deleted lines in l and the325

updated line in r share no code in common.

• If branch edits are applied to overlapping or the same region, the reported

conflict is labeled “True”. Figure 4 (b) shows a true conflict, because l

and r update the same line in divergent ways.

• If both branches insert distinct text at the same location (e.g., between330

two existing lines), we label the reported conflict “True”. This is because

even though both insertions can get applied simultaneously, it is hard to

automatically decide the sequential order between them.

• If one branch inserts text between two existing lines, while the other

branch deletes or updates both lines, we label the conflict “True”. This335

is because if we consider the two lines as anchors to mark the insertion

location, any update or removal of them both can make it very difficult

to position insertion in the merged software.

3.2.3. Developers’ Resolutions

As with prior work [9], we adopted seven labels to describe developers’ res-340

olution strategies for true conflicts:

• KL: Keep all edits from l.

• KR: Keep all edits from r.

15

• KL+KR: Keep all edits from both branches.

• ME: Apply new manual edits, but no edit from l or r.345

• KL+ME: Apply l-edits and new manual edits.

• KR+ME: Apply r-edits and new manual edits.

• KL+KR+ME: Apply edits from both branches, together with new man-

ual edits.

The above-mentioned labels are self-explanatory, indicating distinct types of350

resolution strategies taken by developers. For instance, in a merging scenario,

if all edits from l are included into developers’ resolution and no edit from r

is included, we use KL to summarize the resolution strategy. Nevertheless,

there are still corner cases ambiguous to label, due to the similarity or relevance

between branch edits. Thus, we further defined the following criteria to handle355

those complicated scenarios and to ensure consistent labeling:

• If branch edits are similar to each other while developers’ merged version

is identical to l (or r), we use KL (or KR) to summarize the resolution.

• If branch edits and the edits in developers’ merged version (m) are all

similar but not identical, we calculate the similarity between the edits in360

m and the edits by either branch. If the edits in m is more similar to

l-edits, we label it KL+ME; otherwise, we use KR+ME.

• If l and r edit different parts of the same line and m applies both edits to

the same line, we use KL+KR to label the resolution.

4. The Dataset of ConflictBench365

In our dataset, we created a folder for each conflict sample. Inside that

folder, we created four folders to keep track of separate versions of the single

edited file. The four versions include b, l, r, and m; we denote the four folders

16

Table 2: The 180 samples included in ConflictBench

True?
Edit Types

File Types Total per

False? Java Non-Java Edit Types

I vs. I 20 18 38

U vs. U 14 16 30

U vs. D 15 11 26

DI vs. DI 6 3 9

U vs. DI 5 3 8

D vs. DI 2 2 4

True DI vs. DU 3 1 4

Conflicts IU vs. U 2 2 4

IU vs. DI 3 1 4

D vs. I 3 0 3

DI vs. I 2 0 2

D vs. D 0 1 1

U vs. I 1 0 1

U vs. DU 0 1 1

D vs. DU 1 0 1

Subtotal 77 59 136

I + U 7 1 8

I + D 7 0 7

I + DI 2 4 6

I + N 4 1 5

U + IU 2 1 3

False DI + IU 1 2 3

Conflicts DI + U 3 0 3

U + U 1 1 2

N + DI 0 2 2

U + D 1 0 1

D + DI 0 1 1

D + D 1 0 1

D + DU 0 1 1

I + IU 0 1 1

Subtotal 29 15 44

Total 106 74 180

D means deletion. I means insertion. N means no edit from a branch

contributing to the conflicting chunk. U means update.

17

with Fb, Fl, Fr, and Fm. If one version deletes the file, the corresponding

folder is empty. We also created a spreadsheet to record additional information370

(e.g., classification labels and conflicting chunks) for all samples. Table 2 shows

the 180 conflict samples included into ConflictBench. In this table, we classify

conflicts based on the (1) truth or falsity of conflicts, (2) types of branch edits,

and (3) types of edited files.

4.1. True or False Conflicts375

As shown in Table 2, 136 conflicts are labeled with “True” because branches

apply divergent or incompatible edits to overlapping text regions; 44 conflicts

are labeled as “False” because the branch edits are applied to non-overlapping

regions, and they should have been co-applied automatically to the merged

version. Notice that in our sampling process (see Section 3), we had no control380

over whether the selected conflicts are true or false. Therefore, the considerably

large number of false conflicts (i.e., 44) implies (1) a lot of noises produced by

git-merge when it reports conflicts, and (2) a significant improvement space for

better merge tools.

4.2. Conflict Classification Based on Edit Types385

Table 2 uses “vs.” to contrast the edit types applied by individual branches

for each true conflict, and uses “+” to compare the types of edits applied by

separate branches for false conflicts. In addition to the edit types (i.e., I, D,

U) mentioned in Section 3, this table also adopts N to mark two subcategories

of false conflicts. Here N means that one of the branches contribute no edit at390

all to the reported conflicting chunk. As shown in Figure 7, although l applies

no edit while r deletes and inserts some text, git-merge wrongly interprets the

scenario and falsely reports a conflict. By comparing edits across branches,

we identified 15 subcategories in true conflicts. In particular, I vs. I is the

largest subcategory of true conflicts, capturing scenarios where branches insert395

distinct content at the same location. We also identified 14 subcategories in

false conflicts, with I + U as the largest one.

18

Changes in local l: (no change)
 jacocoTestReport {
 reports {
 xml.enabled = true
 html.enabled = true
 }

Changes in remote r:
- jacocoTestReport {
- reports {
- xml.enabled = true
- html.enabled = true
- }
+ cobertura {
+ coverageFormats = ['html', 'xml']

Conflict reported by git-merge:
 <<<<<<<
 jacocoTestReport {
 reports {
 xml.enabled = true
 html.enabled = true
 }
 =======
 cobertura {
 coverageFormats = ['html', 'xml']
 >>>>>>>

Figure 7: A false conflict belonging to N + DI, where N means no edit from a branch con-

tributing to the conflicting chunk and DI means a mixture of line deletion and insertion.

4.3. Conflict Classification Based on File Types

Although all conflict samples are from Java repositories, we noticed that

many of them reside in non-Java files. Thus, we also classified samples based400

on file types. As shown in Table 2, among the 136 true conflicts, there are 77

conflicts located in Java files and 59 ones located in non-Java files. Among the 44

false conflicts, 29 conflicts are from Java files while 15 conflicts are from non-Java

files. In particular, the 74 non-Java files include 22 XML files, 13 Markdown

documentation (.md), 10 Gradle files (.gradle), 7 property files (.properties), and405

22 miscellaneous files. In our sampling process, we did not control what file

to sample. Therefore, the conflict distribution among file types implies the

diversity of our dataset.

4.4. Conflict Classification Based on Resolution Strategies

Table 3 presents our classification of conflict samples based on developers’410

resolution strategies. As shown in this table, most conflicts were resolved by

either KL or KR, meaning that developers often resolve conflicts by keeping

edits purely from one branch. KL+KR was adopted to resolve slightly more

false conflicts than true ones (16 vs. 15), and 13 of the resolved true conflicts

belong to I vs. I. The fourth most popular strategy is KL+KR+ME, which415

19

Table 3: Developers’ resolutions to all conflict samples

Strategy # of True Conflicts # of False Conflicts Total

KL 61 11 72

KR 36 11 47

KL+KR 15 16 31

ME 3 1 4

KL+ME 2 1 3

KR+ME 5 0 5

KL+KR+ME 14 4 18

Sum 136 44 180

KL means “keep local version”. KR means “keep remote version”. KL+KR means

“keep edits from both versions”. ME means “apply manual edits”. KL+ME means

“apply local edits and new manual edits”. KR+ME means “apply remote edits and

new manual edits”. KL+KR+ME means “apply edits from both branches and new

manual edits”.

resolved 14 true conflicts and 4 false conflicts. The remaining three strategies

(i.e., KL+ME, KR+ME, and KL+KR+ME) were applied a lot less often.

