
Scalable Execution of Legacy Scientific Codes

Joy Mukherjee, Srinidhi Varadarajan, and Naren Ramakrishnan

660 McBryde Hall, Dept of Computer Science, Virginia Tech, Blacksburg, VA 24061
{jmukherj, srinidhi, naren}@cs.vt.edu

Abstract. This paper presents Weaves, a language neutral framework
for scalable execution of legacy parallel scientific codes. Weaves supports
scalable threads of control and multiple namespaces with selective shar-
ing of state within a single address space. We resort to two examples
for illustration of different aspects of the framework and to stress the
diversity of its application domains. The more expressive collaborating
partial differential equation (PDE) solvers are used to exemplify devel-
opmental aspects, while freely available Sweep3D is used for performance
results. We outline the framework in the context of shared memory sys-
tems, where its benefits are apparent. We also contrast Weaves against
existing programming paradigms, present use cases, and outline its im-
plementation. Preliminary performance tests show significant scalability
over process-based implementations of Sweep3D.

1 Introduction

The past decade has witnessed increasing commoditization of scientific comput-
ing codes, leading to the prevailing practice of compositional software develop-
ment. The ability to combine representations for different aspects of a scien-
tific computation to create a representation for the computation as a whole is
now considered central to high-level problem solving environments (PSEs)[1].
Common solutions for compositional scientific software [2],[3],[4] are primarily
targeted at the higher end of distribution and decoupling among processors –
clusters, distributed memory supercomputers, and grids. As a result, they do
not require expressive mechanisms for realizing certain facets of parallelism. For
instance, most of them follow the process model along with message passing for
data exchanges. Nevertheless, processes can lead to problems of scalability when
resources are limited.

This paper concentrates on shared memory multiprocessor (SMP) machines.
It introduces Weaves—a language neutral framework for scalable execution of
scientific codes—for such platforms. Weaves exploits typical shared memory
properties to enrich scalability of unmodified scientific applications. It facili-
tates creation of multiple namespaces within a single process (address) space
with arbitrary sharing of components (and their state). The framework sup-
ports lightweight threads of control through each namespace thus enabling scal-
able exchange of state, code, and control information. We resort to two examples
for illustration of different aspects of the framework and to stress the diversity

of its application domains. The more expressive collaborating partial differen-
tial equation (PDE) solvers are used to exemplify developmental aspects, while
freely available Sweep3D is used for performance results. We discuss related
work, outline Weaves’ design and implementation, and present use-cases.

2 Collaborating PDE Solvers

Our first example application involves collaborating partial differential equation
(PDE) solvers [4], an approach for solving heterogeneous multi-physics prob-
lems using interface relaxation [5], [6] (see Fig. 1). Mathematical modeling of
the multi-physics problem distinguishes between solvers and mediators. A par-
allel PDE solver is instantiated for each of the simpler problems and a parallel
mediator is instantiated for every interface, to facilitate collaboration between
the solvers. Fig. 1 illustrates typical solver and mediator codes. Among other pa-

Part 2

M12

PdeSolve (...) { … }

PdeSolve (...) { … }

RelaxSoln (…) { … }

RelaxSoln (...) { … }

ToolBox

PDE struct
{
domain;
operator;
right side;
boundary_cond_1;
...
boundary_cond_n;
...
}

/* Solver code */
…
function solver (…) {
…
 do {
 … // wait for new conditions
 PdeSolve (…);
 … // report new solutions
 } while (…)
...
}

/* Mediator code */
…
function mediator (…) {
…
 do {
 … // wait for solution(s)
 RelaxSoln (…);
 … // report new conditions
 } while (…)
...
}

Solutions for mediators

Solutions from solvers

Boundary
conditions for
solvers (PDE

structs)

Part 1

S2S1

Fig. 1. Inset (top-left): Simple composite multy-physics problem with two subdomains
or parts. Each part is modeled by a PDE solver (S). The mediator (M) is responsible
for agreement along the interface. Realistic scenarios can involve several solvers and
mediators with complex graph-like connections. Center: Typical solver and mediator
codes are shown. PdeSolve and RelaxSoln routines are chosen from a PSE toolbox.

