CS 6604: Data Mining Fall 2007

Lecture 8 — Wednesday, September 12, 2007

Lecture: Naren Ramakrishnan Scribe: Don Conry

1 Overview
It is convenient to recall a few terms from previous lectures [1]:

1. A monotonic constraint C) is one that preserves order, i.e. if x C y and Cy/(x) is satisfied, then
Ch(y) is also satisfied. It follows that monotone constraints are upward-closed, meaning that if any
set A satisfies the constraint, all supersets of A will also satisfy that constraint.

2. An anti-monotonic constraint C 47 is one that reverses order, i.e. if x C y and Cyps(z) is not sat-
isfied, then C'45/(y) is also not satisfied. Anti-monotone constraints are downward-closed, meaning
that if any set B fails to satisfy the constraint, all supersets of B will also fail to satisfy that constraint.

Either of these properties induces a border. Either can be used with a top-down or bottom-up search, or both
(like Pincer Search [2]).

1.1 An example

Consider the following database of item prices and transactions:

transaction ID | items e | orice
1 (b.c.d gl - 2
2 {a,b,d, e} b g
3 {b,c,d, g, h}

c 14
4 {a e, g} d |30
5 {c,d,f, g} . 20
6 {a,b,c,d, e} ‘ 15
7 {a,b,d, f, g, h} g
8 (b, c,d} S

h 12
9 {b, e’ f’ g}

Suppose we want to mine itemsets from the above database with 2 constraints:

1. Itemsets must have support of 4 or greater (minsupp(i) >= 4).

2. Ttemsets must have total price of 45 or greater (sum(i.price) >= 45).



Notice that the first constraint is anti-monotonic (downward-closed), while the second constraint is mono-
tonic (upward-closed). How can we mine sets meeting the above constraints, without doing too much work?
In particular, we want to avoid unnecessary database scans.

To begin, observe that the two constaints differ from each other in more ways than monotonicity. Given an
itemset, the second constraint can be verified without scanning the database; it only requires knowing the
prices of items. This is not true for the first constraint. This idea is used in [4] to push the constraint deeper
into the candidate generation and pruning process. Here is how it works.

Step 1:  Count singleton items and save their support values in an index.
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Step 2: Next eliminate singleton items that fail to satisfy the support constraint. In this case, f and h can
be eliminated. This is called y reduction in [4].

Step 3: Claim: items a and e can also be eliminated. Why? Notice that transaction 6 {a,e, g} has a
total cost of 14, which is less than 45. Therefore, since we know {a, e, g} alone cannot satisfy the second
constraint, we can remove transaction 6 from consideration, reducing the support values for the included
items by 1. In this case, the support for items a and e drops to 3 which is below the threshold, so a and e
can also be removed due to lack of support. This is known as « reduction in [4].

Step 4: Remove items eliminated in steps 2 & 3 from all transactions, and recalculate the total cost of
each transaction. If necessary we can return to step 3 and eliminate other transactions which no longer meet
the total cost constraint.

In general, steps 3 & 4 can be iterated until only transactions satisfying both constraints remain. This method
works because both a- and p-reduction can prune items or transactions from the database without losing any
solutions. A formal proof of this method can be found in [4].

2 Variance

Another type of constraint is of the following form: find all itemsets such that the variance of the item cost
is at least p. This variance constraint is neither monotonic nor anti-monotonic. However, as proved in [5],
variance is loosely anti-monotonic (and also loosely monotonic). Loosely anti-monotonic means that if an



itemset X satisfies a constraint, there exists at least one itemset Y C X with |Y| = | X| — 1 (i.e. exactly
one less item in size) that also satisfies the constraint; this process can be repeated to find a suitable subset
of Y satisfying the constraint, and so forth down the lattice (until level 1... single item sets have a variance
of 0). Loosely monotonic sets have a similar property in the reverse direction (going up the itemset lattice).

In the case of variance, appropriate subsets and supersets are easy to find at each level; to go down the lattice
(loosely anti-monotonic), we simply drop the item that is the closest to a set’s mean value. To go up the
lattice, we select the superset with an additional item that is furthest from the set’s mean.

For a given itemset with constraints Var(x.price) <= p and supp(x) >= 6, we can adapt the algorithm
from the previous section to mine transactions that meet the constraints. Scan the database once to count
support for singleton items (variance is 0 for singletons). After eliminating singletons that fail to satisfy
the minimum support constraint, then combine the survivors. At each subsequent level, due to the loosely
anti-monotonic property of variance, if none of the subsets of an itemset meets both constraints, we can
eliminate that itemset from further consideration.

This concludes our study of itemsets.

3 Classification

Given a target variable and one or more features, predicting the value of the target variable based on these
features is called classification. One example of a classification problem is filtering unwanted spam mes-
sages from email. Given some rules including specific features and a known target variable, spam filters
predict the target variable for future instances:

email | feature 1 | feature 2 | feature 3 | spam?
#1 y n y spam

#2 y y n not spam
#3 n y y spam

#k y n n ?

One method of prediction is by using association rules. Consider instances as transactions, features and the
target variable as itemsets in each transaction, and mine the database for frequent itemsets, but only those
itemsets involving the target variable. Next, obtain rules from these itemsets whose consequent is the target
variable and rank them by confidence. One problem with this approach is that contradictory rules may occur.
For example, if you have rules that feature b predicts spam and feature c predicts not spam, how can you
classify an instance containing both features?

This type of method where lots of rules simultaneously predict classes in possibly overlapping ways is called
a simultaneous covering. A covering of a set S is a collection C of subsets of S such that | JC = S. In other
words, the union of all sets in C' contain every element in S at least once. A covering is simultaneous if the
rules are not required to be ordered. A sequential covering contains rules that must be applied in a certain
order. The rules of a sequential covering are similar to the if-then-else construct in many programming
languages, also known as a decision list (see figure). A partition of S is a minimal covering, i.e. it is both
collectively exhaustive (covers all elements of .S) and mutually exclusive (contains no repeated elements).



Figure 1: The sets C1, ..., C6 form a covering as well as a partition of S.

In reality, most coverings consist of a majority of points inside the target set .5, but also some points hanging
outside. The problem of adjusting such sets so they perfectly cover S is called the Red Blue Set Cover
problem. This problem, and even finding approximations of its solution, are intractable.

Figure 2: This covering is exhaustive but not mutually exclusive. It also ‘spills’ over to cover unnecessary
elements.

4 Next lexture

Next class we will discuss how to learn decision trees (and lists). One way to grow these kinds of trees is to
ask informative questions. Next time we will define what we mean by “informative’.

conditionl?

Figure 3: A simple decision list. Every node has a leaf for (at least) one of its children.
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