
Modular Implementation of Adaptive Decisions
in Stochastic Simulations

Pilsung Kang, Yang Cao, Naren Ramakrishnan,
Calvin J. Ribbens, and Srinidhi Varadarajan

Department of Computer Science
Virginia Tech, VA 24061, USA

{kangp,ycao,naren,ribbens,srinidhi}@cs.vt.edu

ABSTRACT
We present a modular approach to implement adaptive de-
cisions with existing scientific codes. Using a sophisticated
system software tool based on the function call intercep-
tion technique, an external code module is transparently
combined with the given program without altering the orig-
inal code structure, resulting in a newly composed applica-
tion with extended behavior. This is useful for generalizing
codes into using different parameter values or to switch al-
gorithms or implementations at runtime. Applying the pro-
posed method on a biochemical stochastic simulation soft-
ware package to implement a set of exemplary use cases,
which includes changing program parameters, substituting
random number generators, and dynamically changing the
stochastic simulation method, we demonstrate how effec-
tively new code modules can be plugged in to construct an
application with enhanced capabilities.

Categories and Subject Descriptors
D.1.2 [Programming Techniques]: Automatic Program-
ming—program modification, program transformation; D.2.3
[Software Engineering]: Coding Tools and Techniques—
structured programming

General Terms
Languages, Management

Keywords
modular composition, program modification, function call
interception, stochastic simulation

1. INTRODUCTION
Coping with change is challenging in scientific program-

ming, where old code bases are common and modern pro-
gramming practices that encourage modularity and adapt-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’09March 8-12, 2009, Honolulu, Hawaii, U.S.A.
Copyright 2009 ACM 978-1-60558-166-8/09/03 ...$5.00.

ability have not always been used (historically). For in-
stance, numerical software more than a few decades old is
not unusual in the listings in the Netlib repository [3]. Even
though those codes established stability through numerous
bug fixes and performance improvements over their lifetime,
it has become inflexible to change their code structure too,
unless they had been designed for future restructuring from
their inception [11]. The fact that a large portion of scien-
tific codes were written in early versions of Fortran adds to
their inflexibility with respect to program changes.

In fact, software evolution has long been recognized as
an inevitable phenomenon [20, 21]. From the initial design
and development process, to management jobs such as fix-
ing bugs and testing functions, to whole-scale updates like
restructuring of the entire code base, the programmer needs
to cope with changes that are necessary across software gen-
erations.

Even for short-term modification tasks such as adding or
changing functional behavior, however, implementing adap-
tive decisions on top of existing code can be an onerous task.
In simple cases such as replacing a function call with a con-
ditional control structure, the modification replaces the orig-
inal call by an if-then-else statement where either of two
functions is chosen depending on the runtime value of a pred-
icate. Yet the rewriting process may become cumbersome
in large programs with a complex adaptive plan because the
programmer has to locate and update all the places where
the modification is needed. Sometimes it requires restruc-
turing of the whole program, which can be quite impos-
ing. Therefore, this issue of adding new functionality to
existing code in a modular way has been recently identi-
fied by the object-oriented programming community as one
of the important motivations for Aspect-Oriented Program-
ming (AOP) [18].

However, although object-oriented techniques for modular
program development are getting more support in the scien-
tific programming community [10], advanced code insertion
features like AOP weaving [16] are still lacking.

In this paper, we present a modular method based on
function call interception manipulation techniques for imple-
menting adaptive decisions on existing scientific programs,
in which the new code is written and managed as a separate
module with regard to the original program, thus achieving
transparency through the modification process. We chose
biochemical stochastic simulation as an application because,
since first pioneered by Gillespie [12, 13], new and improved
approaches continue to be developed [14, 28, 8], which mo-

tivates a diverse set of adaptive scenarios.
The rest of the paper is organized as follows. Section 2

addresses the programming environment for the proposed
method and the target simulation software. Section 3 de-
scribes a set of adaptive decision scenarios and their indi-
vidual implementations in detail, with experimental results.
Section 4 summarizes related research work. Finally, Section
5 concludes the paper.

