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ABSTRACT

Developers build programs based on software libraries to reduce
coding effort. If a program inappropriately sets an API parameter,
the program may exhibit unexpected runtime behaviors. To help
developers correctly use library APIs, researchers built tools to mine
API parameter rules. However, it is still unknown (1) what types of
parameter rules there are, and (2) how these rules distribute inside
documents and source files. In this paper, we conducted an empirical
study to investigate the above-mentioned questions. To analyze
as many parameter rules as possible, we took a hybrid approach
that combines automatic localization of constrained parameters
with manual inspection. Our automatic approach—PaRu—locates
parameters that have constraints either documented in Javadoc (i.e.,
document rules) or implied by source code (i.e., code rules). Our
manual inspection (1) identifies and categorizes rules for the located
parameters, and (2) establishes mapping between document and
code rules. By applying PaRu to 9 widely used libraries, we located
5,334 parameters with either document or code rules. Interestingly,
there are only 187 parameters that have both types of rules, and 79
pairs of these parameter rules are unmatched. Additionally, PaRu
extracted 1,688 rule sentences from Javadoc and code. We manually
classified these sentences into six categories, two of which are
overlooked by prior approaches. We found that 86.2% of parameters
have only code rules; 10.3% of parameters have only document
rules; and only 3.5% of parameters have both document and code
rules. Our research reveals the challenges for automating parameter
rule extraction. Based on our findings, we discuss the potentials of
prior approaches and present our insights for future tool design.
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1 INTRODUCTION

Software libraries (e.g., J2SE [4]) are widely used, because they
provide thousands of reusable APIs. Incorrectly using APIs can
cause programming errors, slow down code development, or even
introduce security vulnerabilities to software [20, 44]. Since cor-
rectly using APIs is important for programmer productivity and
software quality, researchers have built various approaches that
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detect or check API usage rules by analyzing code or documen-
tation [27, 46, 54]. For instance, Engler et al. [27] mined frequent
calling sequences of method APIs from the code of operating sys-
tems, and revealed abnormal API usage. As another example, Zhong
et al. [54] inferred API specifications from library documentation.

Although the above approaches mainly focus on API invocation
sequences, the careful selection of legal parameter values is also
important for developers to ensure the correctness of API usage.
In the literature, researchers [28, 80] have proposed approaches
to mine API parameter rules. For instance, Ernst et al. [28] built
Daikon to infer invariants of variables’ values from dynamic pro-
filing of program executions. Zhou et al. [80] detected defects in
API documents using techniques of program analysis and natu-
ral language processing. Both approaches extract rules based on
predefined templates.

Although prior studies (e.g., Polikarpova et al.[56]) show that the
above approaches inferred useful parameter rules, many research
questions in this research line are still open. For instance, what
types of parameter rules are there, and how do those parameter
rules distribute among documents and source files? These questions
are important because without an overview of the API parameter
rules existing in libraries, it is hard to tell how far we are from
the fully automatic approaches that (i) detect constraints on API
parameters, (ii) document the parameter rules reflected by code, and
(iii) reveal any constraint violation in the client code of libraries.

To explore these questions, in this paper, we conducted an ex-
tensive empirical study on parameter rules. Specifically, to reveal
as many parameter rules as possible, we took a hybrid approach
by combining automatic fact revealing and manual inspection. In
particular, given a library, it can be very time-consuming for us
to manually read all code and Javadoc comments to identify and
summarize the parameter rules. Therefore, we built an approach—
PaRu (Parameter Rules)—to locate (1) rule descriptions in Javadoc,
and (2) method APIs whose source code has parameter-related ex-
ception declarations or assert statements. Although PaRu cannot
comprehend or interpret any described or implied rule, it can locate
the parameters with candidate rules for further manual inspection.
Here, a candidate rule is a rule sentence or a parameter-related
exception/assertion located by PaRu.

In the second step, for each parameter located by PaRu, we man-
ually examined the rule description in Javadoc or inspected the
code with related exception or assertion. In this way, we can com-
prehend the meaning of each located candidate rule, and explore
the following research questions:
• RQ1:What is the categorization of API parameter rules? Prior

work shows that there are constraints on the values, value
ranges, or data types of API parameters [80]. However, we
were curious whether there is any parameter rule that does
not fall into the known categories. This question is important
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because by revealing new types of rules, we may shed light
on future rule extraction tools.
• RQ2: How do rules distribute in Javadoc and code implemen-
tation? Our investigation for this question serves multiple
purposes. For instance, if most rules only exist in code, we
need new approaches that generate Javadoc comments from
code to automate rule documentation. If the rules in Javadoc
and source code often conflict with each other, we need new
tools to detect and resolve the contradiction.

By applying PaRu to 9 widely used software libraries that con-
tain in total 14,392 source files, we located 5,334 parameters with
candidate rules. Based on these parameters and their rules, we made
the following major observations.
• There are five major categories of parameter rules, with the
sixth category (i.e., “other”) covering miscellaneous rules. We
analyzed 1,688 rule-related sentences, which are located in
either Javadoc comments or the exception messages of code.
In addition to the known categories such as null-value, con-
stant values, and value ranges, we found that 18.5% of the
studied rules constrain parameters’ formats (e.g., “csvKey-
ValueDelimiter must be exactly 1 character”); while 5.3% of
rules describe the relation between different parameters (e.g.,
“polyLats and polyLons must be equal length” ). The miscella-
neous rules count for 7.0% of the inspected data. In total, we
identified three new rule categories that were unknown.
• The majority of studied rules are implicitly indicated by API
code. Specifically, 86.2% of parameters have rules defined in
code, while 10.3% of parameters’ rules are defined in Javadoc.
The results imply that developers seldom describe parameter
usage explicitly, which can cause significant confusion on
users of the APIs. We only found 2.0% of the parameters to
have consistent rules that are reflected in both Javadoc and
code. Even fewer parameters (1.5%) have inconsistent rules,
i.e., mismatches between the document rules and code rules
for the same parameters. Such inconsistencies are usually not
bugs. Instead, the rules describe different and complementary
constraints on the same parameters.

The rest of this paper is organized as follows. Section 2 intro-
duces the background. Section 3 presents our support tool. Section 4
presents our empirical study. Section 5 interprets our findings. Sec-
tion 6 discuss the potentials of related tools. Section 8 introduces
the related work. Section 9 concludes this paper.

2 BACKGROUND

This section defines terms related to API parameter rules (Sec-
tion 2.1), and overviews rule-mining techniques (Section 2.2).

2.1 Terminologies

API parameter rules describe or reflect the constraints on pa-
rameters of API methods. Such constraints are imposed by either
software library implementation or application domains, and may
limit the value or format of any parameter. Rule violations can
cause coding errors and jeopardize developers’ productivity. In our
research, we focus on the parameter rules of public APIs, as these
APIs are visible to library users and the rules can affect those users.

