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1 Overview

In this lecture we first put to rest the solution of how to find the approximation to n! known as Sterling’s
approximation, using methods gained from statistics. Then we will look at using Bayes’s formulation of
statistics to create classifiers based on probability that a condition exists given a certain amount of training
data.

2 Unfinished Business

Sterling’ss Approximation is given by:
n! ≈ nne−n

√
2πn

1. Start with the Poisson distribution

P (λ) =
e−λλx

x!

∣∣∣∣mean = λ

x = 1, 2, . . . , λ, . . .

We observe that in the region of the mean(λ) Poisson is about normal (mean = λ and variance = λ)

2. Equation-arithmically around the mean the Poisson distribution looks like

P (λ) =
e−λλλ

λ!
≈ 1√

2πλ
∗ e−

λ−λ

−2λ2

e−λλλ

λ!
≈ 1√

2πλ
∗ e0

λ! ≈
√

2πλe−λλλ
∣∣∣λ = n

n! ≈ nne−n
√

2πn

3 Main Section

Last class we talked about posterior and the prior

P (hyp|data) ∝ P (data|hyp) × P (hyp)
posterior likelihood prior
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Assume you are given data and you want to find a hypothesis (e.g. whether the data is random / normal /
poisson ). Using the Bayesian approach, find the posterior of all of them (maybe the respective values are
0.7, 0.1, and 0.1), and analyze the posterior distribution.

Consider the doctor example with three treatments, three diseases, and three symptoms:

Treatments Diseases Symptoms
acupuncture cancer S1

electric shock attitude S7

anti biotics faking S3

Furthermore, assume that all three treatments can be used with all three diseases which will exhibit all three
symptoms. If one wanted to know the probability of needing accupuncture given S1, this could be found
using:

P (accupuncture|S1) =
∑
d

P (Accupuncture, d|S1)

=
∑
d

P (Accupuncture|d) ∗ P (d|S1)

But we have made an assumption here!

Recall:

P (A) =
∑
B

P (A,B)

=
∑
B

P (A|B) ∗ P (B)

=
∑
B

P (B|A) ∗ P (A)

= P (A) ∗
∑
B

P (B|A)

The above equations hold always, irrespective of the relationship between A and B because then:

P (A,B) = P (B) ∗ P (A|B)

We can generalize this to three variables in the following way; in general the following holds:

P (A,B|C) = P (B|C) ∗ P (A|B,C)

With the additional information that A & C are conditionally independendent given B, we can conclude:

P (A,B|C) = P (B|C) ∗ P (A|B)
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Going back to the Doctor problem,

P (accupuncture|S1) =
∑
d

P (Accupuncture, d|S1) (1)

=
∑
d

P (d|S1) ∗ P (accupuncture|d, S1) (2)

=
∑
d

P (d|S1) ∗ P (accupuncture|d) (3)

For the last step to work, we must assume that accupuncture & S1 are condionatlly independent given d.

4 Relationship between different modeling paradigms

Recall that the Bayesian approach is to have a distribution as the final answer. The MAP (Maximum A Pos-
teriori) approach picks the hypothesis that yields the maximum in the posterior distribution. The Maximum
Likelihood (ML) approach picks the hypothesis that yields the maximum in terms of the likelihood. Note
that MAP reduces to ML for a uniform prior.

Consider how a numerical analyst chooses between hypotheses. Given (x,y) numeric data, we can investigate
the following two hypotheses:

h1 : y = ax+ b

h2 : y = ax2 + bx+ c

To decide which is best, we can use least squares to find the parameters that yield the least error from each
of these hypotheses, i.e., find a, b for h1 by minimizing:

Error =
∑
i

(yi − a ∗ xi + b))2

or more generally:
Error =

∑
i

(yi − f(xi, a, b, . . . ))2

The surprising result is that the least squares hypothesis is actually the same as what we will obtain from a
probabilistic interpretation! In particular, the least squares fit is actually the maximum likelihood hypothesis
if we assume that the error in the data is normally distributed. For proof, see next class.

Hence, we have the following progression between modeling paradigms: Bayesian→ MAP (Maximum A
Posteriori) → ML (Maximum likelihood) (when assuming uniform priors) → LS (Least Squares) (when
error in data normally distributed).
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