2. SETUP FOR IMPLEMENTING ADAPTIVE
DECISIONS

To realize a modular way of extending and modifying ap-
plications without altering the original code structure, we
employ Invoke, a runtime function call interception tool.
Function call interception (FCI), sometimes referred to as
method call interception, is a technique whereby function
calls are intercepted in order to alter the operations per-
formed when the call is actually made. With FCI, the de-
sired operations may be performed either just before or after
the call, or at both times. Because specific function calls are
caught and manipulated at runtime to change their original
behavior, FCI enables transparent code modification with-
out directly rewriting the existing code.

2.1 Invoke
Invoke is a compositional framework with a set of APIs

which support FCI for x86 architectures [15]. It implements
FCI at the assembly language level by replacing the x86
call instruction in the instrumentation target code with a
call to its own interception handler, establishing call site
modifications in the target.

The application development process using Invoke involves
three steps. First, the assembly language source code of
the target subprogram is patched to divert the target func-
tion calls to Invoke. Next, the intended adaptive plan is
implemented in a new code module, in which the desired
operations are described and the original calls can be modi-
fied through Invoke’s parameter manipulation APIs. Invoke
transfers execution control of the diverted calls to the new
module at execution time. Finally, the user needs to set
up an association between the target function and the new
module by using Invoke’s registration APIs.

Since Invoke patches the assembly output generated from
the compiler to insert new code, the original high-level lan-
guage code is not affected, thus enabling modular devel-
opment of new code modules and transparent modification
over existing programs. Moreover, due to the assembly level
code modification, Invoke can be applied independently of
the original source language, making it suitable for Fortran
legacy codes as well as programs written in C or C++.

Figure 1 shows how Invoke operates to combine a new
code module with a given program, in which every call to
the target function is intercepted and program control is
diverted to the associated handler, a piece of newly inserted
code responsible for modifying the original function, through
Invoke’s bookkeeping data structure.

Although we say Invoke implements FCI functions, its
capabilities are actually quite general including:

• Function interception : User-specified function calls can
be intercepted before or after their lifetime through as-
sembly code patching. This means that the basic unit
to support code insertion is a procedure or function.

− [f() : f_handler()]

− [g() : g_handler()]

generic hook
Symbol Table:

Invoke

......

......

......

 f();

 g();

......

......

 f();
......

Patched code

check & adjust
the behavior of f()

the behavior of g()

f_handler():

g_handler():
 g();

check & adjust

Original code Handler code

intercept dispatch

Figure 1: Function call interception using Invoke.

• Registered callbacks : A piece of code can be registered
with a function so that the code can be performed
whenever the associated function is intercepted.

• Parameter manipulation : Function call parameters can
be accessed and modified through stack manipulation
before the call is actually performed, which allows an-
other degree of flexibility in modifying the original pro-
gram behavior.

• Function remapping : Through sophisticated stack ma-
nipulation, the entire parameter list of a function can
be remapped to a new function with a possibly differ-
ent parameter signature.

The most useful feature of Invoke is the ability to remap
the entire parameter list of a function to a new function
even with a different signature. We make heavy use of this
functionality to implement the adaptive use cases presented
in this paper.

2.2 StochKit
StochKit is a stochastic simulation framework written in

C++ for simulating biochemical reaction systems [5]. It
includes a core set of algorithm implementations from Gille-
spie’s exact stochastic simulation algorithm (SSA), from ex-
plicit [14] and implicit τ -leaping [28] methods to trapezoidal
τ -leaping [9] methods, offering its users flexible options to
control the simulation step function and step size. Although
in its beta stage, StochKit also provides MPI interfaces
for large scale Monte Carlo simulations on a parallel clus-
ter. StochKit also provides essential data structures such
as Vector and Matrix classes, and integrates external pack-
ages like RANLIB [4, 19] and SPRNG 2.0 [24] for generating
random numbers from distinct statistical distributions.

Because it is readily accessible and under active develop-
ment, we use StochKit as a target program to apply Invoke’s
function call manipulation functionality, effectively extend-
ing its behavior in subprograms. Specifically, the modules
for random number generation and the exact SSA simula-
tion are prime candidates for program modification purposes
and are covered in the next section.

3. ADAPTIVE SCENARIOS AND THEIR IM-
PLEMENTATIONS

In this section, we present three adaptive scenarios in the
context of using StochKit and their corresponding imple-
mentations under the Invoke framework. Through catching

and manipulating specific function calls, the examples show
how an adaptive decision can be applied transparently to
an existing code base without altering the original source
code.