1 / ∗ ∗ . . .
2 ∗ @param s e a r c h e r I n d e x S e a r c h e r t o f i n d n e a r e s t p o i n t s

from .
3 ∗ @param f i e l d f i e l d name . must not be n u l l .
4 ∗ @param l a t i t u d e l a t i t u d e a t the c e n t e r : must be

w i t h i n s t a n d a r d +/−90 c o o r d i n a t e bounds .
5 ∗ @param l o n g i t u d e l o n g i t u d e a t the c e n t e r : must be

w i t h i n s t a n d a r d +/−180 c o o r d i n a t e bounds .
6 ∗ @param n the number o f n e a r e s t n e i g h b o r s t o r e t r i e v e
7 ∗ /
8 public s t a t i c TopF ie ldDocs n e a r e s t ( I n d e x S e a r c h e r

s e a r c h e r , S t r i n g f i e l d , double l a t i t u d e , double

l o n g i t u d e , in t n ) {
9 G e o U t i l s . c h e c k L a t i t u d e ( l a t i t u d e ) ;

10 G e o U t i l s . c h e c k L o n g i t u d e ( l o n g i t u d e ) ;
11 i f ( n < 1 ) {
12 throw new I l l e g a l A r g u m e n t E x c e p t i o n ( " n ␣ must ␣ be ␣ a t ␣

l e a s t ␣ 1 ; ␣ go t ␣ " + n ) ;
13 }
14 i f ( f i e l d == null ) {
15 throw new I l l e g a l A r g u m e n t E x c e p t i o n ( " f i e l d ␣ must ␣ not ␣

be ␣ n u l l " ) ;
16 }
17 i f ( s e a r c h e r == null ) {
18 throw new I l l e g a l A r g u m e n t E x c e p t i o n ( " s e a r c h e r ␣ must ␣

not ␣ be ␣ n u l l " ) ;
19 } . . . }
20 / ∗ ∗ v a l i d a t e s l a t i t u d e v a l u e i s w i t h i n s t a n d a r d +/−90

c o o r d i n a t e bounds ∗ /
21 public s t a t i c void c h e c k L a t i t u d e ( double l a t i t u d e ) {
22 i f ( Double . isNaN ( l a t i t u d e ) | | l a t i t u d e < MIN_LAT_INCL

| | l a t i t u d e > MAX_LAT_INCL ) {
23 throw new I l l e g a l A r g u m e n t E x c e p t i o n ( " i n v a l i d ␣

l a t i t u d e ␣ " + l a t i t u d e + " ; ␣ must ␣ be ␣ between ␣ "
+ MIN_LAT_INCL + " ␣ and ␣ " + MAX_LAT_INCL ) ;

24 } }

(a) A piece of API code with rules defined in Javadoc

Parameters:
searcher - IndexSearcher to find nearest points from.
field - field name. must not be null.
latitude - latitude at the center: must be within standard

+/-90 coordinate bounds.
longitude - longitude at the center: must be within

standard +/-180 coordinate bounds.
n - the number of nearest neighbors to retrieve.

(b) The Javadoc of the nearestmethod, which is generated from its

code comments with the @param tags

Figure 1: Example parameter rules

As shown in Figure 1a, there is a method API nearest(...) de-
fined in the Lucene library [1]. Among the five parameters de-
fined for the API, one parameter is field. According to the API
implementation, field must not be null, because the code throws
an IllegalArgumentException if the parameter is null. Correspond-
ingly, the library developers described this rule in the Javadoc

comment enclosed by “/**” and “*/”. In particular, when the tag
@param is used in the comment to declare a parameter and describe
the related rule(s) (see Figure 1a), a document on the parameter us-
age can be automatically generated when the method is publicized
as a library method interface [9] (see Figure 1b).

Since parameter rules can be either explicitly mentioned in
Javadoc comments or implicitly indicated by exceptions/assertions
in code, we defined two terms to reflect the data sources of rules.

Definition 2.1. A document rule is an API parameter rule ob-
served in API Javadoc, tagged with @param.
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Definition 2.2. A code rule is an API parameter rule inferred
from API source code.

In Figure 1a, field has both a document rule and a code rule. It is
also possible that a parameter has only one kind of rule or no rule
at all. For instance, the parameter searcher in Figure 1a has a code
rule but no document rule.

Definition 2.3. A rule sentence is a sentence that explicitly de-
scribes constraints on a parameter.

In Javadoc, a document rule always corresponds to a rule sentence.
In API implementation, a code rule may or may not correspond
to a rule sentence. As shown in Figure 1a, an exception message
explicitly mentions a parameter rule—“field must not be null”, so
we consider the message string as a rule sentence. There are also
scenarios where an invalid parameter can trigger an exception in
API implementation, but the exception message does not explicitly
describe any rule. For such cases, there are code rules implied by
the exceptions but there is no rule sentence in the code.

Definition 2.4. Rule localization is the process to identify rules
(i.e., document and code rules) in library implementation.

Definition 2.5. Rule comprehension is the process to interpret
the meaning of a localized rule.

Definition 2.6. Rule extraction/mining involves both rule lo-
calization and rule comprehension.

In our research, we treat rule extraction as a two-step procedure.
To extract a parameter rule, we first localize rules no matter whether
they are in the format of rule sentences or exception-throwing/assertion
code chunks. Next, for each localized rule, we summarize the mean-
ing or semantics.

2.2 Existing Rule Extraction Techniques

Researchers explored various techniques to extract API parameter
rules from client code, API documents, and/or API code.

MiningClient Code. Client code is the source code that invokes
APIs. Given a software library, many approaches identify client
code of the library in open source projects [23, 28, 49, 70]. Some of
the approaches then compile and execute client projects [23, 28, 70].
They leverage dynamic analysis to collect the execution traces,
gather run-time values of variables, and further infer invariants on
the exact value or value ranges of parameters. Nguyen et al. use a
light-weight, intra-procedural, static analysis technique to analyze
the guard conditions in client code before an API is invoked [49].
This approach is limited by the API parameter rules sensed by
developers of client code.

Mining Library Documents. Library documents describe the
functionalities and usage of APIs in natural languages. Existing ap-
proaches typically analyze such documents with natural language
processing techniques [54, 80]. These approaches usually define
parsing semantic templates to locate specific natural language sen-
tences, and convert those sentences to method specifications. For
instance, one of the templates defined by Pandita et al. [54] is “(sub-
ject) (verb) (object)”, which can locate rule sentences like “The path
cannot be null”.

Table 1: Subject projects.

Names Files Methods Ex. Para. Doc.
commons-io 246 1,534 413 1,936 1,590

pdfbox 1,295 6,392 484 6,375 3,949
shiro 711 2,090 237 1,960 854
itext 1,503 8,930 1,110 11,089 5,784
poi 3,493 16,599 2,315 17,792 5,218

jfreechart 987 6,847 450 8,728 8,672
lucene 4,124 12,204 3,163 16,022 3,454

asm 269 1,925 274 2,614 1,015
jmonkey 1,764 10,867 1,312 14,470 4,679

total 14,392 67,388 9,758 80,986 35,215

Mining Library Code. Library or framework code is the imple-
mentation of class, method, or field APIs. Existing approaches use
static analysis to infer parameter rules from API source code [17, 80].
Specifically, the state-of-the-art approach of parameter rule extrac-
tion was introduced by Zhou et al. [80], who combined document
analysis with code analysis. For document analysis, Zhou et al. de-
fined four parsing semantic templates (e.g., “(subject) equal to null”)
to locate document rules. Meanwhile, for code analysis, they located
exception throwing declarations in the body of any method API
m. Then they related the declarations with any formal parameter
defined by either m or other methods invoked by m. If a parameter p
can trigger a thrown exception in any program execution path, they
generated code rules by synthesizing all constraints on the path(s)
for p’s value. By comparing the document rules and code rules of
the same API parameters, they reported defective document rules.
The approach’s effectiveness is limited by (1) the representativeness
of defined rule templates, and (2) the precision of static analysis.

All above-mentioned techniques can automatically localize and
comprehend certain rules. For this paper, we intended to identify
as many parameter rules as possible in popular libraries, and assess
(1) what types of parameter rules there are, and (2) how parameter
rules distribute among documents and source files.