5. Experiment

Our overall research problem is how well ConflictBench helps characterize

the effectiveness of existing software merge tools. To investigate this problem,420

we applied 5 state-of-the-art tools to the 180 merging scenarios and analyzed

the tool results to explore 3 research questions (RQs):

• RQ1: How widely is a software merge tool applicable to merging scenarios?

• RQ2: When a software merge tool reports conflicts, how precise are those

reports?425

• RQ3: If a software merge tool can resolve conflicts, how well do those

resolutions match developers’ resolutions?

This section first introduces the five tools we adopted (Section 5.1). It then

describes our experiment setting (Section 5.2), evaluation metrics (Section 5.3),

and our experiment results for all three RQs (Section 5.4).430

20

5.1. Five Software Merge Tools

Among the papers recently published on the research topic of software merge,

the following five tools have been frequently mentioned and used:

KDiff3 [15] is another line-based software merge tool. According to its online

handbook [15], the tool outperforms other line-based merge tools by showing not435

only the changed lines, but also what has changed within these lines. Namely,

it presents differences line-by-line and character-by-character. We downloaded

the latest version compatible with Ubuntu 22.04 (i.e., the OS we used for our

experiment)—1.9.5—via the command “apt install kdiff3”.

FSTMerge [5, 12, 16], also referred to as semistructured merge, parses pro-440

grams written in Java, C#, or Python. For each parsing tree, it generates a

simplified program structure tree (PST). Within a PST, there is no low-level

statement or expression node. Each inner node represents a high-level program

structure (i.e., class, method, or field), and each leaf node represents the body

implementation of a method or field. With PSTs, FSTMerge matches nodes445

between branches purely based on signatures. For each pair of matched nodes,

it compares and integrates branch edits applied to the body implementation via

textual merge (e.g., git-merge). We downloaded the latest version (commit ID:

81724157) of FSTMerge from its website [18].

JDime [7], also referred to as structured merge, is similar to FSTMerge by450

parsing Java programs for tree structures. However, different from FSTMerge,

JDime directly compares parsing trees to identify and integrate branch edits.

Given the trees of l and r, JDime computes the largest common subtree, and

adds matching information to those trees. It then takes the three trees enriched

with matching information (i.e., trees of b, l, and r), to create a merged tree455

as result. We downloaded the version (commit ID: 63ffc342) of JDime from the

tool’s website [19].

AutoMerge [8] extends JDime, so it also merges software based on tree

matching. While JDime does not attempt to resolve any conflict it reveals,

AutoMerge was designed as an interactive approach to propose alternative reso-460

lutions for the detected conflicts. Each of the proposed resolutions may include

21

some edits from a single branch or integrate edits from both branches. Au-

toMerge also has a mechanism of ranking alternative resolutions, so that the

top-ranked resolution is very likely to satisfy developers. We downloaded the

latest version (commit ID: 4e00b8ad) from the tool’s website [20].465

IntelliMerge [6] creates program element graphs (PEGs) to model program

elements (e.g., Java classes, methods, and fields), as well as the relationship

between elements (e.g., containment and access). It matches nodes based on the

node content (e.g., method signature and its body implementation), as well as

surrounding context (e.g., incoming and outgoing edges). Similar to FSTMerge,470

for each pair of matched nodes, IntelliMerge integrates branch edits via textual

merge. However, different from all tools mentioned above, IntelliMerge can

detect refactoring edits (e.g., method renaming) applied by either branch, and

resolve the conflicts caused by those refactoring operations. We downloaded the

latest version (commit ID: 1aa08901) of IntelliMerge from its website [21].475

5.2. Experiment Setting

To use tools appropriately and compare them fairly, we downloaded the

latest version (executable on our Ubuntu 22.04 desktop) of five tools—KDiff3,

FSTMerge, JDime, AutoMerge, and IntelliMerge—and followed the usage in-

structions on the tool websites. Specifically, we used the following tool versions480

without fine-tuning any parameter or configuration: KDiff3-1.9.5, FSTMerge

(commit ID: 81724157 as there is no tool release information), AutoMerge-1.0,

JDime-0.5.0, and IntelliMerge-1.0.9. As shown in Figure 8, for each merging

scenario, we provided all tools three folders— Fb, Fl, Fr—which correspond

to three program versions (b, l, r), so that each tool has sufficient information485

to detect conflicts and generate a merged version. If both branches revise the

same file, the folders separately hold different versions of that file. If one branch

removes a file, the corresponding folder is empty because the file does not exist.

After applying all tools to ConflictBench, we manually checked the tool

results. If a tool reports nothing or throws runtime errors, we interpret the490

phenomena as indicators of tools’ limitations. For each reported conflict, we

22

Fl
Fb
Fr

FSTMerge

JDime

AutoMerge

IntelliMerge

AmF

AmJ

AmA

AmI

Fm

KDiff3 AmK

Figure 8: The experiment settings. Here, Fl, Fb, Fr, and Fm are folders to separately hold

programs of local, base, remote, and manually merged versions. AmK , AmF , AmJ , AmA, and

AmI are automatically merged versions separately produced by KDiff3, FSTMerge, JDime,

AutoMerge, and IntelliMerge.

examined whether ConflictBench labels it as a true or false conflict. For each

resolved conflict, we checked whether the tool’s resolution (i.e., merged version)

is semantically equivalent to the human-crafted one. Notice that each tool may

report or resolve multiple conflicts in one merging scenario. To ensure fair495

comparison among tools, we only focused on (1) the branch edits, conflicts, as

well as resolutions labeled by ConflictBench, and (2) the tool-generated conflicts

or resolutions for those labeled regions.

5.3. Metrics

We defined three metrics to evaluate software merge tools:500

Tool Applicability (A) measures among all merging scenarios, for how

many scenarios a tool can take inputs and produce outputs normally without

throwing errors.

A =
of scenarios processable

Total # of labeled scenarios
(1)

A is within [0, 1]. “Processable” means given the three folders related to a

merging scenario, a tool either reports a conflict or generates a merged version.505

The more scenarios a tool can process, the better applicability it has. All the

following two metrics focus on the scenarios processable by individual tools.

Detection Precision (P) measures among all reported conflicts by a merge

23

tool, how many of them are true conflicts:

P =
of true conflicts

Total # of reported conflicts
(2)

P varies within [0, 1]. Suppose that a tool reports A conflicts, while B of them510

are labeled as true conflicts in our dataset. Then the precision is B/A. Notice

that given a merging scenario with true conflicts, if a tool does not report any

conflict, the tool may overlook those conflicts or properly resolve all conflicts.

Namely, missing true conflicts does not necessarily mean that software merge

tools have poor capabilities of conflict detection. Thus, we decided not to assess515

tools by defining the metric detection recall, which calculates the percentage of

true conflicts recalled by each tool.

Resolution Desirability (D) measures among all conflicts resolved by a

tool, for how many of them the tool’s resolutions match developers’ resolutions.

“Match” means a tool-generated merged version is semantically equivalent to520

the merged version developers hand-crafted.

D =
of resolutions matching developers’ resolutions

Total # of resolutions generated by a tool
(3)

This metric also varies within [0, 1].

Different from prior work [5, 7, 11, 13, 14], we intentionally avoid comparing

tools solely based on the numbers of conflicts they report for two reasons. First,

if a tool reports a large number of conflicts and many of which are false alarms525

(i.e., falsely reported conflicts), the tool is not reliable. Second, some tools can

perfectly resolve conflicts and generate correctly merged software; even though

these tools report few conflicts, we cannot conclude that these tools are bad

conflict-detectors. We believe that conflict detection and resolution are two

closely related capabilities of a merge tool, so we defined a metric for each of530

them. It is possible that some tools detect conflicts with high precision, but

cannot resolve many conflicts. Meanwhile, some tools may detect conflicts with

low precision, but is able to correctly merge branch edits that should have been

reported as conflicts by other tools.