The first two examples illustrate a static adaptive scenario
where a subprogram module is replaced with an alternative
package, which can be considered as an effective interim so-
lution to updating the StochKit package without an explicit
version update. The last example presents a dynamic case
in which the simulation switches the stochastic simulation
models based on ‘hints’ supplied by the user.

3.1 Change of Program Parameter Values
One way of changing the program behavior is to modify

program states stored in variables. Using Invoke, global vari-
ables can be accessed by external declarations in a new code,
in which their values are adjusted at appropriate times, once
the target functions to intercept are determined and proper
control points are defined. In addition, input parameters
to those functions are accessible as well and their values can
be altered at will through Invoke’s stack manipulation APIs.
The local variables not communicated as function arguments
and certain program parameters hardwired as constants are
not modified by external code modules. However, the effect
of changing local values can be obtained by intercepting the
function block that encloses those local variables, and call-
ing instead a substitute function which uses different values
for those variables. The following code shows an example of
such a case in which the values of preset threshold parame-
ters are altered.

Listing 1: StochKit PoissonRandom Function

1 double PoissonRandom (double mean)
{

3 i f (mean == 0) {
r e t u r n 0 ;

5 } e l s e i f (mean > 1e6) {
r e t u r n mean ;

7 } e l s e i f (mean > 1e4) {
r e t u r n (mean + s q r t (mean)∗ snorm ()) ;

9 } e l s e
r e t u r n i g n p o i (mean) ;

11 }

Listing 1 shows the original StochKit PoissonRandom func-
tion, which is used for the τ -leaping SSA method [14] to
generate random numbers from the Poisson distribution. It
uses hardwired values, 106 and 104 (line 5 and 7), to branch
into different approximations of the Poisson distribution de-
pending on how large the input mean is.

Listing 2: Change of Hardwired Parameter Values

1 vo id PRandom handler (s t r u c t l i i n v o k e e n t r y ∗ i e ,
LI HANDLER TYPE type)

3 {
i f (type == LI HT PRE) {

5 /* remap to our version of PoissonRandom */
l i r emap (i e , PoissonRandomNew) ;

7 }
}

double PoissonRandomNew (double mean)
11 {

i f (mean == 0) {
13 r e t u r n 0 ;

} e l s e i f (mean > 1e7) {// originally 1e6

15 r e t u r n mean ;
} e l s e i f (mean > 1e5) {// originally 1e4

17 r e t u r n (mean + s q r t (mean)∗ snorm ()) ;
} e l s e

19 r e t u r n i g n p o i (mean) ;
}

Listing 2 is an implementation of changing the threshold
values in PoissonRandom. In order to implement an adap-
tive plan of using different values for the local parameters,
PRandom handler catches every call to the target PoissonRandom
function at its beginning (line 4) and by calling li remap

(line 6), Invoke’s function call remapping API, PRandom handler

entirely replaces it with PoissonRandomNew, in which new
parameter values (107 and 105), replacing old values, are
used for conditional branching out.

3.2 Substitution of Random Number Genera-
tor Libraries

Any moderate-sized stochastic simulation needs a good
random number generator (RNG)—good in terms of both
the speed and the quality of randomness of the generated
numbers. For instance, while the C random function returns
a number in the range from 0 to (231 − 1) with the ap-
proximate period 16 × (232 − 1), the Mersenne Twister MT
19937 [25] generates a number in a doubled range with the
extremely large period (219937 − 1). Thus, programmers of
stochastic simulations often want to upgrade and use more
up-to-date or optimized versions of the RNG package of their
choice, or switch to a new, more efficient, package. How-
ever, updating a program package to include a new library
may be cumbersome since combining multiple packages can
involve major rewriting of the original program, including
new headers, redefining macros, and adding and resolving
dependencies in project build files. In fact, what is desired
in this case may be just changing one function, i.e., the RNG
function. Thus, a function call interception technique can
offer an easy way of plugging in new code into an existing
software code base, as the following example demonstrates.