3 PARU

In this section, we first present our dataset (Section 3.1), and then
introduce how PaRu extracts document rules (Section 3.2) and
code rules (Section 3.3) from source files. Section 3.4 shows the
f-scores of PaRu. PaRu focuses on rule localization instead of rule
comprehension. PaRu borrows ideas from current rule mining tools,
but can locate more diverse parameter rules in a scalable way.

3.1 Dataset

Table 1 shows the nine subject libraries. Column “Names” lists
the names of libraries. In particular, asm [2] is an analysis library
for Java bytecode, and jmonkey [5] is a game engine framework.
Except jfreechart, all the other libraries were collected from the
Apache foundation [8]; these libraries were designed for purposes
like assisting IO functionalities, manipulating different types of files,
and performing security managements. We selected these subjects
because they are widely used in various programming contexts.
For instance, a search of the keyword, lucene, returns more than
3,000 projects. Some of these projects (e.g., itext), have been used in
the evaluations of the prior rule-mining approaches [79]. Column
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2018/4/22

1

root escher container from which escher records must be taken
VB NN NN IN WDT NN NNS MD VB VBN

dobj
advcl compound

aux

auxpass

compound

mark
dobj nsubjpass

(a) A sentence without rules

2018/4/22

1

The base URL must not contain parameters
DT NN NN MD RB VB NNS

det
compound

nsubj

aux neg dobj

(b) A rule sentence

Figure 2: The dependency tree

“Files” lists the number of Java source files. Column “Methods”
lists the number of suspicious methods. A suspicious method is a
public method that has either an assert/throw statement or a pa-
rameter document. Column “Ex.” lists the number of assert/throw
statements inside the suspicious methods. Column “Para.” lists the
number of parameters of the suspicious methods. Column “Doc.”
lists the number of parameters that have documents.

3.2 Step 1. Identifying Document Rules

Our extraction focuses on the parameter documentation labeled
with @param tags. PaRu uses the Stanford parser [66] to build part-
of-speech (POS) tags and dependencies among words of sentences.
Figure 2 shows the parsing results of two sentences. The grey
annotations under words denote their POS tags (e.g., NN for noun).
The arrows between words denote their dependencies. For example,
the dobj arrow in Figure 2 implies that the direct object of contain
is parameters. The nsubj arrow shows that the subject of contain
is URL. More definitions of such dependencies are available in the
Stanford parser manual [7]. Although the sentence in Figure 2a has
a modal verb (i.e., must), it does not define any rule. This sentence
describes what a root escher container is and its relation to escher
records, but the sentence does not define any constraint on the
container usage. PaRu determines that a sentence is a document

rule, only if (1) the sentence uses at least one modal verb, and (2)
the modal verb does not appear in sub-clauses. PaRu relies on the
tag MD to identify any modal verb within {must, shall, should, can,
may}, because according to our observation, document rules usually
contain such words.

Some rule-mining approaches [54, 80] define NLP templates
to mine rules, while some other approaches (e.g., a variable can
be null as defined in Zhou et al. [80]) include can and may as
keywords when mining parameter rules. The goal of our study is
not to reveal the implementation flaws in existing approaches, but
to provide insights for follow-up researchers. To achieve this goal,
we tried to reveal as many parameter rules as possible. Thus, we had
to consider what existing approaches have done when designing
PaRu. When the NLP-based approaches [54, 80] rely on parsing
semantic templates to mine rules, they may miss rule sentences that
do not match any predefined template. Thus, we designed PaRu
to use modal verbs instead of templates to locate rules. Although
can and may are less compulsory than the other modal verbs we
use, because the two words were mentioned by prior work [80], we
simply included them in our modal verb set for completeness.

1 public Quatern ion fromAxes ( V e c t o r 3 f [ ] a x i s ) {
2 i f ( a x i s . l e n g t h != 3 ) {
3 throw new I l l e g a l A r g u m e n t E x c e p t i o n ( " Axis ␣ a r r a y ␣

must ␣ have ␣ t h r e e ␣ e l e m e n t s " ) ;
4 }
5 return fromAxes ( a x i s [ 0 ] , a x i s [ 1 ] , a x i s [ 2 ] ) ;
6 }

(a) The code of the fromAxes method

2018/11/2

1

para v2

4 = arraylength

conditional branch (eq, to iindex=9)

14 = new IllegalArgumentException

invokespecial init(String) 

throw

7 = arrayload 2[6]

9 = arrayload 2[8]

… …throw new IllegalArgumentException(…)

data dependency

control dependency

1

2

3

4

5

6

7

8

(b) The SDG of the fromAxes method

2020/1/4

1

parameter conditional branch exception clique
n>0 n=1

(c) A path template that indicates parameter rules

Figure 3: Our analysis on SDGs

3.3 Step 2. Extracting Code Rules

The basic process of identifying parameter code rules. PaRu
is built upon WALA [12]. PaRu first scans the Abstract Syntax
Trees (AST) of source code to locate throw and assert statements.
If a method API implementation includes such a statement, PaRu
further builds a system dependency graph (SDG) for the API:

Definition 3.1. An SDG is a graph д = ⟨V , E⟩, where V is a set
of nodes corresponding to code instructions, and E ⊆ V ×V is a
set of directed edges. Any edge, e.g., ⟨s1, s2⟩ ∈ E, denotes a data or
control dependency from s1 to s2.

Definition 3.2. An exception clique is an SDG subgraph, that
corresponds to an exception-throwing statement or assertion.

To construct an SDG that visualizes any control or data depen-
dencies within Java code, WALA first translates source code into
its intermediate representation called IR [10] by converting each
source line to one or more IR instructions. Next, WALA creates a
node for each instruction, and connects nodes with directed edges
based on the control or data dependencies between instructions.

For the example shown in Figure 3, an exception-throwing state-
ment (see Line 3 in Figure 3a) is converted to three instructions,
corresponding to three nodes in an SDG (see nodes 4○, 5○, and 6○
in Figure 3b). We use exception clique to refer to the subgraph
that consists of these three nodes and any edges in between (see
dashed region in Figure 3b). Similarly, WALA translates each as-
sert statement into three IR instructions, whose nodes compose an
exception clique similar to the one shown in Figure 3b. The only
difference is that an assert statement replaces 4○ with a node for
the AssertionError creation instruction. To detect code rules, PaRu
locates both types of exception cliques in SDGs.

Given the method implementation of a public API, PaRu first
identifies the declared parameters in the method header and locates
all exception cliques in the body. For each located exception clique
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Algorithm 1: findAllPaths Algorithm
Require:

sn is a source node
tn is a target node

Ensure:

paths denotes all the paths from sn to tn
1: nextNodes ← sn .successors
2: for nextNode ∈ nextNodes do
3: if nextNode .equal (tn) and path .isV alid () then
4: stack ← new Stack
5: for node ∈ path do

6: stack .add (node)
7: end for

8: paths .add (stack )
9: else if nextNode < path and path .isPar tialV alid () then

10: path .push(nextNode)
11: f indAllPaths(nextNode , to)
12: path .pop()
13: end if

14: end for

in SDG, PaRu checks whether the clique is reachable from any pa-
rameter, i.e., whether there is any path that starts from a parameter
declaration and goes through the exception clique. When such a
path is found, PaRu concludes that the exception clique depends on
the parameter and there is an implicit constraint on the parameter
value. Figure 3c shows an exemplar path that PaRu can find. The
path starts with the declaration of parameter n, goes through an
if-condition that checks the parameter value range, and ends with
an exception clique that prints “n=1” in the error message.