24

Table 4: Overview of experiment results

Metrics KDiff3 FSTMerge JDime AutoMerge IntelliMerge

Tool

Applicability

(A)

95% (171/180) 63%(113/180) 52%(93/180) 52%(94/180) 51%(92/180)

Detection

Precision

(P)

84% (114/136) 74%(28/38) 92%(22/24) 88%(15/17) 79%(30/38)

Resolution

Desirability

(D)

83% (29/35) 44%(33/75) 68%(47/69) 64%(49/77) 54%(29/54)

5.4. Results535

Table 4 presents an overview of our experiment results with different tools.

In the following subsections, we will describe and explain all results in detail.

5.4.1. Applicability Comparison between Tools

As shown in Table 4, KDiff3 has the highest applicability score—95%; FST-

Merge has the second highest score—63%; the other tools have similar applica-540

bility (51%–52%). Specifically, given the 3 folders for each of the 180 samples,

KDiff3 fails (i.e., either reports an error or problematically produces nothing)

for 9 samples, 3 of which are in non-Java files and 6 samples are in Java files. All

of these nine samples share the same conflicting pattern: one branch updates

certain file while the other branch deletes that file (U vs. D). As our dataset in-545

cludes in total 26 conflicts of the pattern U vs. D, KDiff3 can smoothly process

the remaining 17 (i.e., 26 − 9) scenarios.

FSTMerge does not work normally for 67 of the samples; 20 samples are in

Java files and 47 of the samples are located in non-Java files. In our dataset,

there are more conflicts in Java files than in non-Java ones (106 vs. 74). Thus,550

FSTMerge is more likely to behave abnormally when dealing with non-Java

files than when it processes Java files. Our observations mentioned above imply

that both KDiff3 and FSTMerge have implementation flaws that hinder their

applicability. AutoMerge reports errors for two kinds of conflicts:

25

1. The conflicts reside in non-Java files.555

2. One branch edits a Java file, while the other branch manipulates the file

system by removing that file or moving the entire file folder.

AutoMerge works normally only when both branches apply edits inside Java

files. It detects conflicts by parsing Java code and comparing parsing trees, so it

was not designed to handle conflicts outside Java files. JDime and IntelliMerge560

share the same design limitation with AutoMerge. Additionally, both tools

suffer from unknown implementation issues, which prevent them from properly

handling one or two conflicts inside Java files. Specifically, JDime generates

nothing for a true conflict, whose branch edits insert distinct content to the

same location (I vs. I). IntelliMerge generates nothing for two conflicts. One565

of the conflicts is a true one, involving folder renaming by one branch and file

insertion into the renamed folder by the other branch (U vs. I); the other conflict

is a false one, where one branch inserts code and the other branch deletes code

at a different location (I + D).

This experiment indicates that there is still considerable improvement space570

for four experimented tools (except KDiff3), so that they can become more

applicable and usable.

Finding 1: KDiff3 and FSTMerge have better applicability among the five

tools. Their applicability is limited by implementation issues, while the appli-

cability of the other three tools (i.e., JDime, AutoMerge, and IntelliMerge) is

mainly limited by approach design.

5.4.2. The Comparison of Detection Precision between Tools

As shown in Table 4, JDime has the highest detection precision—92%575

(22/24); FSTMerge has the lowest detection precision—74% (28/38). The preci-

sion comparison among all tools is JDime > AutoMerge > KDiff3 > IntelliMerge

> FSTMerge. The numerical comparison of true-conflict reporting among tools

is KDiff3 > IntelliMerge > FSTMerge > JDime > AutoMerge. Namely, KD-

iff3 and AutoMerge separately reported the largest and smallest numbers of580

true conflicts (114 and 15). Similarly, the numerical comparison of false-conflict

26

Table 5: The conflicts reported by tools

Edit Types KDiff3
FST-

Merge
JDime

Au-

toMerge

Intel-

liMerge

I vs. I 34 3 3 2 4

U vs. U 28 8 8 6 11

U vs. D 17 6 2 1 1

DI vs. DI 9 3 2 2 3

True U vs. DI 7 2 1 0 4

Conflicts D vs. DI 3 0 1 1 0

DI vs. DU 4 2 0 0 3

IU vs. U 3 2 2 0 2

IU vs. DI 4 0 1 1 2

D vs. I 2 1 1 1 0

DI vs. I 1 1 1 1 0

D vs. D 0 0 0 0 0

U vs. I 0 0 0 0 0

U vs. DU 1 0 0 0 0

D vs. DU 1 0 0 0 0

Subtotal 114 28 22 15 30

I + U 5 3 1 1 3

I + DI 4 0 0 0 0

False I + D 2 1 0 0 1

Conflicts I + N 4 1 1 1 1

U + IU 3 1 0 0 2

DI + IU 2 1 0 0 0

DI + U 0 2 0 0 1

U + U 0 1 0 0 0

N + DI 1 0 0 0 0

U + D 0 0 0 0 0

D + DI 0 0 0 0 0

D + D 0 0 0 0 0

D + DU 0 0 0 0 0

I + IU 1 0 0 0 0

Subtotal 22 10 2 2 8

Total 136 38 24 17 38

Detection Precision 84% 74% 92% 88% 79%

D means deletion. I means insertion. N means no edit from a branch contributing to

the conflicting chunk. U means update.

27

reporting among tools is KDiff3 > FSTMerge > IntelliMerge > JDime = Au-

toMerge. Once again, KDiff3 and AutoMerge separately reported the largest

and smallest numbers of false conflicts (22 and 2), while JDime reported the

same number of false conflicts as AutoMerge.585

Three reasons can explain why KDiff3 reported the most true conflicts and

most false conflicts. First, it is applicable to the most merging scenarios, to

handle conflicts in both Java and non-Java files. Second, it treats source code

as plain text and compares programs by ignoring the syntactic structures. Thus,

it sometimes mismatches adjacent lines and falsely reports conflicts (see limita-590

tions of line-based merge tools mentioned in Section 2.2). Third, it doesn’t map

code changes to operations on AST nodes, so it cannot resolve conflicts when

branches apply simultaneous edits to different AST nodes. Our comparison im-

plies that if developers want to reveal as many merge conflicts as possible and

have great tolerance of false-conflict reporting, they can consider using KDiff3.595

Otherwise, if developers have little tolerance of false-conflict reporting, they

may consider JDime. FSTMerge does not seem to be a good option, as it did

not report the largest number of conflicts while its precision rate is the lowest.

Table 5 presents the distribution of conflicts reported by each tool, among

different subcategories based on edit types. According to this table, all tools600

except KDiff3 reported the most true conflicts of subcategory U vs. U for two

reasons. First, this subcategory contains more conflicts than many other subcat-

egories. Second, such conflicts are easy to detect but hard to resolve automati-

cally. KDiff3 reported a lot more true conflicts of I vs. I than the other tools for

two reasons. First, it is more applicable than other tools to merging scenarios.605

Second, when applicable, the other tools try to resolve conflicts while KDiff3

did not attempt to resolve any of the conflicts. In particular, the most popular

resolution strategies applied by those tools for I vs. I conflicts include KL+KR

and KL+KR+ME, meaning that those tools resolve conflicts by co-applying in-

sertions from both branches. KDiff3, FSTMerge, and IntelliMerge reported the610

most false conflicts for subcategory I + U. Both JDime and AutoMerge reported

a false conflict of I + U, and a false conflict of I + N.

28

Table 6: The comparison between tool-generated versions and developers’ merged versions

Resolution

Strategy
KDiff3 FST-

Merge

JDime Auto-

Merge

Intelli-

Merge

M(atched) U(nmatched) M U M U M U M U

KL 4 4 19 15 19 7 19 9 11 12

KR 7 0 5 11 8 9 8 11 7 4

KL+KR 12 0 7 8 14 0 15 0 8 4

ME 1 0 0 3 0 1 0 1 0 1

KL+ME 0 0 1 0 1 1 1 1 1 1

KR+ME 2 0 0 0 1 0 2 0 1 0

KL+KR+ME
3 2 1 5 4 4 4 6 1 3

Total 29 6 33 42 47 22 49 28 29 25

KL means “keep local version”. KR means “keep remote version”. KL+KR means “keep edits

from both versions”. ME means “apply manual edits”. KL+ME means “apply local edits and

new manual edits”. KR+ME means “apply remote edits and new manual edits”. KL+KR+ME

means “apply edits from both branches, and new manual edits”.