Listing 3: Substitution of RNGs

1 /* handler for standard C random () calls */
2 vo id CRandom handler (s t r u c t l i i n v o k e e n t r y ∗ i e ,

LI HANDLER TYPE type) {
4 i f (type == LI HT PRE) {

#i f d e f USE SPRNG /* redirect to ISprngRandom */
6 l i r emap (i e , ISprngRandom) ;

8 #e l i f d e f i n e d (USE SFMT) /* redirect to SFMT */
l i r emap (i e , ISFMTRandom) ;

#end i f
12 }

}

#i f d e f USE SPRNG
16 l ong i n t ISprngRandom () {

r e t u r n (l ong) i s p r n g () ;
18 }

20 #e l i f d e f i n e d (USE SFMT)
l ong i n t ISFMTRandom() {

22 r e t u r n (l ong) (gen rand32 ()>>1);
}

24 #end i f

Listing 3 shows a code snippet for a handler function

associated with the standard C random calls performed in
StochKit. Assembly patching needs to be applied to only
one file, Random.cpp, since the C random is used only in
the StochKit interfaces defined in Random.cpp. The user
may have just one RNG package of his choice and always
opt for it by catching and remapping C random calls to it.
The code listing shows other cases where multiple RNGs are
available such that, depending on the user’s selection (line
5,8) at compile time, either Mersenne Twister SFMT [29]
or SPRNG 2.0 [24] bundled in the StochKit distribution is
substituted for random (line 16,21).

3.3 Switching Stochastic Simulation Models
The slow-scale SSA (ss-SSA) [7, 8] is an efficient approxi-

mation method of the exact SSA which exploits the fact that
a certain kind of “fast” reactions are much less significant
to the system’s evolution than the “slow” reactions, thereby
stochastically simulating only slow reaction events to ad-
vance the system in time. To apply the ss-SSA, however,
the programmer needs to have a priori knowledge about
the simulated system regarding what reaction channels are
slow and fast, something that can be determined only after
executing simulations. We present a way to overcome this
constraint through dynamic simulation model change using
Invoke’s function call catch and substitution capability. The
adaptive procedure takes the following steps.

1. Start the simulation with the exact SSA.

2. The execution pauses after a preset time, showing the

intermediate simulation result for analysis of the system,

and prompts for the user’s intervention.

3. With the understanding of the system, the user identifies

fast reactions and inputs them.

4. The simulation continues the exact SSA, but effectively

considering only slow reactions due to the modified propen-

sity function that uses the ss-SSA approach based on the

user’s hint.

Ideally, an online recommender system can be conceived
that monitors the simulation progress and automatically
makes the algorithm switching decisions based on the run-
time analysis. However, the design of recommender systems
is a major subject by itself [17, 27], and outside the scope of
this paper. Instead, we assume a human with domain knowl-
edge in the simulation loop for making adaptive decisions to
trigger the switching in simulation methods.

The goal is to realize the ss-SSA algorithm upon the ex-
isting StochKit SSA code through the Invoke framework to
manipulate the original function calls to set up the ss-SSA
style execution control. Following the above scenario, the
adaptive control points map to two functions in StochKit.
SSA SingleStep needs to be intercepted to stop the pro-
gram execution after a certain time in the beginning of the
simulation and prompt the user with interim results. In ad-
dition, the Propensity function calls need to be handled to
effectively zero out the probabilities of fast reaction channels
to model the ss-SSA method in continuing the simulation.
Since the two functions are called by the same StochRxn

function in StochRxn.cpp, the patching is only applied to
the file, thereby opening room for inserting new code that
contains a handler for each of the target functions.

Handler
SSA_SingleStep

SSA_SingleStep

Propensity

propensity
values

Propensity

SSA_SingleStep

state
population

population
state

propensity
values

Propensity
Handler

population state for ss−SSA

propensity values

SSA: before switch ss−SSA: after switch

for ss−SSA

Figure 2: Exact SSA extended to ss-SSA through

Invoke.

Figure 2 shows how the original SSA functions in StochKit
are arranged with the accompanying handlers to attain the
intended ss-SSA behavior. SSA SingleStep Handler per-
forms two tasks depending on whether it operates before
or after SSA SingleStep executes. As a pre-handler, it ac-
cesses current time placed as the second argument of the
SSA SingleStep call through Invoke’s parameter accessing
API and checks if the program state has reached PAUSE TIME,
when it will stop to show the simulated system states and
wait for the domain expert to analyze the data and set which
reaction channels are fast. As a post-handler, it does nothing
until the system reaches PAUSE TIME, after which it cooper-
ates with Propensity Handler to calculate the population
of the system to mimic ss-SSA while maintaining the original
execution flow of the exact SSA implementation in StochKit.
Specifically, SSA SingleStep Handler computes an analyti-
cal solution for the population of each fast variable that has
been previously identified by the user.
Propensity Handler operates only after PAUSE TIME. It

simply remaps the original Propensity function call to new
code, PropensityNew, in which only the slow variables are
considered for stochastic simulation based on the theory de-
veloped in [7, 8]. The following examples show experimental
results of the ss-SSA implementation under Invoke for a cer-
tain set of fast reaction types.