rameters, a solver takes boundary conditions as inputs to compute solutions. The
PdeSolve routine is chosen from a problem solving environment (PSE) toolbox
depending on the PDE problem characteristics. Different PdeSolve routines may
implement different algorithms, but could use identical names and signatures.
Further, a composite problem might use the same solver on all subdomains or
adopt different solvers. After computing solutions, a solver passes the results to
mediators and waits till the mediators report back fresh boundary conditions.
Upon the receipt of new conditions, it may recompute the solutions and repeat
the whole process till a satisfactory state is reached. A mediator relaxes the
solutions from solvers and returns improved values [6]. The RelaxSoln routines
are also chosen from the PSE toolbox depending on the problem instance. Once

again, multiple RelaxSoln routines may expose identical names and signatures
and there is a choice of using the same or different mediator algorithms.

The PDE solver problem exemplifies three requirements from a parallel pro-
gramming perspective: (i) Arbitrary state sharing: A part of solver state (cor-
responding to a boundary) should be accessible to a mediator. Additionally,
different segments of solver state should be accessible to different mediators.
(ii) Transparency: PDE solution and relaxation routines are mostly legacy pro-
cedural codes validated over decades of research. Modification to their sources
should be minimized. (3) Scalability: Complex problem instances such as model-
ing of turbines and heat engines may involve thousands of solvers and mediators.
Solution approaches should, therefore, be scalable.

Traditionally, the collaborative PDE solvers problem has been approached
using agent technology [4] in highly distributed environments such as clusters
and distributed memory machines. Agent-based solutions use message passing as
an indirect representation of procedural invocations for arbitrary state sharing.
Nevertheless, continuing rise of low-cost SMPs and increases in ’arity’ of nodes
open up new possibilities. On SMP machines, multiple flows of execution may
run simultaneously on different processors, but over the same operating system
(OS). Weaves exploits this proximity to manifest efficient state sharing through
direct in-memory data accesses within a single address space. Transparency is
harnessed through component-based composition of solvers and mediators. Scal-
ability is gained through use of lightweight threads for flows of control.

3 Related Work

To our knowledge, not much research has been directed at providing scalabil-
ity without code modification. Nevertheless, we contrast against some general
approaches to parallel programming since they are powerful enough to be used
for various purposes. For instance, the traditional agent-based message passing
scheme may be implemented on SMPs by modeling each solver and mediator as
an independent process. This approach aids code-reuse. However, inter-process
communication and process switching overheads hamper scalability [1]. Scalabil-
ity issues with multiple independent processes emphasize the use of lightweight
intra-process threads for parallel flows of control. Techniques for concurrent [3],
[7],[8], compositional [9], [10], and object-oriented [2] programming can enable
scalable state sharing over lightweight threads through the use of in-memory data
structures. However, all of these mechanisms resort to varying degrees of source-
level constructs to enforce encapsulation (separation of namespace) and therefore
do not meet our transparency requirement. (Recall that legacy PDE solver and
relaxation codes may use identical names or symbols for functions/data).

4 Weaves

From the previous section we deduce that on SMP machines, the transparency
and scalability requirements of the collaborating PDE solver example reduce to

(1) use of traditional procedural codes and programming techniques, and (2) use
of lightweight intra-process threads for modeling parallel flows of control. The
need is selective separation of state and namespace of intra-process threads with-
out resorting to source-level programming. Scalability and transparency debar
OS level solutions. These observations lead to the first step towards Weaves.

4.1 Design and Definitions

The Weaves framework creates encapsulated intra-process components called
modules from source written in any language. A module is an encapsulated run-
time image of a compiled binary object file. Each module defines its own names-
pace. Multiple identical modules have independent namespaces and global data
within the address space of a single process. A module may make references to
external definitions. Weaves offers application control over reference-definition
bindings. While encapsulation of modules enforces separation, individual refer-
ences may be explicitly redirected to achieve fine-grain selective sharing. Refer-
ences from different modules pointing to a particular definition result in sharing
of the definition among the modules. The minimal definition of the module allows
Weaves to flexibly work with high-level frameworks, models, and languages.

