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Multi-Neuronal Data
•Neuronal circuits carry out brain function through complex coordi-

nated firing patterns.
• Inferring topology of neuronal circuits from spike train data is chal-

lenging and hard.
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Figure 1: Simultaneously recorded multi-neuron data

Probabilistic Models
• Probabilistic Models, such as Bayesian Networks, provide compact

factorizations of joint probability distributions.
• The probability of spiking of a neuron is conditioned on the activity

of a subset of relevant neurons in recent past (or history window).
• Learning probability models from spike train data is a hard problem.

Most efficient methods are heuristic.

Prob(X1 . . . Xn = x1 . . . xn) =

n∏
i=1

Prob(Xi = xi|Parent(Xi))
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Figure 2: A typical Bayesian Network

Excitatory Dynamic Networks (EDNs)
We define a special class of models, Excitatory Dynamic Networks:
•Neurons can only exert excitatory influences on one another.
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Figure 3: Independent parent components in our Excitatory Dynamic
Network (EDN) formulation.

Method
Our emphasis on excitatory networks enables:
• Learning of connectivity models by exploiting fast and efficient data

mining algorithms [2].

EDN Structure Learning
• Structure Learning requires identifying high mutual informal parent

sets.
•We formally establish a connection between efficient frequent

episode mining algorithms and learning probabilistic models for ex-
citatory connections.
• Frequent Episode Mining is used to identify frequently repeating

patterns of spiking activity [3].
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Figure 4: Search for high mutual information parent set restricted to
immediate history window.

Theorem 1 Consider node XA in an excitatory DBN with parent-set
Π. Let ε∗ be an upper-bound for P [XA = 1 | Π = a] for all a 6= a∗(= 1).
I [XA ; Π] > ϑ implies P [XA = 1,Π = a∗] ≥ PminΦmin, where

Pmin =
P [XA = 1]− ε∗

1− ε∗
(1)

Φmin = h−1
[

min

(
1,
h(P [XA = 1])− ϑ

Pmin

)]
(2)

and where h(·) denotes the binary entropy function h(q) = −q log q −
(1 − q) log(1 − q), o < q < 1 and h−1[·] denotes its pre-image greater
than 1

2.
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Figure 5: Search for high mutual information parent sets translates to
finding frequent episodes.

Frequent Episode Mining

Serial Episodes: Patterns of the form 〈B 1→ C
2→ D

2→ A〉

Frequent: σ(B
1→ C

2→ D
2→ A) = count

T > ϑ supp. threshold
Efficient Algorithm: Level-wise mining

Candidate generation→ Counting→ Retain frequent episodes.
Counting: Maximum number of non-overlapped occurrences.
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Figure 6: Frequent Episode Mining - Fast and efficient data mining
algorithm.
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Figure 7: Level-wise candidate generation in frequent episode min-
ing.

Results

Synthetic Data Generation
• Synthetic data generation models each neuron as an Inhomoge-

neous Poisson Process.
• Firing rate is modulated by the spikes received by neuron in recent

past.
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Figure 8: Simulation Model of a single neuron.

Synfire Chains
A volley of firing in one group of neurons causes next group to fire
and activity propagates over the network. The gray boxes show the
MEA view of the activity.
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Figure 9: Discovering Synfire network structure.

Polychronous Circuit
In polychronous circuits neurons code information through precise
spike timing and variable network delays. Complex patterns can be
stored and processed by such networks [1].

Figure 10: Discovering Polychronous network structure.

Real MEA Data
Application of our method on multi-electrode arrays recordings from
dissociated cortical cultures gathered by Steve Potter’s laboratory at
Georgia Tech [4].

Figure 11: Network structure discovered from first 15 min of spike
train recording on day 35 of culture 2-1.

Conclusion

Excitatory Dynamic Networks: We provide a formal basis for learn-
ing a special class of models from spike train data.

Efficient Learning: Excitatory network assumption allows the use of
connect fast frequent episode mining algorithms to learn network
structures.

Application to Spike Train analysis: We show that network dynam-
ics like Synfire Chains, Polychrony etc. can be modeled as excita-
tory networks and can be unearthed using EDN Learning.
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Figure 12: Framework for discovering Excitatory Dynamic Networks.
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