All tools reported 9 conflicts in common, 8 of which are true conflicts and 1

is a false conflict. This implies that even if we try to combine all tools to report

conflicts with a higher precision rate, there is still improvement space for future615

tools to detect conflicts more precisely.

Finding 2: JDime got the highest detection precision (92%), while FSTMerge

acquired the lowest (74%). JDime and AutoMerge reported the smallest num-

ber of false conflicts (i.e., 2), while KDiff3 reported the largest number of false

conflicts (i.e., 22). AutoMerge and KDiff3 separately reported the smallest

and largest number of true conflicts (i.e., 15 and 114).

5.4.3. The Comparison of Resolution Desirability between Tools

According to Table 4, KDiff3 acquired the highest resolution desirability—

83%, while FSTMerge obtained the lowest resolution desirability—44%. Our620

measurement for AutoMerge (64%) is higher than that for IntelliMerge (54%)

but lower than that for JDime (68%). AutoMerge generated the most resolutions—

77, while KDiff3 produced the fewest resolutions—35.

Table 6 shows the breakdown of conflicts resolved by each tool, based on de-

29

velopers’ resolution strategies. M means for a given conflict, the tool-generated625

version matches or is semantically equivalent to developers’ version, while U

means that the two versions are unmatched. According to this table, the ver-

sions produced by FSTMerge successfully match developers’ merged versions

for 33 cases, but fail to match for 42 cases. JDime worked much better than

FSTMerge, as it generated many more matched versions than FSTMerge (47630

vs. 33), but a lot fewer unmatched versions (22 vs. 42). Compared with JDime,

AutoMerge created slightly more matched versions (49 vs. 47), and even more

unmatched versions (28 vs. 22). Among all tools, IntelliMerge and KDiff3 pro-

duced the fewest versions matching developers’ versions—29. However, as KD-

iff3 also produced the fewest versions not matching developers’ versions—6, its635

desirability is the highest. AutoMerge has the largest number of resolved ver-

sions to semantically match developers’ resolved versions (i.e., 49); FSTMerge

has the largest number of unmatched resolutions (i.e., 42).

Our observations imply that if developers want to take full advantage of

tools’ conflict-resolution automation and have great tolerance for wrongly re-640

solved conflicts (e.g., they rely on compilation or automatic testing to always

capture wrong resolutions), they can consider using AutoMerge. Otherwise, if

developers want to cautiously leverage tools’ resolution capability and have lit-

tle tolerance for wrongly resolved conflicts, they may use KDiff3. FSTMerge

does not seem to be a good option either way, as it did not produce the most645

resolutions but generated the largest number of wrong resolutions.

Most of the conflicts resolved by each tool fall into the subcategories KL,

KR, and KL+KR. This is because the majority of conflicts included in our

dataset were manually resolved via KL, KR, and KL+KR. Most of the matched

versions produced by each tool also fall into these three subcategories. To further650

investigate tools’ resolution capabilities, we also created Table 7 to present the

actual resolution strategies applied by each tool. By comparing Table 7 with

Table 3, we observed that all tools’ distributions of resolution strategies are

different from the distribution of developers’ resolutions. This implies that

when resolving conflicts, existing tools give little consideration to developers’655

30

preferences for resolution strategies and future tools may observe developers’

preferences to better merge software.

Specifically, among the studied tools, KDiff3 resolved the fewest cases (i.e.,

35) but reported the most conflicts (i.e., 136). KDiff3 resolved 23 of the 35

conflicts via KL+KR, while developers resolved most conflicts via KL or KR.660

Within the merged versions KDiff3 created, six versions do not match devel-

opers’ versions for two reasons. First, KDiff3 managed to integrate branch

edits via KL+KR for five cases; however, developers resolved four of the con-

flicts via KL and resolved a fifth conflict via KL+KR+ME. Second, in a sixth

conflicting scenario, although both KDiff3 and developers resolved conflicts via665

KL+KR+ME, the produced versions are different. In particular, one branch

inserts a Java file to an existing folder/package, while the other branch renames

that folder/package. Developers’ resolution integrates both edits and further

updates the package name inside that inserted Java file for change consistency;

however, KDiff3’s resolution only partially integrates branch edits by keeping670

two versions of the renamed folder.

FSTMerge resolved conflicts by mainly applying three strategies: ME, KL+ME,

and KL+KR+ME; meanwhile, the three most popular resolution strategies

manually applied by developers include KL, KR, and KL+KR. FSTMerge ap-

plies new edits in 62 of the 75 cases, although the majority of these extra edits675

are about unnecessary formatting changes (e.g., inserting or deleting empty

lines, changing method declaration orders, or modifying code indentation). We

also inspected the 42 cases incorrectly resolved by FSTMerge and summarized 3

major root causes. First, FSTMerge shows preferences to KL or KL+ME in nine

cases where developers’ resolutions are KR, KL+KR, or KL+KR+ME. Second,680

in 10 cases, FSTMerge wrongly created duplicates for edited lines. Third, in 11

cases, FSTMerge kept some lines that should be removed from merged versions.

JDime resolved 42 of the 69 conflicts via KL+ME or KL+KR+ME. We ob-

served JDime to often resolve conflicts by applying extra edits on top of branch

edits; most of the extra edits were about formatting changes. We inspected the685

22 cases incorrectly resolved by JDime, and observed that JDime managed to

31

Table 7: The comparison between resolution strategies applied by tools

Resolution Strategy KDiff3 FSTMerge JDime AutoMerge IntelliMerge

KL 4 9 9 9 10

KR 5 4 1 1 13

KL+KR 23 0 9 9 12

ME 0 14 2 2 0

KL+ME 0 21 14 16 3

KR+ME 1 6 6 7 4

KL+KR+ME 2 21 28 33 12

Total 35 75 69 77 54

KL means “keep local version”. KR means “keep remote version”. KL+KR means “keep edits

from both versions”. ME means “apply manual edits”. KL+ME means “apply local edits and

new manual edits”. KR+ME means “apply remote edits and new manual edits”. KL+KR+ME

means “apply edits from both branches, and new manual edits”.

integrate all branch edits into merged versions for 17 cases. However, developers

resolved these 17 conflicts mainly via KL or KR. Namely, JDime created merged

versions by integrating branch edits with its best effort, while developers do not

always merge in as many branch edits as possible.690

AutoMerge resolved 49 of the 77 conflicts via KL+ME or KL+KR+ME.

It also applied unnecessary formatting changes when resolving conflicts. We

observed that for all the 69 conflicts resolved by JDime, AutoMerge produced

exactly the same merged versions as JDime. This is because AutoMerge ex-

tended JDime, and shares most of its implementation with JDime. AutoMerge695

outperformed JDime by automatically resolving eight more conflicts, although

six of those resolutions do not match developers’ resolutions.

IntelliMerge resolved 37 of the 54 conflicts via KR, KL+KR, and KL+KR+ME.

Within the merged versions it produced, 25 versions do not match developers’

versions for 3 reasons. First, IntelliMerge shows preferences to KR in seven700

cases, where developers’ resolutions are KL, KL+KR, KL+KR+ME, or ME.

Second, in six cases, IntelliMerge applied KL+KR while developers resolved

five of the cases via KL or KR. Third, in five cases, IntelliMerge kept some lines

removed by one of the branches, while developers excluded those lines from their

merged versions.705

32

Our experiments also imply that if developers are flexible with the unex-

pected formatting changes introduced by software merge tools, they can use

AutoMerge for its better resolution automation. However, if developers are

picky about the coding style of generated merged versions and do not want pro-

grams reformatted by tools, they can think about using KDiff3 or IntelliMerge.710

Finding 3: AutoMerge resolved the most conflicts (i.e., 77) in our dataset,

while KDiff3 resolved the fewest (i.e., 35). KDiff3 acquired the highest reso-

lution desirability—83%, while FSTMerge got the lowest—44%.