3.3.1 The Fast Reversible Isomerization
Following an example described in [8], we consider the fast

reversible isomerization,

S1

c1

⇄
c2

S2,

occurring together with a single slow reaction,

S2

c3→ S3,

where Si denotes the species in the system and cj is the
rate constant for the reaction channel Rj . Given the sys-
tem’s state vector X(t) ≡ (X1(t), X2(t), X3(t)) = x, where
Xi(t) is the number of molecules of Si at time t, the follow-
ing propensity functions aj(x) and state-changing vectors νj

define the system’s stochasticity,

a1(x) = c1x1, ν1 = (−1, +1, 0),

a2(x) = c2x2, ν2 = (+1,−1, 0),

a3(x) = c3x2, ν3 = (0,−1, +1).

The ss-SSA substitutes the approximate analytical solution
obtained by solving the stationary deterministic reaction

0 0.5 1 1.5 2

x 10
4

0

200

400

600

800

1000

1200

1400

Time

P
op

ul
at

io
n

X
1
 (fast)

X
3
 (slow)

ss−SSA

SSA

Figure 3: Time evolution of ss-SSA under Invoke

(red circle) vs. exact SSA (blue solid) for the fast re-

versible isomerization. The dashed line indicating the

time of model change is shown farther from its actual

location (PAUSE TIME=1.0) for ease of illustration.

rate equation for fast species at each exact SSA step,

xT = x1 + x2, x1 =
c2xT

c1 + c2

, x2 = xT − x1.

The ss-SSA implemented with Invoke, along with the exact
SSA for comparison, was carried out with the following set
of parameter values,

c1 = 1, c2 = 2, c3 = 5 × 10−5
,

x1 = 1200, x2 = 600, x3 = 0 at t = 0.

Figure 3 shows how the implemented ss-SSA closely matches
SSA by comparing the time evolution of both the fast and
slow variables of the simulated system obtained from a single
run of each method. The interactive ss-SSA implementation
was programmed to stop to accept the user’s input quite
early at t = 1.0, when the simulation has taken only a couple
of thousands SSA steps out of a dozen million that the exact
SSA would take.

Figure 4 and Table 1 show the statistical properties of
the ss-SSA compared with the SSA through 10,000 sam-
ples. The ss-SSA code was run on a Linux machine with an
AMD Athlon X2 4000+ dual core processor and 2GB mem-
ory, whereas the SSA was on a 50 node Linux cluster, each
with an AMD Opteron 240 dual core processor and 1GB
memory, resulting in 100 MPI processes responsible for 100
samples per process. The probability density plots of the
ss-SSA appear to be statistically indistinguishable from the
exact SSA’s in both the fast and slow reactions, which is
backed in the comparison table in which the mean and the
standard deviation of each species simulated by the ss-SSA
are virtually the same as those obtained from the SSA. In
contrast, the gain in computational efficiency is huge as ex-
pected. The ss-SSA took only 16 seconds to complete 10,000
samples, while the exact SSA took about an hour for each
MPI process on the cluster.

3.3.2 The Enzyme-Substrate Reaction
As another example for the ss-SSA, the simple enzyme-

substrate reaction process has been tested. The reaction in
which the enzyme S1 combines with the substrate S2 to pro-
duce an intermediate unstable enzyme-substrate complex S3

450 500 550 600
0

0.005

0.01

0.015

0.02

0.025

X
3
 slow variable

P
ro

ba
bi

lit
y

D
en

si
ty

X
3
 Population

800 850 900 950
0

0.005

0.01

0.015

0.02

0.025

X
1
 Population

X
1
 fast variable

Figure 4: Probability densities of ss-SSA under In-

voke (red circle) vs. exact SSA (blue solid) for the fast

reversible isomerization.