Algorithm 1 shows the details of searching for all the valid paths
from a given source node to a target node. Before adding a path to
the set of valid paths, PaRu checks the path at Line 3. However, if it
only checks the path at Line 3, it has to search many invalid paths
between Line 10 and Line 12. As each statement is split into multiple
nodes in an SDG, SDGs can become quite large if a method is long.
To reduce the search effort, we add another check to Line 9. At this
line, it is infeasible to fully determine whether a path is valid, but
we can remove many invalid paths. For example, if we find that an
if-condition has no data dependency on any parameter, we can stop
the exploration of its successors. As a path is incomplete at Line 9,
at this point, PaRu concludes that a path is invalid if the incomplete
path is not a prefix of a valid path. As shown in Figure 1a, code
rules can have rule sentences. After a valid path is extracted, PaRu
further extracts rule sentences from the thrown message, and such
sentences are later manually analyzed (Sections 4.1.1 and 4.2.1).

Slicing. Algorithm 1 is less effective to find valid paths, if a
graph is quite large. For example, when searching for all the valid
paths from 1○ to 4, 5, 6 in Figure 3b, Algorithm 1 will explore the
paths such as 1○ −→ 7○ and 1○ −→ 8○. When an SDG is large, the
exploration is time-consuming. Weiser [72] proposed the concept
of program slicing. Given a program location l and a variable v , the
backward slicing intends to find all the statements of the program
that can affect the value of v at l . For each exception clique, PaRu
locates the backward slice before it searches for all valid paths, in
order to save the search effort. In particular, WALA has a program

Table 2: The precision, recall, and f-score of PaRu.

Name Precision Recall F-score
commons-io 98.0% 94.2% 96.1%

pdfbox 92.9% 88.1% 90.4%
shiro 95.5% 96.9% 96.2%
itext 89.9% 94.7% 92.2%
poi 98.8% 96.4% 95.2%

jfreechart 95.3% 83.6% 89.1%
lucene 85.2% 100.0% 92.0%

asm 98.9% 96.9% 97.9%
jmonkey 93.8% 88.4% 91.0%

slicer [11]. Given a statement and an SDG, the slicer finds all the
statements that appear in the backward slice of the statement. For
each slice, PaRu builds a smaller SDG that contains only nodes of
the slice. After SDGs are sliced, for Figure 3b, Algorithm 1 does not
explore 7○ or 8○, since they do not appear in the sliced SDG.

3.4 The F-scores of PaRu

We were curious how effectively PaRu can locate parameter rules,
so we constructed a ground truth data set of parameter rules for
some Java files, and applied PaRu to those files to automatically
locate rules. By comparing PaRu’s reports against our ground truth,
we assessed the precision, recall, and f-score of PaRu.

The setting. The third and the fourth authors are two PhD stu-
dents in Computer Science, who have more than three years of Java
coding experience. To construct the ground truth data set for PaRu
evaluation, the two students read source files in Table 1, and tried
their best to manually recognize parameter rules in those files. As
these students did not read or write any source code for PaRu, so
they have no bias towards PaRu when building the data set. Such
setting ensures the objectiveness of PaRu evaluation.

Although some prior approaches [28, 54] mine parameter rules
from data sources other than source files (e.g., execution profiles),
we believe our ground truth of parameter rules is reasonably good
for two reasons. First, as illustrated in Figure 1, API documents are
automatically generated from the Javadoc comments in code, so the
rules described or implied by source files can always cover those
rules in API documentation. Second, in high-quality software, the
source files usually define or validate constraints on parameters
before using those parameters. It is meaningful to rely on software
implementation to distill parameter rules. Thus, we decided to
manually inspect source code only, instead of also examining other
information resources simultaneously.

Specifically, the two students manually analyzed 20 randomly
selected source files in each project. For each parameterp of method
APIm, the students read the document and implementation ofm to
decide whether p has any document or code rule. Since the value p
may be tested by code inside m or any method called by or calling
m, the students examined m together with methods that have any
caller-callee relationship withm to infer code rules. After the man-
ual inspection, in our group meeting, the students discussed their
results to reach a consensus. In total, the two students manually
identified 135 documented rules and 539 code rules, which were
used as the gold standard. For the 180=20×9 source files, we ap-
plied PaRu to locate any document or code rule. We then compared
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Table 3: Top ten verbs.

commons-io pdfbox shiro itext poi jfreechart lucene asm jmonkey
be (153) be (35) be (82) be (95) be (157) be (68) be (368) be (102) be (218)

compared (6) include (10) contain (2) retrieved (4) exceed (5) used(36) >= (55) have (6) have (29)

>= (5) enforced (6) used/use (3) have (3) react (4) >= (22) have (21) used (3) loaded (9)
match (2) have (5) represented (1) reuse (3) supplied (4) > (8) <= (14) delegate (3) > (5)

contain (2) use/used (5) create (1) registered (2) aligned (4) contain (5) > (11) updated (1) add (4)
called (1) compressed (4) retained (1) contain (2) belong (3) have (3) change (10) store (1) filled (4)
failed (1) defined (3) null (1) submitted (2) >= (3) <= (2) contain (9) create (1) match (4)
write (1) point (2) examined (1) fit (2) used (3) supplied (2) use (6) contain (1) fall (3)

- support (1) queried (1) opened (1) havel (3) add (2) process (6) updated (1) assigned (3)
- contain (1) retained (1) use (1) override (2) match(1) match (3) sorted(1) contain (2)

the located rules against the gold standard to calculate precisions,
recalls, and f-scores for PaRu.

Results. Table 2 shows the evaluation results. For 8 out of the 9
projects, PaRu acquired f-scores higher than 90%. Both precision
and recall rates are generally high (i.e., 85.2%-98.9% precision and
83.6%-100% recall). The recalls of PaRu are not 100%, because some
rules can only be manually identified in nonstandard ways, but are
very challenging to be located by any automated tool. For instance,
a parameter rule is sometimes described by comments of the whole
method, but not by the Javadoc comment of that parameter. As
Apache projects follow strict regulations, based on our evaluation
results shown in Table 3, the nonstandard scenarios are rare, and
PaRu has detected most parameter rules. Our results imply that the
rules reported by PaRu are very likely to be representative, and we
can rely on these rules to build a taxonomy of parameter rules.

4 EMPIRICAL STUDY

With PaRu, we conducted an empirical study to explore our re-
search questions listed in Section 1. We used PaRu to extract pa-
rameter rules from the dataset in Section 3.1. In the 14,392 files
from 9 real projects, PaRu identified in total 5,334 parameters to
have rules. From these parameters with rules, PaRu extracted 1,688
rule sentences that are described in either Javadoc comments or
exception/assertion messages. There are only 187 parameters that
have both document rules and code rules.

We manually examined the 1,688 rule sentences and rules related
to the above-mentioned 187 parameters. The manual inspection
procedure took several weeks. This section presents our manual
analysis protocols and investigation findings. More details of our
results and the gold standards are listed on our project website:
https://github.com/drzhonghao/parameterstudy.

4.1 RQ1. Rule Categorization

4.1.1 Protocol. To explore RQ1, we manually classified all the 1,688
rule sentences. Here, if a parameter rule is extracted with no rule
sentence identified (e.g., an exception thrown with the empty mes-
sage body), we do not inspect the rule, because it is too expensive
to understand a parameter solely based on source code. We first
classified rule sentences by the verbs which follow the extracted
modal verbs. Although the result reveals how programmers write
rule sentences, we realized that the verbs do not present an accu-
rate classification. To handle the problem, we manually read all

rule sentences, and classified them based on the semantics. During
the manual inspection, the first and the third authors prepared the
initial inspection results. The other authors checked the results,
until they came to an agreement on all the results.