6. Threats to Validity

Threats to External Validity. We limited the size of manually inspected conflict-

ing chunks. Namely, each conflicting chunk should have no more than 20 lines of715

unique lines from either branch. We used this 20-line limit, because conflicts al-

ways become harder for comprehension and characterization when they involve

more edits. Based on our experience so far, we are confident to properly analyze

the conflicting chunks that have no more than 20 lines of unique text by either

branch. To examine the generalizability of our observations to larger conflict720

chunks, we also manually inspected another 10 randomly sampled chunks with

more than 20 lines of unique text by either branch. We found that our major

findings based on the smaller conflicting chunks generalize well to larger chunks.

For instance, on this extra 10-sample dataset, we also observed that KDiff3 has

the best applicability and reports the most conflicts; tree-based software merge725

tools generally resolved more conflicts than KDiff3, although the resolutions do

not necessarily better match developers’ manual resolutions.

Our study is based on the 180 conflicts extracted from 180 Java project

repositories on GitHub. The characterization of conflicts, the observed reso-

lutions, and our experiment results may not generalize well to other conflicts,730

other projects, other programming languages, or other hosting platforms (e.g.,

BitBucket). However, as this study involves a lot of manual analysis, we have

spent a lot of time (i.e., over one year) creating the dataset, running experiments,

33

analyzing data, and validating our manual inspection results. In the future, we

plan to mitigate the issue by including more conflicts into ConflictBench.735

Threats to Construct Validity. For benchmark creation and tool evaluation,

we manually inspected (1) the sampled conflicts, (2) the merged versions hand-

crafted by developers, and (3) the merged versions output by tools. It is possible

that our manual analysis is subject to human bias and restricted by our domain

knowledge, but our unscalable manual analysis is very important and irreplace-740

able to characterize conflicts and their resolutions. To alleviate the problem of

manual analysis, both authors independently examined all data. They cross-

checked each other’s analysis results, and actively discussed the instances they

disagreed upon until clarifying the labeling criteria and reaching a consensus.

The authors inspected all data iteratively, to ensure that their analysis results745

are always consistent with the adjusted labeling criteria.

Threats to Internal Validity. Our heuristics to identify line updates may un-

derestimate the number of update operations actually applied by developers.

Specifically, we interpret edits as updates if (1) a number of deleted lines are

followed by the same number of added lines, and (2) each added line is at least750

50% similar to the corresponding deleted line. Based on (1), if one line is split

into two lines, our manual analysis may interpret the change as one deleted

line followed by two added lines, instead of a single update. Based on (2), if

line A is updated to line B and B is not very similar to A (i.e., with less than

50% similarity), our manual analysis interprets the change as one deleted line755

followed by an added line, instead of an update.

Such misinterpretation can impact our conflict classification based on edit

types, and may influence the number of conflicts falling into the categories

related to “U” and “DI”. For instance, some “DI vs. DI” cases can be relabeled

as “U vs. U”. However, based on our experience, only a few cases have such760

arguable labels. More importantly, such heuristics do not impact our labeling

for true/false conflicts in different projects. No matter whether a line is treated

to be deleted or updated, as long as two branches manipulate the same line(s)

34

divergently, we consider them to conflict. Correspondingly, if two branches

simultaneously manipulate different lines, we treat them to have no conflict.765

7. Related Work

The related work includes empirical studies on merge conflicts and on merge

techniques.

7.1. Empirical Studies on Merge Conflicts

Several studies characterize the relationship between merge con-770

flicts and software maintenance [22, 23, 24, 25, 26]. For instance, Estler

et al. [22] surveyed 105 student developers, and found that the lack of aware-

ness (i.e., knowing “who’s changing what”) occurs more frequently than merge

conflicts. Leßenich et al. [24] surveyed 41 developers and identified 7 potential

indicators (e.g., number of changed files in both branches) for merge conflicts.775

With further investigation of those indicators, the researchers found that none

can predict the conflict frequency. Similarly, Owhadi-Kareshk et al. defined nine

features (e.g., number of added and deleted lines in a branch) to characterize

merging scenarios; they trained a machine-learning model that predicts conflicts

with 57%–68% accuracy [26]. Ahmed et al. [23] studied how bad design (code780

smells) influences merge conflicts; they found that entities that are smelly are

three times more likely to be involved in merge conflicts. Mahmoudi et al. [25]

studied the relationship between refactorings and merge conflicts; they observed

that refactoring operations are involved in 22% of merge conflicts.

Similar to these studies, our research also constructs a dataset of merge785

conflicts and characterizes various aspects of those conflicts. However, it is

different in two aspects. First, we characterized the conflicts reported by git-

merge in terms of (1) the truth/falsity of reports, (2) types of branch edits, (3)

types of edited files, and (4) types of resolution strategies. Second, we conducted

an empirical study of five state-of-the-art merge tools by applying them to our790

dataset. No prior work does that.

35

Some studies analyze the conflicts reported by textual merge tools

(e.g., git-merge) [27, 28, 2, 29, 30, 9]. Specifically, Yuzuki et al. inspected

hundreds of conflicts [27]. They observed that conflicting updates caused 44%

of conflicts to the same line of code, and developers resolved 99% of conflicts by795

taking either the left- or right- version of code. Brindescu et al. [29] manually

characterized hundreds of conflicts in terms of the AST diff size, LOC diff size,

and the number of authors. They identified three resolution strategies: SELECT

ONE (i.e., keep edits from one branch), INTERLEAVE (i.e., keep edits from

both sides), and ADAPTED (i.e., change existing edits and/or add new edits).800

Pan et al. [30] explored the merge conflicts in Microsoft Edge; they classified

those conflicts based on file types, conflict locations, conflict sizes, and conflict-

resolution patterns. Driven by their empirical study, the researchers further

investigated to use program synthesis for conflict resolution.

Nguyen et al. [28] analyzed all merging scenarios in four project reposito-805

ries. They found that git-merge falsely reports many textual conflicts, when

concurrent edits are applied to adjacent code instead of same lines. Ghiotto

et al. [2] studied the textual conflicts found in 2,731 open-source Java projects.

They (1) characterized conflicts in terms of the number of chunks, size, and

programming language constructs involved, (2) classified developers’ resolution810

strategies, and (3) analyzed the relationship between conflict characteristics and

resolution strategies. Shen et al. [9] applied git-merge, automatic build, and au-

tomatic testing in sequence to reveal and study three kinds of conflicts: textual

conflicts, build conflicts, and test conflicts. Build conflicts refer to the merg-

ing scenarios where branch edits get merged smoothly, but the merged versions815

have build errors. Test conflicts refer to the scenarios where branch edits can

be merged, but the merged versions fail at least one test case.

None of the studies mentioned above define (1) a systematic way of classify-

ing or characterizing textual conflicts, or (2) metrics to measure tool effective-

ness. Also, they did not apply as many merge tools as we did to the same dataset820

for empirical comparison. As our dataset is similar to the datasets mentioned

in prior work, it is natural to think about reusing existing datasets instead of

36

creating a new one for tool evaluation. When we initially did our research, we

actually tried to reuse the dataset by Shen et al. [9], as that dataset characterizes

conflicts in terms of the truth/falsity of conflicts, edit types, edit locations, and825

resolution strategies. Unfortunately, because some characteristic labels (e.g.,

types of branch edits) are not precise and the imprecision can jeopardize the

rigor of tool evaluation, we spent lots of time defining and refining our criteria

for conflict characterization, reanalyzing and refining the data based on our cri-

teria, and validating analysis results via cross-checking between authors. Our830

detailed explanation in Section 3.2 justifies and clarifies our manual labeling

criteria, all of which are our new contributions compared with prior work [9].