At the core of the Weaves framework is the definition of a weave. A weave1 is
a collection of one or more modules composed into an intra-process subprogram.
From the viewpoint of procedural programs, weave composition from modules
is similar to linking object files for executable generation. However, there are
important differences: (1) Weave composition is an intra-process runtime activity
(recall that modules are intra-process runtime entities). (2) Weave composition
does not necessitate resolution of all references within constituent modules. (3)
Reference redirections may be used later to fulfill completeness or to transcend
weave boundaries. A weave unifies namespaces of constituent modules. Hence,
identical modules cannot be included within a single weave. However, different
weaves may comprise similar, but independent, modules. This facility of weaves
helps create multiple independent copies of identical programs within a process
space. Going a step further, the Weaves framework allows a single module to
be part of multiple weaves. These weaves, therefore, share the contents of the
common module. This lays the foundation for selective sharing and separation
of state within the Weaves framework. Individual reference redirections extend
such sharing among weaves in arbitrary ways.

A string is the fundamental unit of execution under Weaves. It is a lightweight
intra-process thread. A string executes within a weave. Multiple strings may si-
multaneously run through the same or different weaves. The Weaves framework
emulates the process model when one string is initiated through each one of mul-
tiple independent weaves. It emulates the traditional threads model when multi-
ple strings are initiated through a single weave. Apart from these extremes, the
framework also provides for arbitrary compositions of strings (realized through

1 We use ’weave’ to indicate the unit of composition and ‘Weaves’ to refer to the
overall framework

the composition of associated weaves). A runtime issue can arise when a mod-
ule is part of more than one weave – external references from a shared module
may have to resolve to different definitions depending on the weave. We use late
binding mechanisms to resolve this on-the-fly. Whenever a string accesses such
an external reference, the framework’s runtime environment queries the string
for its weave and resolves to a definition accordingly. Weaves requires a minimal
bootstrapping module (which runs on the main process thread of every appli-
cation) to set up the target application – load modules, compose weaves, and
start strings. The main process thread may later be used to monitor and ex-
ternally/asynchronously modify the application constitution at runtime [1]. The
entire application—including all modules, weaves, strings, and the monitor—
runs within a single OS process. The framework provides a meta-language for

C
om

poser

Monitoring Agent The Weaves
Bootstrap module

Module 2

Module 3

String 1 String 2

Weave 2Weave 1

Linker/Loader

W
ea

ve
d

A
pp

lic
at

io
n

(S
in

gl
e

O
S

Pr
oc

es
s) Any Compiler

Any Compiler

Any Compiler

Source
C

ode 1
Source
C

ode 2
Source
C

ode 3

Program
m

er

O
bject

file 2
O

bject
file 3

#modules /* object file: module ID */
s1.so: 0 /* object file for solver 1 */
s2.so: 1 /* object file for solver 2 */
m12.so: 2 /*mediator object file */

#weaves /* weave ID: module ID, module ID, … */
0: 0, 2 /* weave 0 composes modules S1 and M12 */
1: 1, 2 /* weave 1 composes modules S2 and M12 */

#strings /* string ID: weave ID, start function */
0: 0, solver (…) // start string 0 in weave 0 at fn. solver (…)
1: 1, solver (…) // start string 1 in weave 1 at fn. solver (…)

Tapestry Specification
(code/meta-description/UI)

Module 1

O
bject

file 1

Fig. 2. Inset (bottom-left): A simple configuration file for a Weave-based approach to
realize the Fig 1. (inset) scenario. Here, codes for S1, S2, and M12 are compiled into
objects S1.so, S2.so, and M12.so respectively. Each solver module is composed into a
distinct weave with the single mediator module. Center: Diagrammatic illustration of
the development process of a general application using Weaves.

specification of application configuration in a file and a script that automatically
generates a bootstrap module, builds it, and initiates a live application from such
a meta-description. A simple configuration file for a Weaves-based approach to
realize the Fig. 1 (inset) scenario is shown in Fig. 2 (inset). One direction of
current research on Weaves aims at an integrated GUI for tapestry specifica-
tion and automatic execution. Fig. 2 diagrammatically illustrates the complete
development process of a general application using Weaves.

