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1 Oveview

In this lecture we introduce a set of deduction rules, whieheased on the inclusion-exclusion principle, to
derive bounds on the support of a candidate itemset, givesupports of all its subsets. Then, we discuss
possible performance improvements in frequent itemsetigdion by using these deduction rules and trying
to avoid scanning the database.

2 Usingthelnclusion-Exclusion Principle

2.1 Inclusion-exclusion principle

Let Aq,..., A, ben finite sets. Then, the inclusion-exclusion principle isfibleowing.
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2.2 Boundsfor supports
From the Venn diagram above, we can write:
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support(AB) = support(A) — support(AB)
support(AB) = support(B) — support(AB)
support(AB) = N — support(A) — support(B) + support(AB)
support(AB) = support(AB)
N = support()

We can think of the left sides of the above expressions asigdined itemsets.” Seupport(AB) refers to
those transactions that containbut not B. Any of these itemsets haspport > 0. This gives:

support(A) — support(AB) > 0
support(B) — support(AB) > 0
support(D) — support(A) — support(B) + support(AB) > 0

Then, we have the following rules which are universally true

support(AB) < support(A)

support(AB) < support(B)

support(AB) > support(A) + support(B) — support(()
support(AB) >0

There are two>’s and two <'s. We can use these rules to get the bounds.pport(AB) from support(A)
andsupport(B). Thus, the support bounds of a level 2 itemset is obtained the (actual) supports of level

1 itemsets. For The tightest bounds, we use the highest looterd and lowest upper bound. None of these
rules are redundant [1]. Therefore, omission of the rulé regult in a less tight interval. Bounds may
be useful to check whether the support of a level 2 itemsetdvo® above the minimum support, without
actually counting it. Similarly, support bounds of levelt@msets can be derived from the supports of level
2 and level 1 itemsets as well, as discussed in [1].

2.3 Boundsand minimum support

How can we use these bounds to prune our search space? Givend{b, y| on the support of an itemset
the following cases can happen:

1. case 1: ifz,y] andy < min_support = infrequent

Derivable

/\/

Non-derivable




2. case 2: ifz,y] andz > min_support = frequent

3. case 3: ift = yin [z,y]
= frequent (ifx > min_support)
= infrequent (ifx < min_support)

Those itemsets that belong to the last case, i.e., wherewer land upper bounds are equal, are called
derivable itemsets. All other itemsets are called non-derivable sietisn Derivability is monotone. There
is a border between derivable and non-derivable itemsetsicé] when searching from bottom to top, the
moment we reach the derivable boundary, we do not need tolsgamsets beyond that point.

3 Constraints

We now move on to finding itemsets with constraints. We wiltehgstate some useful constraints here and
think about algorithms for mining them in next class.
1. Minimum support constraint: anti-monotonic

2. “itemset with avg(price $4”; this is nasty nasty because it requires us to sum upbatds of
itemsets. It is neither anti-monotonic or monotonic

3. An even nastier constraint involves assessment of \@iahan itemset’s attribute.
4. Succinct constraint: to be continued in next class

Monotonic: GivenX C Y, if X has the propertyy” has the property
Anti-monotonic: GivenX C Y, if X does not have the property, does not have the property.
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