7.2. Empirical Studies on Software Merge Tools

A few studies were recently conducted to empirically compare different merge

tools [11, 12, 13, 14]. Specifically, Cavalcanti et al. [11] created a dataset of 3,266835

merging scenarios, to compare FSTMerge with git-merge. They observed that

among all scenarios, FSTMerge reported fewer conflicts in 1,804 scenarios, git-

merge reported fewer conflicts in 283 scenarios, and both tools reported the same

number of conflicts in 1,179 scenarios. However, this study does not analyze

the false positives (wrongly reported conflicts) of either tool. Our empirical840

comparison between FSTMerge and KDiff3 (a line-based merge tool similar to

git-merge) confirmed the finding that FSTMerge reported fewer conflicts than

line-based merge tools. We identified two reasons to explain this observation.

First, FSTMerge is less applicable; it couldn’t handle some merging scenarios,

let alone to detect conflicts in those scenarios. Second, FSTMerge resolved more845

conflicts.

To overcome the limitation of prior work [11], in a later study [12], the same

research group summarized patterns to characterize the (a) scenarios where

FSTMerge produces more false positives or false negatives than KDiff3 (a tool

similar to git-merge), and (b) scenarios where KDiff3 produces more false posi-850

tives or false negatives than FSTMerge. Afterwards, they wrote scripts to locate

scenarios matching those patterns and compute overestimated numbers for (a),

37

as well as underestimated numbers of (b). By comparing the estimates between

tools, Cavacanti et al. concluded that the number of false positives is signifi-

cantly reduced when using FSTMerge; FSTMerge’s false positives are easier to855

analyze and resolve than those of KDiff3. However, such a tool comparison is

not reliable for two reasons. First, the comparison between overestimates and

underestimates does not precisely quantify the effectiveness difference between

tools. Second, the summarized pattern set does not cover all scenarios where

more false positives/negatives can occur. For instance, as mentioned in the pa-860

per, the researchers estimated the additional false positives of FSTMerge, by

assuming those false positives to occur only when one branch renames an entity

involved in the tool-reported conflict. Nevertheless, based on our experiment,

FSTMerge sometimes reported more false positives when edits are simultane-

ously applied to adjacent instead of same lines, even though no edit renames865

any entity.

Cavalcanti et al. [13] compared FSTMerge with JDime. They found that (i)

JDime reported more conflicts than FSTMerge (4,793 vs. 4,732); (ii) FSTMerge

detected conflicts with more false positives and JDime got more false negatives.

These two observations seem contradictory to each other because if (ii) is correct,870

(i) is probably incorrect and FSTMerge could have reported more conflicts than

JDime. However, this study does not explore why JDime obtained more false

negatives, neither does it explain whether the conflict resolution by either tool

matches developers’ manual resolution. Our study partially confirmed (ii) but

refuted (i): We observed FSTMerge to report more instead of fewer conflicts875

than JDime; FSTMerge’s detection precision is lower, meaning that the tool has

more false positives.

Seibt et al. [14] empirically compared three alternative merge algorithms

implemented in JDime: unstructured merge (i.e., line-based merge), semistruc-

tured merge (i.e., the algorithm in FSTMerge), and structured merge (i.e., the880

default algorithm in JDime). Among the algorithms, the complexity comparison

is “structured merge (S) > semistructured merge (SS) > unstructured merge

(US)”. Seibt et al. observed that using more complex merge strategies leads to

38

a statistically significant decrease in the number of conflicting merges. The re-

searchers also manually inspected 92 reported conflicts; they observed that (1)885

many of the false positives reported by US are due to the branch edits co-applied

to adjacent lines of source code, and (2) S reported false positives mainly due

to mismatches of AST nodes.

Our study confirms the numerical comparison of conflict reporting between

unstructured merge, semistructured merge, and structured merge [14]: We also890

found JDime to report fewer conflicts than FSTMerge, and FSTMerge to re-

port fewer conflicts than KDiff3. However, we believe that the reduction of

conflict reports does not necessarily imply technical advancement. According

to our study, FSTMerge reported fewer conflicts than KDiff3 due to its worse

applicability and stronger resolution-generation capability, although more of895

FSTMerge’s resolutions are undesirable than KDiff3’s. JDime reported fewer

conflicts than FSTMerge due to its worse applicability, more precise conflict

detection, and better conflict-resolution capability. When choosing among can-

didate merge tools, users should not base their selection solely on the number

of reported conflicts. Instead, they should assess tools’ capabilities in different900

dimensions (i.e., applicability, detection precision, and resolution desirability)

and find the one with the best trade-off fitting into their circumstances.

Different from all studies mentioned above, our work has more technical

depth as it compares more tools in a more comprehensive way. Although existing

studies mainly compare merge tools based on the number of conflicts they report,905

we chose not to do that. Our insight is that multiple factors can simultaneously

influence the number of conflicts a tool can report: the tool’s applicability, its

precision of conflict detection, and the power of conflict resolution. Namely,

the fact that a tool reports fewer conflicts does not necessarily mean that it is

better. To tease apart the influence of different factors, we carefully formulated910

ConflictBench—a benchmark that includes the oracle for true/false conflicts

residing in different kinds of files, and developers’ resolutions. After applying

five merge tools to ConflictBench, we analyzed the tools’ outputs with high rigor

and characterized scenarios where tools work differently.

39

8. Lessons Learned915

Our research provides insights on the evaluation of software merge tools,

empirical comparison between merge tools, and future research directions.

Evaluation of Software Merge Tools: Although researchers created

large-scale datasets to evaluate software merge tools, their evaluation mainly

focuses on counting the number of conflicts reported by individual tools. The920

basic assumption is that the fewer conflicts reported by a tool, the better that

tool is. However, we noticed that multiple factors contribute to the overall

quality of a tool, including (1) the applicability of the tool, (2) the precision

of conflict detection, (3) the correctness of tool-generated merged versions, and

(4) the alignment of that tool’s resolution preference with developers’ resolution925

preference. None of these factors can be easily assessed via conflict counting,

which requires an evaluation dataset to include more hand-crafted ground truth.

Empirical Comparison between Tools: Our experiments corroborate

the finding by prior work that when handling conflicts in Java files, JDime and

IntelliMerge outperform FSTMerge [7, 13, 6, 14]. However, we noticed that the930

better effectiveness of JDime and IntelliMerge should not be only attributed to

tool design. The implementation quality of tools matters a lot. Namely, FST-

Merge contains implementation issues that jeopardize the tool’s applicability,

and its capability of conflict detection as well as resolution. In comparison,

JDime and IntelliMerge have higher-quality implementations. Although Au-935

toMerge was proposed to extend and improve over JDime, our evaluation does

not witness the outperformance of AutoMerge. Our research empirically com-

pared JDime, IntelliMerge, and AutoMerge for the first time; no prior work

does that. These three tools complement each other in terms of design choices.

JDime has better capabilities of conflict detection as well as resolution than940

both AutoMerge and IntelliMerge.

Future Research Directions on Software Merge: We recommend fu-

ture researchers to empirically compare their new tools against several existing

merge tools, using a variety of metrics instead of purely comparing the conflict

40

counts. This is because existing tools make different design choices, to achieve945

different trade-offs between the tools’ applicability and effectiveness of conflict

handling. We recommend researchers to adopt ConflictBench, as its ground

truth characterizes conflicts from different angles, and thus can facilitate deeper

tool comparison. We also recommend future tools to resolve conflicts with con-

sideration on developers’ preferences, as we observed a gap between current950

tool-generated resolutions and human-crafted ones. One potential direction can

be (1) training a machine-learning model to predict developers’ preference given

a conflict, (2) combining existing tools to generate alternative resolutions for

that conflict, and (3) leveraging the model to select the best resolution.