4.2 Implementation

Weaves’ current prototype implementation works on x86 (32 and 64 bit) and
ia64 architectures running GNU/Linux. Being a binary-based framework, it re-
lies on the Executable and Linkable File Format (ELF) [11] used by most UNIX
systems for native objects. It recognizes shared object (.so) files as loadable mod-
ules. Shared objects define encapsulated/independent namespaces and are easily
created from most relocatable objects (.o) compiled with position independent

options (-fPIC for gcc). The implementation of a weave follows from the basic
design. A string can be customized to use either POSIX threads (pthreads) or
GNU’s user-level threads, Pth.

Weaves’s runtime environment requires extensive binary loading and linking
capabilities to load and compose modules, and randomly manipulate reference-
definition bindings. However, traditional binary loader services are not sufficient
to support the demands of Weaves. For instance, typical loaders do not provide
an explicit interface to connect a reference to an arbitrary definition. Hence,
Weaves provides its own tool—Load and Let Link (LLL)—for dynamic loading
and linking of modules [13]. The LLL loader maps given object files on disk to
corresponding modules in memory. It can load multiple identical, but indepen-
dent, modules from the same shared object file. LLL does not try to resolve
external references at load-time, since any attempt to resolve them at this time
would result in avoidable overhead. All cross-binding actions involving multi-
ple modules are delegated to the linker, which dynamically composes a weave
given an ordered set of modules. Additionally, the linker is invoked for runtime
relocations of external references from a shared module. Finally, it provides an
interface for explicitly binding a reference in a module to a definition in another.

5 Weaving PDE Solvers

S1 S2

MPI emulator for
threads

Wv1 Wv2Wv3

String1

M12

String2
String3

Fig. 3. Weaving unmodified agent-based codes (Wv implies a weave)

Weaves opens up various possibilities for implementing collaborating PDE
solvers. However, due to space limitations, we discuss only the most radical ap-
proach that reuses unmodified solver and mediator codes from traditional agent-
based implementations. Here, unmodified solver and mediator agent codes are
compiled into object components. Additionally, a communication component is
programmed to emulate dependable and efficient messages transfers between
intra-process threads through in-memory data structures. The component’s in-
terfaces are identical to those of the distributed communication library used in
the agent-based solution. At runtime, all solvers and mediators are loaded as
distinct modules. The communication component is loaded as a single module.
Every solver module is composed with the communication module into a solver

weave. Every mediator module is composed with the communication module
into a mediator weave. Parallel strings are then fired off at the main functions of
solver and mediator modules. The solvers and mediators run as independent vir-
tual machine abstractions unaware of Weaves. Fig. 3 diagrammatically illustrates
a corresponding tapestry for a simple case assuming MPI for communication.

6 Performance Results

Sweep3D 150-cube nxm (on 8 way x86_64 SMP)

0

20

40

60

80

100

120

6 8 24 54 96 150

no. of processes/strings

Ex
ec

ut
io

n
tim

e
(s

ec
on

ds
)

lam usysv
mpich shmem
weaves

Fig. 4. Comparison of performance results of Weaved Sweep3D against LAM and
MPICH based ones.

