

VirginiaTech

Figure 1: Simultaneously recorded multi-neuron data

Probabilistic Models

- Probabilistic Models, such as Bayesian Networks, provide compact factorizations of joint probability distributions.
- The probability of spiking of a neuron is conditioned on the activity of a subset of relevant neurons in recent past (or history window).
- Learning probability models from spike train data is a hard problem. Most efficient methods are heuristic.

$$\operatorname{Prob}(X_1 \dots X_n = x_1 \dots x_n) = \prod_{i=1}^n \operatorname{Prob}(X_i = x_i | \operatorname{Parent}(X_i))$$

Conditional Probability Table
$$X_1 \quad X_2 \quad X_5 \quad \operatorname{P}[X_6=0] \quad \operatorname{P}[X_6=0]$$

 $Parent(X_6) = \{X_1, X_2, X_5\}$

X ₁	\mathbf{X}_2	\mathbf{X}_{5}	P [X ₆ =0]	P [X ₆ =1]
0	0	0	0.9	0.1
0	0	1	0.9	0.1
		•		
1	1	0	0.9	0.1
1	1	1	0.1	0.9

Figure 2: A typical Bayesian Network

Excitatory Dynamic Networks (EDNs)

We define a special class of models, *Excitatory Dynamic Networks*: • Neurons can only exert excitatory influences on one another.

Figure 3: Independent parent components in our Excitatory Dynamic Network (EDN) formulation.

9th Annual Computational Neuroscience Meeting CNS*2010, July 24th – 30th 2010, San Antonio, Texas

Learning Probabilistic Models of Connectivity from Multiple Spike Train Data

Debprakash Patnaik*, Srivatsan Laxman[†] and Naren Ramakrishnan*

*Dept. of Computer Science, Virginia Tech, Blacksburg, VA

[†]Microsoft Research, Bangalore, India

E-mail: patnaik@vt.edu

Method

Our emphasis on excitatory networks enables:

• Learning of connectivity models by exploiting fast and efficient data mining algorithms [2].

EDN Structure Learning

- Structure Learning requires identifying high mutual informal parent sets.
- We formally establish a connection between efficient frequent episode mining algorithms and learning probabilistic models for excitatory connections.
- Frequent Episode Mining is used to identify frequently repeating patterns of spiking activity [3].

Figure 4: Search for high mutual information parent set restricted to immediate history window.

Theorem 1 Consider node X_A in an excitatory DBN with parent-set Π . Let ϵ^* be an upper-bound for $P[X_A = 1 \mid \Pi = a]$ for all $a \neq a^*(= 1)$. $I[X_A; \Pi] > \vartheta$ implies $P[X_A = 1, \Pi = a^*] \ge P_{min} \Phi_{min}$, where

$$P_{min} = \frac{P[X_A = 1] - \epsilon^*}{1 - \epsilon^*} \tag{1}$$

$$\Phi_{min} = h^{-1} \left[\min\left(1, \frac{h(P[X_A = 1]) - \vartheta}{P_{min}}\right) \right]$$
(2)

and where $h(\cdot)$ denotes the binary entropy function $h(q) = -q \log q - q$ $(1-q)\log(1-q)$, o < q < 1 and $h^{-1}[\cdot]$ denotes its pre-image greater than $\frac{1}{2}$

Figure 5: Search for high mutual information parent sets translates to finding frequent episodes.

Frequent Episode Mining

Serial Episodes: Patterns of the form $\langle B \xrightarrow{1} C \xrightarrow{2} D \xrightarrow{2} A \rangle$ **Frequent:** $\sigma(B \xrightarrow{1} C \xrightarrow{2} D \xrightarrow{2} A) = \frac{count}{T} > \vartheta$ supp. threshold Efficient Algorithm: Level-wise mining

Candidate generation \rightarrow Counting \rightarrow Retain frequent episodes. **Counting:** Maximum number of non-overlapped occurrences.

Figure 6: Frequent Episode Mining - Fast and efficient data mining algorithm.

- past

Polychronous Circuit

In polychronous circuits neurons code information through precise spike timing and variable network delays. Complex patterns can be stored and processed by such networks [1].

Synthetic Data Generation

• Synthetic data generation models each neuron as an Inhomogeneous Poisson Process.

• Firing rate is modulated by the spikes received by neuron in recent

Figure 8: Simulation Model of a single neuron.

Synfire Chains

A volley of firing in one group of neurons causes next group to fire and activity propagates over the network. The gray boxes show the MEA view of the activity.

Figure 9: Discovering Synfire network structure.

Figure 10: Discovering Polychronous network structure.

Real MEA Data

Application of our method on multi-electrode arrays recordings from dissociated cortical cultures gathered by Steve Potter's laboratory at Georgia Tech [4].

Figure 11: Network structure discovered from first 15 min of spike train recording on day 35 of culture 2-1.

Figure 12: Framework for discovering Excitatory Dynamic Networks.

Conclusion

Excitatory Dynamic Networks: We provide a formal basis for learning a special class of models from spike train data.

Efficient Learning: Excitatory network assumption allows the use of connect fast frequent episode mining algorithms to learn network

Application to Spike Train analysis: We show that network dynamics like Synfire Chains, Polychrony etc. can be modeled as excitatory networks and can be unearthed using EDN Learning.

References

[1] E. M. Izhikevich. Polychronization: computation with spikes. *Neural Comput*, 18(2):245–282, Feb 2006.

[2] D. Patnaik, S. Laxman, and N. Ramakrishnan. Discovering excitatory networks from discrete event streams with applications to neuronal spike train analysis. In Proc. of Ninth IEEE Intl. Conf. on Data Mining, pages 407–416, 2009.

[3] D. Patnaik, P. S. Sastry, and K. P. Unnikrishnan. Inferring neuronal network connectivity from spike data: A temporal data mining approach. *Scientific Programming*, 16(1):49–77, January 2007.

[4] D. A. Wagenaar, J. Pine, and S. M. Potter. An extremely rich repertoire of bursting patterns during the development of cortical cultures. *BMC Neurosci*, 7:11–11, 2006.