Evaluation Extension to Projects in Other Programming Languages:955

Our research focuses on Java because the state-of-the-art tools predominantly

address textual conflicts in Java programs. Some of our observations can gen-

eralize well to projects in other languages. For instance, KDiff3 is a line-based

merge tool. It merges software without considering any program syntax; thus,

our observations of KDiff3 generally hold regardless of the programming lan-960

guage in use. FSTMerge can handle Java, C#, and Python programs; therefore,

our observations derived from Java programs can generalize to programs written

in either of the other two languages. JDime, IntelliMerge, and AutoMerge are

Java-specific, so they are inapplicable to other languages. Unless tool builders

reimplement the same tools for other languages, it is hard to tell how well our965

observations for these tools generalize. Furthermore, some language-specific fea-

tures can jeopardize the generalizability of our findings. For instance, Python

has strict rules on indentation, while Java does not. Thus, even if some tools can

correctly merge Java programs, their reimplementation may incorrectly merge

Python programs due to formatting changes. To evaluate the tool effectiveness970

in projects of other languages, more effort is required to create new datasets

and apply all usable tools to those datasets.

41

9. Conclusion

Software merge has been very important and challenging in software engi-

neering practice, and many researchers proposed a variety of tools to help with975

the software merge process. We believe that many factors can contribute to

the overall quality of a tool, so we argue that merge tools should be assessed in

different perspectives with ground-truth datasets that characterize conflicts in

a variety of ways.

To assess these factors and better compare the quality of different merge980

tools, we created a new benchmark named ConflictBench to label true/false

conflicts, the types of branch edits contributing to those conflicts, the files where

conflicts reside, and developers’ conflict resolutions. We also defined three met-

rics for tool evaluation: tool applicability, detection precision, and resolution

desirability. Furthermore, we experimented with five merge tools: KDiff3, FST-985

Merge, JDime, AutoMerge, and IntelliMerge, to demonstrate (1) the usage of

our benchmark in tool evaluation and (2) ConflictBench’s effectiveness of show-

ing divergence in tools’ effectiveness. Although our dataset is not as large as

the datasets used by prior work, its construction requires for a lot more manual

effort. Our dataset contains more valuable label information for deeper analysis;990

thus the evaluation based on ConflictBench can provide deeper insights in the

pros as well as cons of existing tools. Our research will shed light on future

research of software merge.

10. Acknowledgements

This works was supported by NSF-1845446 and NSF-2006278.995

11. Data Availability

Our program and data are available at https://github.com/UBOWENVT/

ConflictBench.

42

https://github.com/UBOWENVT/ConflictBench
https://github.com/UBOWENVT/ConflictBench
https://github.com/UBOWENVT/ConflictBench

References

[1] Git merge conflicts, https://www.atlassian.com/git/tutorials/1000

using-branches/merge-conflicts (2023).

[2] G. Ghiotto, L. Murta, M. Barros, A. van der Hoek, On the nature of merge

conflicts: A study of 2,731 open source java projects hosted by github,

IEEE Transactions on Software Engineering 46 (8) (2020) 892–915. doi:

10.1109/TSE.2018.2871083.1005

[3] Git - git-merge, https://git-scm.com/docs/git-merge (2023).

[4] T. Mens, A state-of-the-art survey on software merging, IEEE Transactions

on Software Engineering 28 (5) (2002) 449–462. doi:10.1109/TSE.2002.

1000449.

[5] S. Apel, J. Liebig, B. Brandl, C. Lengauer, C. Kastner, Semistructured1010

merge: Rethinking merge in revision control systems, in: Proceedings of

the 19th ACM SIGSOFT Symposium and the 13th European Conference

on Foundations of Software Engineering, ESEC/FSE ’11, ACM, New York,

NY, USA, 2011, pp. 190–200. doi:10.1145/2025113.2025141.

URL http://doi.acm.org/10.1145/2025113.20251411015

[6] B. Shen, W. Zhang, H. Zhao, G. Liang, Z. Jin, Q. Wang, Intellimerge: A

refactoring-aware software merging technique, Proc. ACM Program. Lang.

3 (OOPSLA) (Oct. 2019). doi:10.1145/3360596.

URL https://doi.org/10.1145/3360596

[7] S. Apel, O. Lessenich, C. Lengauer, Structured merge with auto-tuning:1020

Balancing precision and performance, in: Proceedings of the 27th

IEEE/ACM International Conference on Automated Software Engineer-

ing, ASE 2012, ACM, New York, NY, USA, 2012, pp. 120–129. doi:

10.1145/2351676.2351694.

URL http://doi.acm.org/10.1145/2351676.23516941025

43

https://www.atlassian.com/git/tutorials/using-branches/merge-conflicts
https://www.atlassian.com/git/tutorials/using-branches/merge-conflicts
https://www.atlassian.com/git/tutorials/using-branches/merge-conflicts
https://doi.org/10.1109/TSE.2018.2871083
https://doi.org/10.1109/TSE.2018.2871083
https://doi.org/10.1109/TSE.2018.2871083
https://git-scm.com/docs/git-merge
https://doi.org/10.1109/TSE.2002.1000449
https://doi.org/10.1109/TSE.2002.1000449
https://doi.org/10.1109/TSE.2002.1000449
http://doi.acm.org/10.1145/2025113.2025141
http://doi.acm.org/10.1145/2025113.2025141
http://doi.acm.org/10.1145/2025113.2025141
https://doi.org/10.1145/2025113.2025141
http://doi.acm.org/10.1145/2025113.2025141
https://doi.org/10.1145/3360596
https://doi.org/10.1145/3360596
https://doi.org/10.1145/3360596
https://doi.org/10.1145/3360596
https://doi.org/10.1145/3360596
http://doi.acm.org/10.1145/2351676.2351694
http://doi.acm.org/10.1145/2351676.2351694
http://doi.acm.org/10.1145/2351676.2351694
https://doi.org/10.1145/2351676.2351694
https://doi.org/10.1145/2351676.2351694
https://doi.org/10.1145/2351676.2351694
http://doi.acm.org/10.1145/2351676.2351694

[8] F. Zhu, F. He, Conflict resolution for structured merge via version space

algebra, Proc. ACM Program. Lang. 2 (OOPSLA) (2018) 166:1–166:25.

doi:10.1145/3276536.

URL http://doi.acm.org/10.1145/3276536

[9] B. Shen, M. A. Gulzar, F. He, N. Meng, A characterization study of merge1030

conflicts in java projects, ACM Trans. Softw. Eng. Methodol. 32 (2) (March

2023). doi:10.1145/3546944.

URL https://doi.org/10.1145/3546944

[10] F. Zhu, X. Xie, D. Feng, N. Meng, F. He, Mastery: Shifted-code-aware

structured merging, in: W. Dong, J.-P. Talpin (Eds.), Dependable Software1035

Engineering. Theories, Tools, and Applications, Springer Nature Switzer-

land, Cham, 2022, pp. 70–87.

[11] G. Cavalcanti, P. Accioly, P. Borba, Assessing semistructured merge in ver-

sion control systems: A replicated experiment, in: 2015 ACM/IEEE Inter-

national Symposium on Empirical Software Engineering and Measurement1040

(ESEM), 2015, pp. 1–10. doi:10.1109/ESEM.2015.7321191.

[12] G. Cavalcanti, P. Borba, P. Accioly, Evaluating and improving semistruc-

tured merge, Proc. ACM Program. Lang. 1 (OOPSLA) (Oct. 2017). doi:

10.1145/3133883.

URL https://doi.org/10.1145/31338831045

[13] G. Cavalcanti, P. Borba, G. Seibt, S. Apel, The impact of structure on

software merging: Semistructured versus structured merge, in: Proceedings

of the 34th IEEE/ACM International Conference on Automated Software

Engineering, ASE ’19, IEEE Press, 2019, pp. 1002–1013. doi:10.1109/

ASE.2019.00097.1050

URL https://doi.org/10.1109/ASE.2019.00097

[14] G. Seibt, F. Heck, G. Cavalcanti, P. Borba, S. Apel, Leveraging structure

in software merge: An empirical study, IEEE Transactions on Software

Engineering 48 (11) (2022) 4590–4610. doi:10.1109/TSE.2021.3123143.