X1 (fast) X2 (fast) X3 (slow)
Mean Std Mean Std Mean Std

SSA 859.86 20.99 429.97 18.00 510.18 19.35

ss-SSA 859.80 21.35 429.88 17.90 510.32 19.26

Table 1: Statistics of ss-SSA under Invoke vs. exact

SSA for the fast reversible isomerization.

is modeled as a reversible fast process,

S1 + S2

c1

⇄
c2

S3,

while S3 decays into its converted constituents S1 and the
product S4 very slowly (c2 ≫ c3),

S3

c3→ S1 + S4.

Thus, the system is represented by the following propensity
functions and state-changing vectors,

a1(x) = c1x1x2, ν1 = (−1,−1, +1, 0),

a2(x) = c2x3, ν2 = (+1, +1,−1, 0),

a3(x) = c3x3, ν3 = (+1, 0,−1, +1).

The derivation of approximate analytical solutions for the
fast variables, x1, x2, and x3, to substitute for the exact
SSA simulation is described and discussed in detail in [7], to
which we refer the reader, and show only the experimental
application results in this paper due to space limitations.

The ss-SSA was implemented through Invoke’s function
call interception and remapping capability in the same man-
ner as in the fast reversible isomerization example, in which
the calls to the SSA SingleStep and Propensity functions
are manipulated to make them behave according to the ss-
SSA method.

Figure 5 plots the time evolution of one fast variable (x2)
and the slow variable (x4) in one realization instance, show-
ing the close approximation achieved by the ss-SSA imple-
mentation over the exact SSA. Table 2 shows the statistical
data obtained from 10,000 samples by running the adaptive
ss-SSA program, as well as the exact SSA data for com-
parison, using the following set of parameter values where

0 0.5 1 1.5 2 2.5 3

x 10
6

0

500

1000

1500

2000

2500

3000

Time

P
op

ul
at

io
n

X
4
 (slow)

X
2
 (fast)ss−SSA

SSA

Figure 5: Time evolution of ss-SSA under Invoke

(red circle) vs. exact SSA (blue solid) for the enzyme-

substrate reaction. The dashed line indicating the time

of model change (PAUSE TIME=1.0) is shown farther

from its actual location for ease of illustration.

X1 (fast) X2 (fast) X3 (fast) X4 (slow)
Mean Std Mean Std Mean Std Mean Std

SSA 220.00 0.04 0.08 0.29 0.00 0.04 2999.91 0.29

ss-SSA 220.00 0.03 0.08 0.29 0.00 0.03 2999.92 0.29

Table 2: Statistics of ss-SSA under Invoke vs. exact

SSA for the enzyme-substrate reaction.

c3 = 5 × 10−5 is set much smaller than c2 = 2.

c1 = 1, c2 = 2, c3 = 5 × 10−5
,

x1 = 1200, x2 = 600, x3 = 0 at t = 0.

As in the reversible isomerization case, the adaptive method
that switches from SSA to ss-SSA generated statistically in-
distinguishable data in the enzyme-substrate reaction simu-
lation.

In summary, the adaptive approach through Invoke achieves
extreme performance boost, as shown in Table 3 that com-
pares the execution time of the implemented ss-SSA on a
single machine to that of the exact SSA using 100 proces-
sors on a cluster.

4. RELATED WORK
Function call interception techniques are typically used for

debugging purposes and performance analysis such as trac-
ing and profiling the dynamic execution flow of a program.
Additionally, they are also used to change program behav-
ior by modifying input parameters or the return value of the
intercepted function. Some techniques even enable users to
replace entirely a function with an alternative implementa-
tion. The GNU C/C++ compiler [2] can generate instru-
mentation calls for entry and exit to functions through the

Fast Reversible Enzyme-Substrate
Isomerization Reaction

SSA (100 procs cluster) 3665 sec 5810 sec
ss-SSA (single machine) 16 sec 46 sec

Table 3: Execution Time Comparison of ss-SSA un-

der Invoke vs. exact SSA.

-finstrument-functions compiler option. However, owing
to a lack of sophisticated parameter manipulation and func-
tion redirection capabilities as in Invoke, this compiler op-
tion only serves for profiling purposes and cannot be used to
change the original behavior of the instrumented functions.

