
CS 6604: Data Mining Fall 2007

Lecture 12 — September 26, 2007
Lecture: Naren Ramakrishnan Scribe: Sheng Guo

1 Overview

In the last lecture we began discussion of relational data mining, and described two major methods of RDM:
taking logic and adding some induction (inductive logic programming - ILP), and taking induction and
adding some logic. In this lecture, we will focus on the Inverse Resolution method.

2 Inverse Resolution Method

Resolution is a rule of inference typically used in a refutation-mode of theorem-proving, for sentences in
propositional logic and in predicate logic. In other words,iteratively applying the resolution rule in a suitable
way allows for telling whether a given formula is unsatisfiable. By negating the goal and verifying that it is
unsatisfiable, we can prove that the goal logically follows from the premises.

We will first study resolution before formally characterizing inverse resolution. Further, we will first study
propositional logic before turning our attention to predicate logic.

2.1 Resolution and Inverse Resolution for Propositional Logic

Here we give an example to show how it works.

Figure 1: Resolution in propositional logic.

We think of a clause (disjunction) as a set of (negated or non-negated) propositional variables. We define
formally resolution and inverse resolution procedures.

2.1.1 Resolution

Given clausesC1 & C2,

1



1. find a literalL such thatL appears inC1 and¬L appears inC2.

2. Then the resolvent is given by (C1 − {L}) ∪ (C2 − {¬L}).

2.1.2 Inverse Resolution

GivenC1 which is of the formA ∨ B, and resolvent which is of the formB ∨ C, the aim is to findC2.

1. Find a literalL that appears inC1 but not in the resolvent.

2. ThenC2 is given by either

(Resolvent− (Resolvent ∩ C1)) ∪ {¬L}

or by
(Resolvent− (C1 − {L})) ∪ {¬L}

2.2 Resolution and Inverse Resolution for Predicate Logic

Figure 2: Resolution in predicate logic. There is a typo; theexpression on the right must have a negation for
A(y).

2.2.1 Resolution

GivenC1, C2,

1. find a literalL1 in C1 and a literalL2 in C2 that L1 θ = ¬L2 θ. (For instance,L1 is A(x), L2 is
¬A(Y ), andθ is {x/y}).

2. Resolvent is
(C1 − {L1}) θ ∪ (C2 − {L2}) θ

2.2.2 Inverse Resolution

Before we present inverse resolution, observe that to resolve two expressions such as:

2



• A(x) ∨ B(x)

• A(y) ∨ ¬B(y)

there could exist multiple substitutions as shown in Fig. 3.If we assume that substitutions can be factored
into two partsθ1 andθ2 that apply to each of the two clauses being resolved (on separate literalsL1 andL2),
we get:

L1θ = ¬L2θ

L1θ1 = ¬L2θ2

L1θ1θ
−1

2
= ¬L2

L2 = ¬L1θ1θ
−1

2

Figure 3: Inverse resolution in predicate logic.

Thus the inverse resolution procedure can be cast as:

1. Find two subsitutionsθ1, θ2 as suggested by the above figure.

2. ThenC2 is given by

(Resolvent− (C1 − {L1})θ1)θ
−1

2
∪ {¬L1θ1θ

−1

2
}

This ideas is used in the CIGOL ILP system.

3 θ-subsumption

Consider the example below, which depicts multiple relations and assume our goal is to learn the two clauses:

3



• ancestor(x,z)← parent(x,z).

• ancestor(x,z)← ancestor (x,m), parent(m,z).

+ mary ann
+ eve tom
- tom eve
- eve ann

Table 1: daughter

ann mary
ann tom
tom eve
tom ian

Table 2: parent

ann
mary
eve

Table 3: female

Figure 4: Searching for relational rules with same consequent.

To search across the specialization/generalization relationship, we introduce the idea ofθ-subsumption.

C1 θ-subsumesC2 if there exists a substitutionθ s.t.C1θ ⊆ C2. If C1 θ-subsumesC2, thenC1 is at least as
general asC2. C1 is more general thanC2, if C1 θ-subsumesC2, butC2 does notθ-subsumeC1. Observe
thatθ-subsumption is purely a syntactic notion, not a semantic one.

In semantic terminology, we sayC1 � C2 iff mdoels of C1 are also models ofC2. Note that ifC1 θ-
subsumesC2, thenC1 � C2, but not the other way round. Moral of the story:θ-subsumption is a poor
cousin to entailment.

For instance, suppose we have two clauses:

• C1: elephant(x)→ elephant(father(x)).

• C2: elephant(x)→ elephant(father(father(x))).

4



It is easy to see thatC1 � C2, i.e., if we treatC1 as a given rule, we can concludeC2, since knowing that
an elephant’s father is an elephant, we can say that the elephant’s father’s father is also an elephant. But
observe thatC1 does notθ-subsumeC2.

5