4.1.2 Result. Table 3 shows the top ten verbs. Our result shows
that developers use limited verbs to define parameter rules. The
commons-io project even does not have ten verbs. In this table, we
highlight verbs that appear in more than half of the projects. Ac-
cording to this definition, only four verbs are commonly used: “be”,
“contain”, “have”, and “use”. It seems that library developers ex-
ploited certain verbs much more frequently than other verbs when
defining parameter rules, so it is infeasible to distinguish parame-
ter rules only based on verbs. Instead, Table 4 shows the results of
manual inspection. In total, we identified six types of rule sentences:

C1. Null. This category is about whether a parameter is allowed or
disallowed to be null. For instance, the code in Figure 1a shows that
an exception is thrown if the field parameter is null; the related
rule sentence is “must not be null.” Additionally, the formatCellValue
method of poi has a document rule: “The cell (can be null)”. C1
corresponds to two categories defined by Zhou et al. [80], including
“Nullness allowed” and “Nullness not allowed”.

C2. Range. This category focuses on the legal ranges of parame-
ter values. When defining ranges, a rule sentence can define both
maximum and minimum values, such as “latitude value: must
be within standard +/-90 coordinate bounds.” Meanwhile, a rule
sentence can also define only the minimum or maximum, such as
“maxMergeCount should be at least 1.”. C2 corresponds to the “range
limitation” category of Zhou et al. [80].

C3. Value. This category is about legal values of parameters. For
example, a rule sentence goes “For STRING type, missing value
must be either STRING_FIRST or STRING_LAST.” The existing ap-
proach Daikon [28] monitors program execution status at runtime,
collects values of variables, and infers value invariants accordingly.
Therefore, it is likely that Daikon can identify rules of C1-C3.

C4. Format. This category focuses on the formats of parameters.
An exemplar rule sentence is “csvKeyValueDelimiter must be ex-
actly 1 character.” Zhou et al. [80] defined a “type restriction” cate-
gory to describe type requirements on parameters, such as “value
of key must be an boolean.” Generally speaking, type restrictions
are about formats of parameters, so we map this “type restriction”

https://github.com/drzhonghao/parameterstudy
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Table 4: Rule sentences

Name Null Range Value Format Relation Others
commons-io 141 22 0 3 4 0

pdfbox 13 6 8 36 0 3
shiro 78 2 0 11 0 1
itext 52 8 28 8 0 11
poi 54 52 13 62 13 13

jfreechart 6 77 5 16 1 4
lucene 87 274 29 55 30 45

asm 14 5 57 18 6 20
jmonkey 54 68 14 103 36 22

total 499 514 154 312 90 119
% 29.6% 30.5% 9.1% 18.5% 5.3% 7.0%

Table 5: Rule sentences from thrown messages.

Name Null Range Value Format Relation Other
commons-io 43 16 0 1 0 0

pdfbox 4 4 8 10 0 1
shiro 76 2 0 8 0 1
itext 8 8 0 0 0 7
poi 31 46 3 43 11 5

jfreechart 3 27 4 10 0 4
lucene 78 198 18 32 27 18

asm 11 5 2 5 1 2
jmonkey 51 53 3 69 34 21

total 305 359 38 178 73 59
% 30.1% 35.5% 3.8% 17.6% 7.2% 5.8%

category to C4. However, the scope of C4 is broader. More samples
are as below.

(1) xmp should end with a processing instruction.
(2) Sheet names must not begin or end with (’).
(3) uid must be byte[16].
(4) The moveFrom must be a valid array index.
(5) Value data source must be numeric.
(6) The length of the data for a ExObjListAtom must be at least 4

bytes.
Since format-related rule sentences have diversified descriptions, it
seems to be very challenging to define one or more templates to
match all those sentences for automatic rule comprehension.

C5. Relation. This category is about relations between parameters.
For example, a rule sentence defines the lengths of two parameters
as “polyLats and polyLons must be equal length. ” More samples
are shown below:

(1) origin and region must both be arrays of length 3.
(2) UserEditAtom and PersistPtrHolder must exist and their off-

set need to match.
(3) Index of last row (inclusive), must be equal to or larger than

firstRow.
(4) maxItemsInBlock must be at least 2*(minItemsInBlock-1).
(5) upper value’s type should be the same as numericConfig

type.
(6) the number of values of a block, must be equal to the block

size of the BlockPackedWriter which has been used to write
the stream.

C6. Other. This category includes miscellaneous rules that do not
belong to any of the above-mentioned categories. For example, a rule
sentence defines the synonyms of parameters: “Synonyms must be
across the same field.” More samples are as follows:

(1) A filename to view must be supplied as the first argument,
but none was given.

(2) RC4 must not be used with agile encryption.
(3) SplineStart must be preceded by another type.
(4) features must be present for TextLogitStream.
(5) This must be well-formed unicode text, with no unpaired

surrogates.
(6) input automaton must be deterministic.

Among the above categories, C5 and C6 are solely detected by
PaRu. It is more challenging to define templates of C5 and C6 than
those of other rules. The templates of the other categories typically
define usages of single variables, but the templates of C5 define
usages of multiple variables. The prior approaches (e.g., Ernst et
al. [28]) reply on frequencies to mine parameter rules, but the
supports of C6 are too low to be mined.

Table 4 presents the distribution of rule sentences among our
six categories. These sentences are from either Javadoc or code.
The rule categories in our taxonomy are mutually exclusive. If a
parameter has multiple rule sentences, each sentence is analyzed
and classified independently. According to this table, C1 (Null) is
the dominant rule category in projects commons-io, shiro, and itext.
C3 (Value) is the dominant category in project asm. C4 (Format)
dominates the sentences in projects pdfbox, poi, and jmonkey. In
total, the three categories “Null”, “Range”, and “Value” account for
69.1% of rule sentences.

Finding 1. In total, 69.1% of rule sentences define simple rules
such as null values, range limits, and legal values.

We were also curious what types of parameter rules are usually
enforced in code, so we reorganized our manual analysis results
and constructed Table 5 to illustrate the rule distribution among
code of different projects. Overall, the rule distributions shown in
Table 5 are similar to those shown in Table 4. For instance, the top
three categories in Table 5 include C1, C2, and C4, which categories
separately count for 30.1%, 35.5%, and 17.6% of the rules in thrown
messages. Meanwhile, the top three categories in Table 4 are also C1,
C2, and C4, but their percentages are slightly different: 29.6%, 30.5%,
and 18.5%. Interestingly, C3 takes up only 3.8% of the sentences in
thrown messages, but counts for 9.1% of all inspected rule sentences.
This discrepancy indicates that developers usually document more
Value rules but enforce fewer Value rules in code, probably because
it is tedious and error-prone for developers to enumerate all (il)legal
values of a parameter for checking.