44

http://doi.acm.org/10.1145/3276536
http://doi.acm.org/10.1145/3276536
http://doi.acm.org/10.1145/3276536
https://doi.org/10.1145/3276536
http://doi.acm.org/10.1145/3276536
https://doi.org/10.1145/3546944
https://doi.org/10.1145/3546944
https://doi.org/10.1145/3546944
https://doi.org/10.1145/3546944
https://doi.org/10.1145/3546944
https://doi.org/10.1109/ESEM.2015.7321191
https://doi.org/10.1145/3133883
https://doi.org/10.1145/3133883
https://doi.org/10.1145/3133883
https://doi.org/10.1145/3133883
https://doi.org/10.1145/3133883
https://doi.org/10.1145/3133883
https://doi.org/10.1145/3133883
https://doi.org/10.1109/ASE.2019.00097
https://doi.org/10.1109/ASE.2019.00097
https://doi.org/10.1109/ASE.2019.00097
https://doi.org/10.1109/ASE.2019.00097
https://doi.org/10.1109/ASE.2019.00097
https://doi.org/10.1109/ASE.2019.00097
https://doi.org/10.1109/ASE.2019.00097
https://doi.org/10.1109/TSE.2021.3123143

[15] J. Eibl, The KDiff3 Handbook, https://kdiff3.sourceforge.net/doc/1055

index.html.

[16] jFSTMerge, https://github.com/guilhermejccavalcanti/jFSTMerge

(2021).

[17] Merge branch ’OperatorAsObservable’ of github.com:akarnokd/RxJava

into merge-asObservable, https://github.com/ReactiveX/RxJava/1060

commit/45c9dc85 (2014).

[18] GitHub - joliebig/featurehouse: language independent software composi-

tion and merging, https://github.com/joliebig/featurehouse (2017).

[19] GitHub - se-sic/jdime: syntactic merge tool for java, https://github.

com/se-sic/jdime (2019).1065

[20] thufv/automerge: Resolve conflicts via version space algebra in structured

merge, https://github.com/thufv/automerge (2018).

[21] GitHub - Symbolk/IntelliMerge: A graph-based refactoring-aware three-

way merging tool for Java programs, https://github.com/Symbolk/

IntelliMerge (2021).1070

[22] H. C. Estler, M. Nordio, C. A. Furia, B. Meyer, Awareness and merge con-

flicts in distributed software development, in: 2014 IEEE 9th International

Conference on Global Software Engineering, IEEE, 2014, pp. 26–35.

[23] I. Ahmed, C. Brindescu, U. A. Mannan, C. Jensen, A. Sarma, An em-

pirical examination of the relationship between code smells and merge1075

conflicts, in: 2017 ACM/IEEE International Symposium on Empirical

Software Engineering and Measurement (ESEM), 2017, pp. 58–67. doi:

10.1109/ESEM.2017.12.

[24] O. Leßenich, J. Siegmund, S. Apel, C. Kästner, C. Hunsen, Indicators

for merge conflicts in the wild: survey and empirical study, Automated1080

Software Engineering 25 (2) (2018) 279–313.

45

https://kdiff3.sourceforge.net/doc/index.html
https://kdiff3.sourceforge.net/doc/index.html
https://kdiff3.sourceforge.net/doc/index.html
https://github.com/guilhermejccavalcanti/jFSTMerge
https://github.com/ReactiveX/RxJava/commit/45c9dc85
https://github.com/ReactiveX/RxJava/commit/45c9dc85
https://github.com/ReactiveX/RxJava/commit/45c9dc85
https://github.com/joliebig/featurehouse
https://github.com/se-sic/jdime
https://github.com/se-sic/jdime
https://github.com/se-sic/jdime
https://github.com/thufv/automerge
https://github.com/Symbolk/IntelliMerge
https://github.com/Symbolk/IntelliMerge
https://github.com/Symbolk/IntelliMerge
https://doi.org/10.1109/ESEM.2017.12
https://doi.org/10.1109/ESEM.2017.12
https://doi.org/10.1109/ESEM.2017.12

[25] M. Mahmoudi, S. Nadi, N. Tsantalis, Are refactorings to blame? an em-

pirical study of refactorings in merge conflicts, in: 2019 IEEE 26th In-

ternational Conference on Software Analysis, Evolution and Reengineering

(SANER), 2019, pp. 151–162. doi:10.1109/SANER.2019.8668012.1085

[26] M. Owhadi-Kareshk, S. Nadi, J. Rubin, Predicting merge conflicts in collab-

orative software development, https://arxiv.org/pdf/1907.06274.pdf

(2019).

[27] R. Yuzuki, H. Hata, K. Matsumoto, How we resolve conflict: an empirical

study of method-level conflict resolution, in: 2015 IEEE 1st International1090

Workshop on Software Analytics (SWAN), 2015, pp. 21–24. doi:10.1109/

SWAN.2015.7070484.

[28] H. L. Nguyen, C.-L. Ignat, An analysis of merge conflicts and resolutions

in git-based open source projects, Computer Supported Cooperative Work

(CSCW) 27 (3) (2018) 741–765. doi:10.1007/s10606-018-9323-3.1095

URL https://doi.org/10.1007/s10606-018-9323-3

[29] C. Brindescu, I. Ahmed, C. Jensen, A. Sarma, An empirical investigation

into merge conflicts and their effect on software quality, Empirical Software

Engineering 25 (1) (2020) 562–590. doi:10.1007/s10664-019-09735-4.

URL https://doi.org/10.1007/s10664-019-09735-41100

[30] R. Pan, V. Le, N. Nagappan, S. Gulwani, S. Lahiri, M. Kaufman, Can

program synthesis be used to learn merge conflict resolutions? an empirical

analysis, in: Proceedings of the 43rd International Conference on Software

Engineering, ICSE ’21, IEEE Press, 2021, pp. 785–796. doi:10.1109/

ICSE43902.2021.00077.1105

URL https://doi.org/10.1109/ICSE43902.2021.00077

46

https://doi.org/10.1109/SANER.2019.8668012
https://arxiv.org/pdf/1907.06274.pdf
https://doi.org/10.1109/SWAN.2015.7070484
https://doi.org/10.1109/SWAN.2015.7070484
https://doi.org/10.1109/SWAN.2015.7070484
https://doi.org/10.1007/s10606-018-9323-3
https://doi.org/10.1007/s10606-018-9323-3
https://doi.org/10.1007/s10606-018-9323-3
https://doi.org/10.1007/s10606-018-9323-3
https://doi.org/10.1007/s10606-018-9323-3
https://doi.org/10.1007/s10664-019-09735-4
https://doi.org/10.1007/s10664-019-09735-4
https://doi.org/10.1007/s10664-019-09735-4
https://doi.org/10.1007/s10664-019-09735-4
https://doi.org/10.1007/s10664-019-09735-4
https://doi.org/10.1109/ICSE43902.2021.00077
https://doi.org/10.1109/ICSE43902.2021.00077
https://doi.org/10.1109/ICSE43902.2021.00077
https://doi.org/10.1109/ICSE43902.2021.00077
https://doi.org/10.1109/ICSE43902.2021.00077
https://doi.org/10.1109/ICSE43902.2021.00077
https://doi.org/10.1109/ICSE43902.2021.00077
https://doi.org/10.1109/ICSE43902.2021.00077
https://doi.org/10.1109/ICSE43902.2021.00077

	Introduction
	Background
	Terminology
	Line-Based Three-Way Merge
	Tree-Based or Syntax-Based Software Merge Tools
	Current Assessments of Software Merge Tools

	Methodology
	The Whole Process of Benchmark Creation
	Details of Our Manual Analysis
	Edit Comprehension
	Conflict Diagnosis
	Developers' Resolutions

	The Dataset of ConflictBench
	True or False Conflicts
	Conflict Classification Based on Edit Types
	Conflict Classification Based on File Types
	Conflict Classification Based on Resolution Strategies

	Experiment
	Five Software Merge Tools
	Experiment Setting
	Metrics
	Results
	Applicability Comparison between Tools
	The Comparison of Detection Precision between Tools
	The Comparison of Resolution Desirability between Tools

	Threats to Validity
	Related Work
	Empirical Studies on Merge Conflicts
	Empirical Studies on Software Merge Tools

	Lessons Learned
	Conclusion
	Acknowledgements
	Data Availability