In Aspect-Oriented Programming (AOP) frameworks, FCI
is used to implement advice weaving [16] on a set of preset
control points, which are defined to be an entry or exit of
functions with the same concern, such that a piece of as-
sociated code is inserted to execute whenever the points
are reached by the program in execution. This code in-
sertion process can work even at the binary level for Java
programs without having the source available. Even for non-
OO languages like C, there are tools and language exten-
sions that enable AOP’s advice weaving constructs for code
insertion [1, 30, 32, 23]. However, comparable support for
Fortran, which has been widely used for implementing sci-
entific codes, is still unsupported. In contrast, the proposed
method offers a language-neutral way of overlaying new code
onto existing programs due to its assembly level code patch-
ing.

Binary instrumentation tools can overcome this language
dependency issue. These tools insert code into existing pro-
grams in a compiled binary form, offering clean separation
between the original and the new code because the two codes
are coalesced at the binary level instead of the programming
language level. Still, since they deal with the native proces-
sor instructions at the very lowest level and the accompa-
nying overhead is typically too significant, most of them are
developed for rigorous programs analysis purposes [31, 6, 22,
26] such as debugging and profiling rather than as a tool to
aid programmers in extending existing programs in a modu-
lar way. Invoke, unlike fine-grained binary instrumentation
tools, is coarse-grained, having function blocks as the oper-
ation unit, thus enabling lightweight code insertion.

5. CONCLUSIONS
Sophisticated function call interception and manipulation

tools such as provided by Invoke offer a modular way to
extend the behavior of existing programs without explic-
itly rewriting the original source code. As demonstrated
through a set of examples including the change of program
parameters, substitution of random number generators, and
dynamic switching of stochastic simulation methods, trans-
parent insertion of external modules enables composition of
new applications from the existing code, thereby implement-
ing adaptive decisions that necessarily occur during software
lifetimes. In particular, considering scientific codes are tra-
ditionally inflexible to update, the function call interception
technique can be effectively employed to deliver the modular
realization of complex adaptive decisions.

6. REFERENCES
[1] ACC. http://www.aspectc.net.

[2] GNU Compiler Collection.
http://gcc.gnu.org/onlinedocs/.

[3] Netlib. http://www.netlib.org.

[4] RANLIB C Implementation.
http://www.netlib.org/random.

[5] StochKit.
http://www.engineering.ucsb.edu/~cse/StochKit.

[6] B. Buck and J. K. Hollingsworth. An API for Runtime
Code Patching. Int. J. High Perform. Comput. Appl.,
14(4):317–329, 2000.

[7] Y. Cao, D. T. Gillespie, and L. R. Petzold.
Accelerated Stochastic Simulation of the Stiff
Enzyme-Substrate Reaction. Journal of Chemical
Physics, 123(14):144917.1–144917.12, October 2005.

[8] Y. Cao, D. T. Gillespie, and L. R. Petzold. The
Slow-Scale Stochastic Simulation Algorithm. Journal
of Chemical Physics, 122(1):014116, January 2005.

[9] Y. Cao and L. R. Petzold. Trapezoidal Tau-Leaping
Formula for the Stochastic Simulation of Biochemical
Systems. Proceedings of Foundations of Systems
Biology in Engineering (FOSBE), pages 149–152,
2005.

[10] V. K. Decyk, C. D. Norton, and H. J. Gardner. Why
Fortran? Computing in Science and Engineering,
9(4):68–71, 2007.

[11] P. F. Dubois. Ten Good Practices in Scientific
Programming. Computing in Science and Engg.,
1(1):7–11, 1999.

[12] D. T. Gillespie. A General Method for Numerically
Simulating the Stochastic Time Evolution of Coupled
Chemical Reactions. Journal of Computational
Physics, 22(4):403–434, December 1976.

[13] D. T. Gillespie. Exact Stochastic Simulation of
Coupled Chemical Reactions. The Journal of Physical
Chemistry, 81(25):2340–2361, 1977.

[14] D. T. Gillespie. Approximate Accelerated Stochastic
Simulation of Chemically Reacting Systems. The
Journal of Chemical Physics, 115(4):1716–1733, 2001.

[15] M. A. Heffner. A Runtime Framework for Adaptive
Compositional Modeling. Master’s thesis, Blacksburg,
VA, USA, 2004.

