
Brief Announcement:

Crystalline: Fast and 

Memory Efficient Wait-

Free Reclamation
Ruslan Nikolaev *, rnikola@psu.edu, Penn State University, USA

Binoy Ravindran, binoy@vt.edu, Virginia Tech, USA

* The work was done while this author

worked at Virginia Tech

mailto:rnikola@psu.edu
mailto:binoy@vt.edu


Memory Reclamation

 Non-blocking data structures do not use simple mutual exclusion

 A concurrent thread may hold an obsolete pointer to an object which is about to be 
freed by another thread

 Safe memory reclamation (SMR) schemes are typically used for unmanaged code (C/C++)

 Reclamation workload balancing

 Read operations dominate, but data is still modified

 In typical SMR schemes, most threads are not actively reclaiming memory

 The problem have not received adequate attention in the literature

 Synchronous vs. asynchronous reclamation

 In typical SMR schemes, threads periodically examine which objects marked for deletion 
can be safely freed

 Reference counting: an arbitrary thread with the last reference frees an object



Memory Reclamation

 Reference counting

 Impractical due to very high overheads when accessing objects

 Hyaline [PODC’19 BA, PLDI’21] is an approach where reference counters are only 

used when objects are retired

 Pros: asynchronous and exhibits high performance, protects against stalled threads

 Cons: can still use unbounded memory (i.e., blocking) when threads starve

 We present Crystalline

 Crystalline-L is based on Hyaline-1S but is lock-free even when threads starve

 Crystalline-W further extends Crystalline-L to make it wait-free



Crystalline-L

 Background (Hyaline)

 Threads explicitly annotate each operation

 When objects are detached from a data structure, they are first retired and then 

freed when it is safe to do so

 Hyaline-1S is a variant that bounds memory usage for stalled threads by explicitly 

tracking local pointers via a special protect method using the global era clock

 Each allocated object is assigned a “birth era”

 Not lock-free unless operations are periodically restarted for starving threads

 Example: one “unlucky” thread is stuck traversing a list because it keeps growing

 Crystalline-L adopts a different API

 Hyaline-1S’s API enables retrieving an unbounded number of local pointers

 Alternative APIs used in Hazard Pointers [TPDS’04] or Hazard Eras [SPAA’17] 

explicitly differentiate each local pointer reservation in protect



Crystalline-L: Challenges

 Hyaline-1S aggregates objects in a batch

 Can only retire the entire batch

 Each thread has its own retirement list, and each object from the batch is 

inserted to the corresponding list

 One of the objects keeps a per-batch reference counter

 Needs at least MAX_THREADS+1 objects per a batch

 Crystalline-L handles MAX_IDX local pointers

 The above problem is further aggravated

 Needs at least MAX_THREADS×MAX_IDX+1 objects per a batch



Crystalline-L: Solution

 The required number of objects is much lower in practice

 Each object is appended to the respective list only if the list’s era overlaps with 

the batch’s minimum birth era

 Crystalline-L uses dynamic batches

 retire first checks how many lists are to be changed for the batch to be fully 

retired and records the location of the corresponding (per-thread) lists

 If the number of objects in the batch suffices, retire completes by appending the 

objects to their corresponding lists

 Otherwise, retire is repeated later when more objects are available

 But the number of iterations is still bounded by the worst-case number of objects



Crystalline-W: Challenges

 Crystalline-L is only lock-free because

 retire has an unbounded loop: protect or another retire contends on the same list

 Does not let a CAS loop in retire to converge

 protect has an unbounded loop which must converge on the era value

 The era clock unconditionally increments when a new object is allocated



Crystalline-W: Solution

 The first problem with retire

 When “traversing” retirement lists, i.e., dereferencing a thread from each batch 

that appears in its retirement list, next pointers in the corresponding list are 

tainted with SWAP

 retire attaches new objects with SWAP rather than a CAS loop

 If the next field of the new object is intact, the old list is attached as a tail (using CAS)

 If the next field of the new object is tainted, retire traverses the “docked tail” (i.e., the 

old list) on behalf of the thread that tainted next

 Some corner cases exist but are handled in wait-free fashion



Crystalline-W: Solution

 The second problem with protect

 Adopts a mechanism similar to that of Wait-Free Eras [PPoPP’20]

 The fast-path-slow-path approach to coordinate global era clock increments

 Helping other threads before incrementing the era clock

 Despite similarities, Crystalline-W diverges from Wait-Free Eras significantly

 Cannot rescan retirement lists multiple times due to asynchronous reclamation

 Uses special tricks: odd and even tags, an array of parent objects, “terminal” nodes in the 

retirement lists, etc.



Evaluation

None: no reclamation (leak memory)

HP: Hazard Pointers [TPDS’04]

HE: Hazard Eras [SPAA’17]

IBR: 2GE Interval-Based Reclamation [PPoPP’18]

WFE: Wait-Free Eras [PPoPP’20]

Hyaline: Hyaline-1 and Hyaline-1S [PODC’19 BA, PLDI’21]

EBR: Epoch-Based Reclamation

4 x Intel Xeon E7-8890 v4 2.20 GHz CPUs (96 cores), 256GB of RAM

Lock-Free Hash Map

(read-dominated)



More Details

 Code is open-source and available at:

 https://github.com/rusnikola/wfsmr

 Full paper is available as an arXiv report:

 https://arxiv.org/abs/2108.02763

THANK YOU!

https://github.com/rusnikola/wfsmr
https://arxiv.org/abs/2108.02763

