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1 Review

As a review of some basic concepts in probability, it is convenient to define a few terms:

1. A sample space is the set of all possible outcomes of a trial or experiment. For a die roll, the sample
space would be the set {1, 2, 3, 4, 5, 6}.

2. A σ-algebra of a set X is a collection of subsets of X, and is closed under the complement and union
set operators. For example, a trivial σ-algebra for any set X is the set containing the empty set and X
itself.

3. A random variable is a variable that takes on values from a sample space, based on some distribution.
These variables can represent a random trial (such as a die toss) and its results.

4. A distribution defines a probability or likelihood that a random variable takes each of the values from
a sample space.

2 Probability

Probability can be defined as a “measure” over a random variable with associated sample space and σ-
algebra; however there are several schools of thought on precisely how to define this term. Two main schools
are frequentists and subjectivists (or Bayesians). Frequentists (due to work by Neyman and Pearson) view
probability simply as the ratio of the number of times an event occurs to all instances of a trial; in other
words:

P (event) =
# of occurrences of an event

# of all occurrences
(1)

A limitation of this view is that such an analysis requires a repeatable event. Unfortunately, some events are
not easily repeated (e.g., the probability that Hillary Clinton will be president).

2.1 Subjectivists & Bayes’ rule

Subjectivism is based on work by Thomas Bayes, and models probability on the idea of belief. Bayesian
probability is defined as the degree of belief in a statement; this belief is subsequently modified as events
are observed. This approach has the advantage that no prior knowledge about an event’s history is required
to state a probability. For most things we’ve seen so far, results from frequentists and subjectivists would
agree. For data mining, we’ll be focusing on subjectivism, as it is more interesting.
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In Bayes’ work, the notion of belief is identified by the prior and the posterior, while likelihood is concerned
with data. Recall from probability that for two events A & B, P (A,B) = P (A) × P (B|A) = P (B) ×
P (A|B). From this equality, Bayes derived the following rule:

P (B|A) =
P (A|B)× P (B)

P (A)
(2)

The reason why Bayes’ rule is so useful is because it turns out that some conditional probabilities are easier
to compute than others. Often the easier computation is fed into Bayes’ rule to avoid the more difficult
computation. Additionally, many times a comparison between two conditional probabilities is required: in
these cases, the P (A) denominator is common to both equations, and therefore divides out of the comparison
ratio. For this reason, it is common to generalize and say that P (B|A) is proportional to the numerator,
written as P (B|A) ∝ P (B) × P (A|B). In this equation, P (B|A) is considered the posterior, P (B) is
the prior, and P (A|B) is the likelihood. For data mining, generally the B parameter is considered the
hypothesis, while the A parameter is the data, and Bayes’ rule can be written as P (hypothesis|data) ∝
P (hypothesis)× P (data|hypothesis).

2.2 An example: coin flip

Consider a coin flip trial. Let it be parameterized by the probability of a heads. To find the probability
of tails, we can simply subtract the probability of heads from one, since the two sides are complementary
events. A prior over the probability of heads can be represented as a distribution, for example:

Figure 1: A loaded coin.

The coin with a prior distribution as in Fig 1 is a loaded coin, i.e. very likely to come up heads most
of the time, or tails most of the time. Observe the scale on the y-axis; since we are only interested in a
‘proportional’ value, the curve doesn’t quite integrate to 1.

Also recall that we are dealing with continuous-valued variables, so it is improper to ask for the probability
of heads having a specific value (such as zero); it is more pertinent to deal with ranges of values instead.

Let us consider a uniform prior indicating complete ignorance, i.e., P (H) is defined as 1 for 0 <= H <= 1
and 0 otherwise, as shown in Fig 2. This initial prior must now be updated with incoming data. Suppose
the first coin flip comes up heads; then P (data|hypothesis) is H . A new hypothesis is formed as follows:
P (hypothesis|data) ∝ P (hypothesis)×P (data|hypothesis) = 1×H = H . For the second flip that comes up
tails, this probability is (1−H). Therefore, P (hypothesis|data) ∝ P (hypothesis)× P (data|hypothesis) =
H × (1 − H) = H(1 − H). In general, after N total flips with R of these flips coming up heads, the
hypothesis becomes HR(1−H)N−R.
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Figure 2: A simple distribution as a prior.

Keeping in mind that the function values are proportional (i.e. not normalized), any initial prior can be
used, and the resulting hypotheses will converge to the correct distribution. The H-value that maximizes P
can be found by setting the derivative of P to be 0 and solving for H . We can simplify the calculation by
instead taking the derivative of logP (since this is a monotone function, the maximum value will occur at
the same H-value as the original function). Since logP = R logH + (N − R) log (1−H), the derivative

is
R

H
− (N −R)

(1−H)
; setting this to 0 yields

R

H
− (N −R)

(1−H)
= 0,

R

H
=

(N −R)
(1−H)

, R − RH = HN − RH ,

R = HN , and finally H =
R

N
. The second derivative should also be verified as greater than 0 at this point,

to ensure the point is a maximum and not a minimum.

Figure 3: The improved prior curve after 70 flips, 35 heads & 35 tails.

2.3 Variance

To evaluate the variance of the prior curve, we can use the first three terms of the Taylor series expanded
around the maximum at H = R/N . Consider the formula for these first three terms:

f(x) = f(
R

N
) +

df

dx
(
R

N
) ∗ (x− R

N
) +

d2f

dx2
(
R

N
) ∗

(x− R
N )2

2
(3)

Note that the 2nd term goes away (since the derivative of P is 0 at H = R
N ) and we are left with a Gaussian

function, i.e. the result is
R
N

(1−R
N

)

N which is proportional to
1√

2π ∗ σ
∗ (e

−(x−N)2

2σ2 ). Since the mean of the

original function µ = N/R, the variance can be written as var(N) = µ(1−µ)
N . Consequently, it requires
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more data to determine that the coin is fair than it does to find it unfair.

3 Predicting the future

How do we use the posterior distributions? For instance, is a head more likely or a tail more likely? For a
frequentist, the approach is to find a point at which the curve is maximum and see what it corresponds to.
A Bayesian needs to integrate over all H-values P (heads|H) ∗ P (H). This latter method gives all of the
H-values some degree of influence (weighted by their individual probabilities) on the final prediction; this
is called marginalization or integrating out nuisance parameters (in this case, the variable H).
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