For preliminary performance results, we ran a Weaved version of Sweep3D
[14] (an application for 3 dimensional discrete ordinates neutron transport) on
an 8-way x86 64 SMP and compared results with traditional MPI-based imple-
mentations. The Weaved-setup was similar to Fig. 3. We developed a simple
MPI emulator for in-memory data-exchange among threads. Multiple Sweep3D
modules were composed with a single MPI module for communication. We used
a 150-cube input file with a 2x3 split (6 processes/strings) as a start point and
increased the split to 2x4, 4x6, 6x9, and so on upto 10x15 (150 processes/strings).
The performance of the Weaved implementation matched that of LAM [12] and
MPICH [15] as long as the number of processes/strings was lesser than the num-
ber of processors. Beyond that, the Weaved implementation performed much
better thereby clearly demonstrating scalability (Fig.4). Both the MPI imple-
mentations (compiled and run with shared memory flags) crashed beyond 24
processes (4x6 split). The sharp performance degradation of LAM and MPICH
are primarily due to systems-level shared memory schemes, which do not scale
beyond the number of processors. The use of systems-level shared-memory is a

direct consequence of reliance on the process-model. Weaves works around this
problem by emulating processes within a single address-space.

7 Discussions

Weaved implementations of collaborating PDE solvers exploit lightweight intra-
process threads and direct in-memory state sharing for scalability. Furthermore,
they reuse legacy procedural codes for PdeSolve and RelaxSoln routines for trans-
parency. Lastly, the bootstrap module requires minimal information about the
internals of solver and mediator codes. Thus, Weaves can be used to flexibly
compose a wide range of solver-mediator networks as well as applications from
other domains. Preliminary performance tests show significant scalability over
process-based implementations of Sweep3D. A prototype of the Weaves frame-
work is available for download from http://blandings.cs.vt.edu/joy.

References

1. Varadarajan, S, Ramakrishnan, N.: Novel Runtime Systems Support for Adaptive
Compositional Modeling in PSEs. Future Generation Computing Systems (Special
Issue), 21(6) (June 2005), 878-895.

2. Chandy, K. M., Kesselman, C.: Compositional C++: Compositional Parallel Pro-
gramming. Technical Report CaltechCSTR:1992.cs-tr-92-13, California Institute of
Technology CA USA (2001).

3. Foster, I.: Compositional Parallel Programming Languages. ACM Transactions on
Prog. Lang. and Sys., 18(4) (July 1996), 454-476.

4. Drashansky, T. T., Houstis, E. N., Ramakrishnan, N., Rice J. R.: Networked Agents
for Scientific Computing. Communications of the ACM, 42(3) (March 1999), 48-54.

5. McFaddin, H. S., Rice, J. R.: Collaborating PDE Solvers. Applied Numerical Math-
ematics, 10 (1992), 279-295.

6. Rice, J. R.: An Agent-based Architecture for Solving Partial Differential Equations.
SIAM News, 31(6) (August 1998).

7. Carriero, N., Gelernter, D.: Linda in Context. Communications of the ACM, 32(4).
(April 1989) 444-458.

8. Sato, M.: OpenMP: Parallel Programming API for Shared Memory Multiprocessors
and On-Chip Multiprocessors. In Proceedings of the 15th International Symposium
on System Synthesis (ISSS ?02), Kyoto Japan (October 2-4 2002).

9. Common Component Architecture: http://www.cca-forum.org/
10. Mahmood, N., Deng, G., Browne, J. C.: Compositional Development of Paral-

lel Programs. In Proceedings of the 16th Workshop on Langs. and Compilers for
Parallel Computing (LCPC?03), College Station TX (2003).

11. Tools Interface Standards Committee: Executable and Linkable Format (ELF)
Specification, (May 1995).

12. LAM MPI: http://www.lam-mpi.org/
13. Mukherjee, J., Varadarajan, S.: Weaves: a framework for reconfigurable program-

ming. International Journal forParallel Programming, 33(2) (June 2005) 279-305.
14. Koch, K. R., Baker, R. S., Alcouffe, R. E.: Solution of the First-Order Form of the

3D Discrete Ordinates Equation on a Massively Parallel Processor. Transactions of
the American Nuclear Society, 65(198) (1992).

15. Mpich: http://www-unix.mcs.anl.gov/mpi/mpich/