In both tables, C3, C5, and C6 have much fewer rules than the
other three categories. It is tedious and time-consuming for devel-
opers to write code and enforce certain rules (e.g., C6). For instance,
as shown in Figure 6a, “The Strings must be ordered as they appear
in the directory hierarchy of the document ...”. This rule sentence
belongs to C6 and it specifies a particular ordering of strings in the
parameter array components. Although the description makes sense,
it is difficult to implement the parameter validation logic.
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1 / ∗ ∗ . . .
2 ∗ @param f i r s t S h e e t I n d e x the scope , must be −2 f o r add

− i n r e f e r e n c e s . . .
3 ∗ /
4 public int addRef ( in t extBookIndex , in t

f i r s t S h e e t I n d e x , in t l a s t S h e e t I n d e x ) {
5 _ l i s t . add (new RefSubRecord ( extBookIndex ,

f i r s t S h e e t I n d e x , l a s t S h e e t I n d e x ) ) ;
6 return _ l i s t . s i z e ( ) − 1 ;
7 }
8 / ∗ ∗ a C o n s t r u c t o r f o r making new sub r e c o r d ∗ /
9 public RefSubRecord ( in t extBookIndex , in t

f i r s t S h e e t I n d e x , in t l a s t S h e e t I n d e x ) {
10 _extBookIndex = extBookIndex ;
11 _ f i r s t S h e e t I n d e x = f i r s t S h e e t I n d e x ;
12 _ l a s t S h e e t I n d e x = l a s t S h e e t I n d e x ;
13 }

(a) Only document rules

1 / ∗ ∗
2 ∗ r e p l a c e s the i n t e r n a l c h i l d l i s t with the c o n t e n t s

o f the s u p p l i e d < t t > c h i l d R e c o r d s </ t t >
3 ∗ /
4 public void s e t C h i l d R e c o r d s ( L i s t < EscherRecord >

c h i l d R e c o r d s ) {
5 i f ( c h i l d R e c o r d s == _ c h i l d R e c o r d s ) {
6 throw new I l l e g a l S t a t e E x c e p t i o n ( " C h i l d ␣ r e c o r d s ␣

p r i v a t e ␣ d a t a ␣ member ␣ has ␣ e s c a p ed " ) ;
7 } . . . }

(b) Only code rules

Figure 4: Unmatched parameters rules

Finding 2. The top three categories of parameter rules include
“Null”, “Range”, and “Format”; the other three categories contain
a lot fewer rules, probably because those rules are harder to
document and implement.

4.2 RQ2. Rule Distribution

4.2.1 Protocol. To explore RQ2, we first investigated how the 5,334
parameter rules localized by PaRu distribute among the subject
projects. Next, for the 187 parameters with both document and
code rules, we further examined how well the two kinds of rules
for each parameter match each other. As we did in RQ1, the first
and the third authors prepared the initial inspection results. The
other authors checked the results, until they came to an agreement
on all results.

4.2.2 Result. Among the 5,334 parameter rules located by PaRu,
550 parameters only have document rules; 4,597 parameters only
have code rules; 108 parameters have document rules matching
code rules; and 79 parameters have unmatched rules. Figure 5 il-
lustrates the rule distributions among projects. In the figure, the
horizontal axis represents the breakdown of parameters in each
project, depending on (1) whether a parameter has one or two kinds
of rules and (2) whether the two kinds of rules match if a parameter
has both. With more details, “only doc” denotes parameters with
only document rules; “only code” denotes parameters with only
code rules; “matched” denotes parameters with matched rules; and
“unmatched” denotes parameters with unmatched rules.

We found that most parameters have only one kind of rules.
Figure 4 shows method samples from poi. Specifically, Figure 4a
contains document rules only, which rules are not enforced in code.
The addRef method has three parameters, and its document defines

commons-io (18.1% )
pdfbox (11.9%)

shiro (56.9%)
itext (3.8%)
poi (15.0%)

jfreechart (12.4%)
lucene (22.9%)

asm (10.2%)
jmonkey (28.2%)

0 0.2 0.4 0.6 0.8 1

only doc
match
not match
only code

Figure 5: The distribution of detected conflicts

a rule for the firstSheetIndex parameter. The rules define that
the parameters must be -2, for add-in references. However, the
code of the method does not check the two parameter rules. The
method calls the RefSubRecord method. In Figure 4a, we present the
called code. This method does not check its parameters either. In
contrast, Figure 4b shows a parameter rule that is not documented
but implemented in the code. The setChildRecords method throws
an exception, when an input is identical to its stored record, but its
document does not define the parameter rule.
Finding 3. In total, 86.2% of parameters have only code rules,
and 10.3% of parameters have only document rules.

Researchers have proposed various approaches to recommend
API documents [24] and to mine specifications from documents [79].
Our results reveal a practical problem for these approaches, which
is that API parameter rules are usually not documented. Novick
and Ward [52] complained that programmers are reluctant to read
documents or manuals. Probably due to this fact, instead of writing
documents, API developers often implement parameter-checking
logic in code, and warn client developers of any invalid API param-
eter via exceptions or assertions.

Although exceptions and assertions can potentially assist client
developers, they may fail to warn programmers due to various
issues. First, programmers cannot see any thrown message or as-
sertion failure, if exceptions/assertions are hidden or screened. For
example, DERBY-5396 [3] reports that an exception is swallowed.
Second, client developers may find it difficult to understand why
exceptions are thrown. Among the examined code rules shown
in Figure 5, only 19% of rules have rule sentences to explicitly ex-
plain why exceptions are thrown. Finally, developers need to have
high-quality test cases with good test coverage, in order to trigger
exceptions/assertions related to API parameter usage. However, it
is very unlikely that client developers can always develop good test
suites to satisfy the need.

Figure 5 shows that except commons-io, less than 4% of parameters
have both document rules and code rules (i.e., either matched or
unmatched). In addition, we found that unmatched rules do not
necessarily imply bugs; they were introduced when API developers
specified one set of rules in comments but implemented a distinct
set of rules in code. For example, Figure 6a shows a method from
poi. The method description defines three document rules (e.g.,
the input list must be ordered), but the code checks none of these
rules. Instead, the code checks whether the input list contains null

values, which rule is not mentioned in Javadoc. Figure 6b shows
another example, which is from the project commons-io. The method
description defines only one document rule, but the code checks
three other rules.



An Empirical Study on API Parameter Rules ICSE, 2020, Seoul, South Korea

1 / ∗ ∗ . . .
2 ∗@param components the S t r i n g s making up the path t o a
3 ∗ document . The S t r i n g s must be o r d e r e d as they appear
4 ∗ i n the d i r e c t o r y h i e r a r c h y o f the the document −− the
5 ∗ f i r s t s t r i n g must be the name o f a d i r e c t o r y i n the
6 ∗ r o o t o f the POIFSF i l eSys tem , and every Nth ( f o r N>1 )
7 ∗ s t r i n g t h e r e a f t e r must be the name o f a d i r e c t o r y i n
8 ∗ the d i r e c t o r y i d e n t i f i e d by the (N−1) th s t r i n g . . .
9 ∗ /

10 public POIFSDocumentPath ( f ina l S t r i n g [ ] components )
throws I l l e g a l A r g u m e n t E x c e p t i o n { . . .

