CS6604: Data Mining Fall 2007

Lecture 12 — September 26, 2007
Lecture: Naren Ramakrishnan Scribe: Sheng Guo

1 Overview

In the last lecture we began discussion of relational datangj and described two major methods of RDM:
taking logic and adding some induction (inductive logic gmamming - ILP), and taking induction and
adding some logic. In this lecture, we will focus on the ImeResolution method.

2 Inverse Resolution Method

Resolution is a rule of inference typically used in a refo@mode of theorem-proving, for sentences in
propositional logic and in predicate logic. In other wolitesatively applying the resolution rule in a suitable
way allows for telling whether a given formula is unsatiskatBy negating the goal and verifying that it is

unsatisfiable, we can prove that the goal logically follovesf the premises.

We will first study resolution before formally charactengiinverse resolution. Further, we will first study
propositional logic before turning our attention to predéclogic.

2.1 Resolution and I nverse Resolution for Propositional Logic
Here we give an example to show how it works.

{A B} {71A, C}
AVE TJAVC

N/

BV C

Figure 1: Resolution in propositional logic.

We think of a clause (disjunction) as a set of (negated ormegated) propositional variables. We define
formally resolution and inverse resolution procedures.

2.1.1 Resolution

Given clauseg’; & (s,

1. find a literalL such thatl. appears irCy and—L appears irCs.
2. Then the resolvent is given bg'{ — {L}) U (Cy — {—=L}).

2.1.2 Inverse Resolution

Given(C17 which is of the formA Vv B, and resolvent which is of the ford v C, the aim is to find’s.

1. Find a literalL that appears id; but not in the resolvent.

2. Then(Cs is given by either
(Resolvent — (Resolvent N Ch)) U {~ L}

or by
(Resolvent — (Ch1 —{L})) U {—~L}

2.2 Resolution and Inverse Resolution for Predicate Logic

Alx) ¥ B(x) 1AM ¥ Ciy)

fxtvy ={)
B(y) ¥V C(¥)

Figure 2: Resolution in predicate logic. There is a typo;dkpression on the right must have a negation for
A(Y).

2.2.1 Resolution

Given 01, 02,

1. find a literal Ly in C; and a literalL, in Cy that L1 § = — Lo 6. (For instanceL; is A(X), Lo is
- A(Y), andf is {xly}).

2. Resolvent is
(C1 —{L1}) U (Cy — {L2}) 0

2.2.2 |nverse Resolution

Before we present inverse resolution, observe that tovedwlo expressions such as:

o A(z) V B(z)
e A(y) vV = B(y)
there could exist multiple substitutions as shown in Figlf 3ve assume that substitutions can be factored

into two partsy; andf,, that apply to each of the two clauses being resolved (on aepliteralsL; andL-),
we get:

L,6 = —L90
L6, = L0
L1610 = -Ly
Lo = L10,05"

t = {xiy}

By =fyix}

He ={xiJoe, ylloe}

Cc1 ?
+ i H

¢ N
o 1 92
oo

applies only

applies anl
o1 i3 Y

to G2

Figure 3: Inverse resolution in predicate logic.

Thus the inverse resolution procedure can be cast as:

1. Find two subsitutiong, 65 as suggested by the above figure.
2. Then(Cs is given by
(Resolvent — (C1 — {L1})01)05 " U {— L1605}

This ideas is used in the CIGOL ILP system.

3 6-subsumption
Consider the example below, which depicts multiple refetiand assume our goal is to learn the two clauses:

3

e ancestor(x,z}— parent(x,z).

e ancestor(x,z}— ancestor (x,m), parent(m,z).

+ mary| ann ann | mary
+ eve | tom ann | tom ann

- tom | eve tom | eve mary

- eve | ann tom | ian eve
Table 1: daughter Table 2: parent Table 3: female

daughter (¢, y)

/ \ dix,y) <= female(y)

d(x,y) = parent(x,y)

d{xy) < p{y,x)

/N

Figure 4: Searching for relational rules with same consejue

To search across the specialization/generalizationioakttip, we introduce the idea 8fsubsumption.

C1 6-subsumeg), if there exists a substitutiofis.t. C160 C Cs. If C; 8-subsumeg’s, then(is at least as
general ag’y. 4 is more general tha@s, if Cy 8-subsumeg’s, but Cy does no#-subsume’;. Observe
thatd-subsumption is purely a syntactic notion, not a semantg on

In semantic terminology, we say; = C iff mdoels of C; are also models of’;. Note that if C; 6-
subsumes’s, thenC; E (5, but not the other way round. Moral of the sto:subsumption is a poor
cousin to entailment.

For instance, suppose we have two clauses:

e (1: elephant(x)— elephant(father(x)).
e (5: elephant(x)— elephant(father(father(x))).

It is easy to see that, E (5, i.e., if we treatC; as a given rule, we can concludg, since knowing that
an elephant’s father is an elephant, we can say that theaiépHhather’s father is also an elephant. But
observe that’; does not-subsume’s.