[16] E. Hilsdale and J. Hugunin. Advice weaving in
AspectJ. In AOSD ’04: Proceedings of the 3rd
international conference on Aspect-oriented software
development, pages 26–35, New York, NY, USA, 2004.
ACM Press.

[17] E. N. Houstis, A. C. Catlin, J. R. Rice, V. S. Verykios,
N. Ramakrishnan, and C. E. Houstis. PYTHIA-II: A
Knowledge/Database System for Managing
Performance Data and Recommending Scientific
Software. ACM Trans. Math. Softw., 26(2):227–253,
2000.

[18] G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda,
C. Lopes, J.-M. Loingtier, and J. Irwin.
Aspect-Oriented Programming. In M. Akşit and
S. Matsuoka, editors, Proceedings European
Conference on Object-Oriented Programming, volume
1241, pages 220–242. Springer-Verlag, Berlin,
Heidelberg, and New York, 1997.

[19] P. L’Ecuyer and S. Côté. Implementing a Random
Number Package with Splitting Facilities. ACM Trans.
Math. Softw., 17(1):98–111, 1991.

[20] M. M. Lehman. The Programming Process. Technical
Report RC2722, IBM Research Report, December
1969.

[21] M. M. Lehman and L. A. Belady, editors. Program
Evolution: Processes of Software Change. Academic
Press Professional, Inc., San Diego, CA, USA, 1985.

[22] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser,
G. Lowney, S. Wallace, V. J. Reddi, and
K. Hazelwood. Pin: Building Customized Program
Analysis Tools with Dynamic Instrumentation. In
PLDI ’05: Proceedings of the 2005 ACM SIGPLAN
conference on Programming language design and
implementation, pages 190–200, New York, NY, USA,
2005. ACM Press.

[23] W. R. Mahoney and W. L. Sousan. Using Common
Off-the-Shelf Tools to Implement Dynamic Aspects.
SIGPLAN Not., 42(2):34–41, 2007.

[24] M. Mascagni and A. Srinivasan. Algorithm 806:
SPRNG: A Scalable Library for Pseudorandom
Number Generation. ACM Trans. Math. Softw.,
26(3):436–461, 2000.

[25] M. Matsumoto and T. Nishimura. Mersenne Twister:
A 623-Dimensionally Equidistributed Uniform
Pseudo-random Number Generator. ACM Trans.
Model. Comput. Simul., 8(1):3–30, 1998.

[26] N. Nethercote and J. Seward. Valgrind: A Program
Supervision Framework. Electronic Notes in
Theoretical Computer Science, 89(2), 2003.

[27] N. Ramakrishnan, E. N. Houstis, and J. R. Rice.
Recommender Systems for Problem Solving
Environments. In H. Kautz, editor, Working Notes of
the AAAI-98 Workshop on Recommender Systems,
pages 91–95. AAAI/MIT Press, 1998.

[28] M. Rathinam, L. R. Petzold, Y. Cao, and D. T.
Gillespie. Stiffness in Stochastic Chemically Reacting
Systems: The Implicit Tau-Leaping Method. The
Journal of Chemical Physics, 119(24):12784–12794,
2003.

[29] M. Saito and M. Matsumoto. SIMD-oriented Fast
Mersenne Twister: a 128-bit Pseudorandom Number
Generator. In Monte Carlo and Quasi-Monte Carlo
Methods 2006, pages 607–622. Springer Berlin
Heidelberg, 2006.

[30] O. Spinczyk, A. Gal, and W. Schröder-Preikschat.
AspectC++: An Aspect-Oriented Extension to the
C++ Programming Language. In CRPIT ’02:
Proceedings of the 40th International Conference on
Tools Pacific, pages 53–60, Darlinghurst, Australia,
Australia, 2002. Australian Computer Society, Inc.

[31] A. Srivastava and A. Eustace. ATOM: A System for
Building Customized Program Analysis Tools. In
PLDI ’94: Proceedings of the ACM SIGPLAN 1994
conference on Programming language design and
implementation, pages 196–205, New York, NY, USA,
1994. ACM Press.

[32] C. Zhang and H.-A. Jacobsen. TinyC2: Towards
Building a Dynamic Weaving Aspect Language for C.
In Proceedings of the 2nd AOSD Workshop on
Foundations of Aspect-Oriented Languages, Boston,
MA, USA, March 2003.

