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Multi-Neuronal Data

e Neuronal circuits carry out brain function through complex coordi-
nated firing patterns.

e Inferring topology of neuronal circuits from spike train data is chal-
lenging and hard.
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Figure 1: Simultaneously recorded multi-neuron data

Probabilistic Models

e Probabilistic Models, such as Bayesian Networks, provide compact
factorizations of joint probability distributions.

e The probability of spiking of a neuron is conditioned on the activity
of a subset of relevant neurons in recent past (or history window).

e Learning probability models from spike train data is a hard problem.
Most efficient methods are heuristic.
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X, | X, | Xy | P[Xs=0] | P[X,=1]
O 0 0 0.9 0.1
o 0 1 0.9 0.1

Prob(X;... X, =x1...x X; = x;|Parent(Xj;))

1 1 0 0.9 0.1

Pal’em‘(X6)={X1,XzaX5} 1 1 1 0.1 0.9

Figure 2: A typical Bayesian Network

Excitatory Dynamic Networks (EDNSs)

We define a special class of models, Excitatory Dynamic Networks:
e Neurons can only exert excitatory influences on one another.

Excitatory Dynamic Network
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Figure 3: Independent parent components in our Excitatory Dynamic
Network (EDN) formulation.
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Our emphasis on excitatory networks enables:

e Learning of connectivity models by exploiting fast and efficient data
mining algorithms [2].

EDN Structure Learning

e Structure Learning requires identifying high mutual informal parent
sets.

e We formally establish a connection between efficient frequent
episode mining algorithms and learning probabilistic models for ex-
citatory connections.

e Frequent Episode Mining is used to identify frequently repeating
patterns of spiking activity [3].
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Figure 4: Search for high mutual information parent set restricted to

immediate history window.

Theorem 1 Consider node X 4 in an excitatory DBN with parent-set
[1. Lete* be an upper-bound for P\ X 4= 1|11 =al forall a # a*(=1).
I\ X 4; 1] > 9 implies P|X 4= 1,11 =a*| > P,in®min, where

&, = h) [min (1, h(P[Xéz 1]) - 19)] (2)

and where h(-) denotes the binary entropy function h(q) = —qlogq —
(1 —q)log(l —q), 0o < q < 1andh~'] denotes its pre-image greater
than 3.
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Figure 5: Search for high mutual information parent sets translates to
finding frequent episodes.

Frequent Episode Mining

Serial Episodes: Patterns of the form (B Loipa A)

Frequent: ¢(B LoA D3 A) = Co%m > ¢ supp. threshold

Efficient Algorithm: Level-wise mining
Candidate generation — Counting — Retain frequent episodes.

Counting: Maximum number of non-overlapped occurrences.
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Figure 6: Frequent Episode Mining - Fast and efficient data mining
algorithm.
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Figure 7: Level-wise cand/date generation in frequent episode min-
ing.

>

o

Synthetic Data Generation

e Synthetic data generation models each neuron as an Inhomoge-
neous Poisson Process.

e Firing rate is modulated by the spikes received by neuron in recent
past.
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Figure 8: Simulation Model of a single neuron.

Synfire Chains

A volley of firing in one group of neurons causes next group to fire
and activity propagates over the network. The gray boxes show the
MEA view of the activity.

Figure 9: Discovering Synfire network structure.

Polychronous Circuit

In polychronous circuits neurons code information through precise
spike timing and variable network delays. Complex patterns can be
stored and processed by such networks [1].
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Figure 10: Discovering Polychronous network structure.
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Real MEA Data

Application of our method on multi-electrode arrays recordings from
dissociated cortical cultures gathered by Steve Potter’'s laboratory at
Georgia Tech [4].

Figure 11: Network structure discovered from first 15 min of spike
train recording on day 35 of culture 2-1.

Conclusion

Excitatory Dynamic Networks: We provide a formal basis for learn-
Ing a special class of models from spike train data.

Efficient Learning: Excitatory network assumption allows the use of
connect fast frequent episode mining algorithms to learn network
structures.

Application to Spike Train analysis: We show that network dynam-
ics like Synfire Chains, Polychrony etc. can be modeled as excita-
tory networks and can be unearthed using EDN Learning.
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Figure 12: Framework for discovering Excitatory Dynamic Networks.
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