11 for ( in t j = 0 ; j < components . l e n g t h ; j ++) {
12 i f ( ( components [ j ]== null ) | | ( components [ j ] . l e n g t h ( )

==0) ) {
13 throw new I l l e g a l A r g u m e n t E x c e p t i o n ( " components ␣

cannot ␣ c o n t a i n ␣ n u l l ␣ or ␣ empty ␣ s t r i n g s " ) ;
14 } . . . } }

(a) Document rules are more detailed

1 / ∗ ∗ . . .
2 ∗ @param f i l e . . . , must not be n u l l
3 ∗ /
4 public . . . open InputS t ream ( f ina l F i l e f i l e ) . . . {
5 i f ( f i l e . e x i s t s ( ) ) {
6 i f ( f i l e . i s D i r e c t o r y ( ) ) {
7 throw new I O E x c e p t i o n ( " F i l e ␣ . . . ␣ i s ␣ a ␣ d i r e c t o r y " ) ;
8 }
9 i f ( f i l e . canRead ( ) == f a l s e ) {

10 throw new I O E x c e p t i o n ( " F i l e ␣ . . . ␣ cannot ␣ be ␣ r ead " ) ;
11 }
12 } e l se {
13 throw new F i l e N o t F o u n d E x c e p t i o n ( " F i l e ␣ . . . ␣ does ␣ not ␣

e x i s t " ) ;
14 } . . . }

(b) Code rules are more detailed

Figure 6: Conflicts are not always bugs

Finding 4. In total, 3.5% of parameters have both document rules
and code rules. Only 1.5% of parameters have inconsistent rules,
and such inconsistencies are often not bugs.

Zhou et al. [80] complained that it is often infeasible to extract ac-
curate method calls when they appear in the branches of condition
statements. As a result, they skip all constraints that are related to
such method calls, and thus ignore the conflicts between documents
and code implementations of corresponding parameters. The distri-
bution of parameter rules reveals that even if an approach can infer
all correct rule conditions, the approach still cannot detect many
rule conflicts because the two types of rules have little overlap.
Meanwhile, our results also highlight the importance of conflict de-
tection tools, such as the one built by Zhou et al. [80]. Programmers
seem reluctant to have consistent rules between Javadoc comments
and source code, probably because it is challenging for them to
maintain the rule consistency. Conflict detection tools can assist
developers to maintain the consistency. Therefore, such tools are
likely to (1) encourage programmers to document more parameter
rules, and (2) reduce the technical barriers for library API adoption.

We found that some methods have document rules but no code
rules, mainly because there are flaws in source code. Namely, pro-
grammers describe those rules in Javadoc, and wait for the flaws to
be fixed before implementing those rules in code. Such scenarios
indeed introduce technical debts. It will be interesting to further
explore these scenarios in the future.

5 THE INTERPRETATION OF OUR FINDINGS

In this section, we interpret our findings:

Data sources. Researchers mined API rules from various data
sources such as client code [28], documents [79], and API code [80].
Our empirical study focuses on a single data source—source files,
because we believe this source to be sufficient to cover most API
parameter rules extractable from other data sources. There are
two reasons to explain our insight. First, lots of API documents
about parameter usage are automatically generated from source
files (i.e., from Javadoc comments). Second, when client developers
invoke APIs, they usually refer to library documentation and/or
API code for correct API usage. Additionally, Finding 4 shows that
the extracted document rules and code rules have little overlap.
This observation justifies our study approach that analyzes both
code and comments of API methods, instead of only inspecting one
type of data in source files.

Mining techniques. As introduced in Section 2.2, existing ap-
proaches typically use predefined parsing semantic templates to
mine parameter rules, while we took a hybrid approach (i.e., refined
keyword-based search + manual inspection) to mine rules. Finding
1 shows that the templates of existing tools can handle at most 69.1%
of parameter rules. Unfortunately, adding more templates does not
necessarily help current tools to retrieve more rules, because the
remaining rules seldom present common sentence structures. If
tool builders would like to define specialized templates to capture
remaining rules, it is quite like that (1) many complicated tem-
plates have to be defined, and (2) many irrelevant sentences may
be wrongly extracted. As mentioned by Legunsen et al. [36], rules
mined based on templates can be superficial or even false.

Hidden and changing rules. For more than half of the studied
source files, PaRu did not localize any parameter rule. However,
it is unsafe to claim that all these source files have no rule at all.
Shi et al. [64] show that even API developers may be unaware of
parameter rules sometimes; once developers realize any missing
rules, they have to rewrite the documentation and/or code to append
rules. In such scenarios, we may miss parameter rules by mining
source files.

6 DISCUSSION ON RELATED TOOLS

Motivation. To assess the effectiveness of existing rule mining
tools, we chose not to apply tools to our dataset, because direct com-
parisons reveal problems of specific tools but such problems may
be not worth further investigation by future research. Instead of
determining the effectiveness of a specific tool, researchers [76, 77]
have estimated the potential of the tool by comparing its techni-
cal assumptions with the nature of data. For instance, Zhong and
Su [77] compared manual fixes with the methodology design of
automatic program repair [29] to estimate the potentials of the
state-of-the-art tools. In our research, we also conducted a similar
theoretical comparison between existing parameter rules and the
potentials of current rule mining tools. As long as the method de-
sign of a tool can reveal some rules in one category, we considered
the tool to be able to handle the whole category given comprehen-
sive extensions. The theoretical comparison puts higher bars for
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us to claim our research novelties, but can effectively reveal new
research directions and inspire new tool design.

Comparison between PaRu and current rule mining tools.

Although PaRu is similar to current tools in certain aspects, it is
different in terms of the research objectives, methodologies, and
some approach design choices.

As for research objectives, prior work reveals parameter rules
for (1) dynamic rule checking [23, 28, 49, 70], (2) consistency check-
ing [80], or (3) automatic document comprehension [54]. Researchers
focused on certain types of rules, but never explored the gap be-
tween the rules in the wild and those extractable by current tools.
We designed PaRu to localize as many candidate rules as possible,
in order to identify any rule category overlooked by prior research.

As for methodologies, existing tools automate both rule localiza-
tion and rule comprehension, while PaRu automates rule localiza-
tion only. Because PaRu does not need to automatically comprehend
rules, its approach based on modal verbs is more flexible than prior
work [49, 80]. Consequently, PaRu can locate more candidate rules
than prior work, many of which rules may not match any parsing
semantic template defined before.

As for design choices, Nguyen et al. extracted the if-conditions
before API method invocations in client code, and then leveraged
those frequently checked conditions to infer parameter rules [49].
We designed PaRu to scan library implementation instead of the
client code of library APIs, because there can be APIs that have
not been invoked by any client but still have parameter rules. Ad-
ditionally, Zhou et al. [80] analyzed code statically to reveal the
intra-procedural control/data dependency relationship, while PaRu
conducts inter-procedural program depenency analysis to gather
more context information and ensure higher analysis accuracy.

Theoretical assessment of the effectiveness by current rule

mining tools. JML [19] includes written parameter rules such as
pre- and postconditions. To calculate how many rules can be mined,
the prior approaches (e.g., Nguyen et al. [49]) typically consider JML
as the golden standard of their evaluations. Due to the heavy man-
ual efforts, JML defines parameter rules of only limited J2SE classes.
In addition, as writing JML specifications is too time-consuming
and error-prone, the authors of JML [19] mentioned that they wrote
JML specifications based on what were inferred by Daikon. As a
result, JML can be biased and incomplete. Although our identified
rules are not fully correct, Table 2 shows that their f-scores are
reasonably high. We have released our identified parameter rules
on our website. If researchers remove all wrong parameter rules,
the remaining rules can enrich the gold standard of JML, and re-
searchers can evaluate their tools on the enriched gold standard to
explore the limitations of such tools.

Daikon [28] is the state-of-the-art tool for mining invariants.
Section 5.5 of its manual [6] lists the templates of its supported in-
variants. According to this manual, Daikon has the potential to mine
the parameter rules in the “Range” category (e.g., the EltUpperBound

template), the “Value” category (e.g., the EltOneOf template), and the
“Relation” category (e.g., the Equality template). For the “Null” cat-
egory, Daikon has a related EltNonZero template to define “x , 0”.
It may be feasible to extend this template to detect parameter rules
in the “Null” category. Based on the above templates, we estimate
that Daikon has the potential to mine 74.5% of parameter rules.

However, adding more templates may be sufficient to make only
minor improvements, since the remaining rules are fractional. For
example, we inspected rule sentences of the “Format” category, and
we found that it is infeasible to summarize them into limited rule
templates. Polikarpova et al. [56] found that Daikon inferred about
half of their manually written rules. Their analyzed rules are loop
invariants, preconditions, postconditions, and class invariants. Typi-
cally, these rules fall into the “Null”, “Value”, and “Range” categories.
Considering their results, in practice, Daikon can mine about 30%
of parameter rules, which leaves adequate space for improvement.

Zhou et al. [80] defined four templates to locate parameter rules,
i.e., nullness not allowed, nullness allowed, type restriction, and
range limitation. In Table 4, “Null” and “Range” categories account
for 60% of parameter rules. We consider type restrictions to belong
to the “Format” category, and this category accounts for additional
18.5% of parameter rules. As shown in Section 4.1, “Format” contains
more types of parameter rules than type restrictions. As a result,
the approach by Zhou et al. has the potential of mining about 70%
of parameter rules.

Nguyen et al. [49] extracted preconditions API method invoca-
tions in client code. Similar to PaRu, the technique can locate a
parameter rule if the parameter is checked in client code. After a pa-
rameter rule is located, Nguyen et al. propose techniques to merge
conditions and to infer non-strict inequality preconditions. These
techniques are limited to “Null”, “Range”, and “Value” in Table 4,
since other types of parameter rules (e.g., formats) are difficult to
be merged. In total, the approach by Nguyen et al. can potentially
identify 69.1% of parameter rules.

7 THREATS TO VALIDITY

Threats to internal validity. Our manual inspection of param-
eter rules may be subject to human bias. As introduced in Sec-
tion 4.2.1, if a parameter has both document rules and code rules,
we have to manually determine whether they are identical, which
can introduce errors. As Finding 4 shows that less than 3.5% of
parameters can have unmatched rules, although we need more ad-
vanced techniques to eliminate the threat, the impact of this threat
is low. Additionally, some identified document rules and code rules
may be incorrect due to random errors. To reduce the threat, we
released all found parameter rules on our website. Researchers can
inspect the results and help us further reduce the threat.

Threats to external validity. Although we analyzed thousands
of files of nine popular libraries, the subjects are limited and all in
Java. In addition, eight out of the nine projects are from Apache,
which has a more strict coding convention than other open source
communities. We can mitigate the threat by including more subject
projects [48], and exploiting more sources to extract parameter
rules [55]. However, our major findings may not change much,
since we select different types of projects. Another threat is con-
cerning code rules without any rule sentence. In our study, we did
not manually inspect such rules. Although the limitation has no
impact on Finding 3, it can influence the generalizability of Find-
ings 1 and 2. Zhou et al. [80] showed that even recent approaches
cannot formalize accurate code rules from API code. We need more
advanced techniques or nontrivial manual efforts to reduce the
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threat. We listed all the code rules without rule sentences on our
website, so other researchers can help further reduce the threat.

8 RELATEDWORK

Empirical studies on APIs. Researchers conducted empirical
studies to understand various issues about API usages such as the
knowledge on concurrency APIs [53] or deprecated APIs [60], rules
in API documents [45], the evolution of APIs [34, 64, 73], the ob-
stacles to learn APIs [62], the links between software quality and
APIs [39], the impact of API changes on forum discussions [40],
the practice on specific APIs [47], the mappings of APIs [78], the
adoption of trivial APIs [13], and the impact of the type system
and API documents on API usability [26]. Like ours, most of the
above studies focus on the taxonomies of software engineering
data. Usman et al. [68] and Ralph [58] presented guidelines for such
studies. Amann et al. [15] and Legunsen et al. [36] compared the
effectiveness of tools that detect API-related bugs. These studies ex-
plore other angles than our research questions. Zhong and Mei [75]
conducted an empirical study to answer open questions in mining
API call sequences, but our study focuses on parameter rules.

Mining parameter rules. Client code is a major data source
for invariant mining. With test cases, Ernst et al. [28] and Hangal
and Lammine [31] mined invariants from program execution traces.
In particular, Henkel and Diwan [32] mined invariants in algebraic
specifications, and proposed a tool [33] for writing such specifica-
tions. Csallner et al. [21] introduced dynamic symbolic execution
to mine invariants. Wei et al. [70, 71] inferred postconditions based
on Eiffel contracts. Smith et al. [65] inferred relations between
inputs and outputs. API code is also a major data source of invari-
ant mining. Dillig et al. [25] inferred invariants through abductive
inference. Gulwani et al. [30] encoded programs into boolean for-
mulae, and inferred preconditions. API document is another data
source of mining invariants. Zhou et al. [80] inferred four types
of invariants from documents. Pandita et al. [54] combined docu-
ments and API code to infer invariants. Zhou et al. [80] complained
that it is challenging to extract accurate rule conditions from API
code. Partially due to the challenges, researchers [74] conducted
large-scale evaluations only on client code or documents. For API
libraries, invariants typically define parameter rules. Although this
research topic is intensively studied, researchers [56, 67] argued
that some underlying questions are still open. Our study explores
such questions, and our findings are useful to further improve the
state of the art.

Mining sequential rules. Ammons et al. [16] mined automata
for APIs. Follow-up researchers [41, 54] refined this approach, and
others [50, 51] mined similar formats such as graphs. Robillard et
al. [61] showed that automata and graphs are equivalent in the
scenario of specification mining. The research in this line can be
reduced to the grammar inference problem, and can be solved by
corresponding techniques (e.g., the k-tail algorithm [18]). Li and
Zhou [38] mined method pairs, and other researchers [63] improved
their approaches in more complicated contexts. Engler et al. [27]
extracted frequent call sequences, and other researchers [59, 69]
improved their approach with more advanced techniques. Further-
more, researchers [37, 42] encoded mined sequences as temporal

logic. The research in this line can be reduced to sequence min-
ing [14]. Furthermore, Le et al. [35] combined sequences and invari-
ants for more informative specifications, and researchers [22, 57]
used test cases to enrich mined specifications. Mei and Zhang [43]
advocate applying big data analysis for software automation, and
mining sequential rules is one of the key techniques to extract
knowledge from software engineering data. Our empirical study
focuses on parameter rules, but its findings may be useful to these
approaches. For example, the distribution of document rules and
code rules can apply to sequential rules. It is worthy exploring
whether our results are still valid for sequential rules.

9 CONCLUSION AND FUTUREWORK

API libraries have been widely used, but are often poorly docu-
mented. When programmers do not fully understand API usage,
they can introduce API-related bugs into their code. To handle this
issue, researchers have proposed various approaches to facilitate
better API usage. In particular, a popular research area is to mine
parameter rules for APIs. Although some industrial tools are al-
ready implemented, we still do not know (1) how many categories
of API parameter rules there are, and (2) what is the rule distribu-
tion among Javadoc comments and source code. The exploration of
both questions is meaningful and important, because the acquired
knowledge can guide our future tool design for rule mining and
rule enforcement.

To explore both questions, we developed PaRu that localizes
document rules and code rules in library source files. Based on
the localized rules, our study identifies six categories of parameter
rules, and reveals that most parameter rules are defined only in
code, but not in documentation. Based on our results, we summa-
rized four findings, and provided our insights on three topics such
as data sources, mining techniques, and hidden rules. With our
insights, in the future, we plan to work towards better mining and
recommendation techniques for parameter rules.
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