
ssrg.ece.vt.edu

Snapshot-Free, Transparent, and Robust Memory Reclamation for Lock-Free Data Structures

Ruslan Nikolaev and Binoy Ravindran {rnikola, binoy}@vt.edu

Introduction

• Concurrent data structures require special treatment of
deleted memory objects – garbage collectors are impractical
in C/C++ and lack suitable progress/performance properties

• Use special reference counting, which
is triggered only when deleting objects

Evaluation

Availability and Acknowledgments

Problem: how do we create a safe memory reclamation
scheme which satisfies all these properties?

Hyaline vs. Existing Schemes
Scheme Performance Snapshot-

Free
Robust Transparent Extra Memory API complexity

Reference Counting Very Slow Yes Yes Partially (swap) Double each
pointer

Harder,
Intrusive

Hazard Pointers Slow No Yes No (deletion) 1 word Harder

Epoch Based Reclamation Fast Yes No No (deletion) 1 word Very Easy

Hazard Eras Medium No Yes No (deletion) 3 words Harder

Interval Based Reclamation Fast No Yes No (deletion) 3 words Medium

Hyaline Fast Yes No Yes 3 words Very Easy

Hyaline-1 Fast Yes No Almost 3 words Very Easy

Hyaline-S Fast Yes Yes Yes 3 words Medium

Hyaline-1S Fast Yes Yes Almost 3 words Medium

• Reference counting
is very slow

• Robust schemes
typically lack
snapshot-freedom

• Hyaline-S has all the
desirable properties
while retaining good
performance and
reasonable memory
overhead

Handle
(Thread i)

Handle
(Thread j)

NRef0 NRef NRef

Head [HRef, HPtr]

...

HRef +

...NRefNRef NRef NRef

00

0

Head [HRef, HPtr]

NRef NRef NRef...

New Head

≤ 0 ≥ 1

N0.m...N0.1N0.0[HRef0=2]

N1.m...N1.0N1.1

N2.m...N2.0N2.1

[HRef1=0]

[HRef2=1]

[HRef3=0]

[HRef4=2]

Rm

...

R0R1

Batch 0 Batch 1 Batch m

... ...

Slots

[HRef5=0]

[HRef6=0]

[HRef7=0]

...

Conclusions
• Maintain multiple global lists to

alleviate contention
• Each list is for a subset of threads
• Delete an entire batch of objects

rather than just one object
• One reference counter for the entire batch

Dereference P

Delete P

Dereference P

Thread A Thread B Thread C

SEGFAULT!

SEGFAULT!

One thread deallocates a memory object
which is still reachable by concurrent
threads => postpone deallocation

• Desirable properties for memory reclamation:
• Non-blocking progress: not using locks
• Robustness: bounding memory usage even when

threads are stalled or preempted
• Transparency: avoiding implicit assumptions about

threads; threads can be created/deleted dynamically
• Snapshot-freedom: not taking snapshots of the

global state to alleviate contention

Hyaline’s Main Idea
• We tested Hyaline variants

on x86(-64), ARM32/64,
PowerPC, and MIPS

• All Hyaline variants exhibit
very high throughput on
various data structures, and
ensure that the number of
retired, but not-yet-
reclaimed objects is small

• Hyaline’s advantages are
especially visible in certain
read-dominated workloads

• In oversubscribed scenarios,
Hyaline obtains up to 2x
throughput boost

• We present results for
x86-64, read-dominated
tests (90% get, 10% put)

• With Hyaline, threads can be created and
deleted dynamically: threads are “off the
hook” as soon as they leave operations

• Hyaline and Hyaline-S are fully transparent:
they need not explicitly (un)register threads

• Hyaline’s code and the benchmark are open-source and
available at https://github.com/rusnikola/lfsmr

• The work is supported by AFOSR under grants
FA9550-15-1-0098 and FA9550-16-1-0371, and ONR under
grants N00014-18-1-2022 and N00014-19-1-2493

handle_t Handle = enter();

// deref is for Hyaline-S only

List = deref(&LinkedList);

Node = deref(&List->Next);

retire(Node); // Mark for deletion

// Do something else...

leave(Handle);

• Update Head’s reference counter
(HRef) when entering and leaving
thread operations

• Append deleted objects to a global
list and propagate reference counters

• When leaving, a thread traverses a
sublist from the beginning to the
object pointed to by a handle

• The handle points to the part
of the list when the thread
entered its operation

• Treat the very first list element
specially: HRef rather than NRef
reflects its reference counter

• When appending to the list,
adjust the predecessor’s NRef
(previously 0) with the HRef value

>>>>>

>>>>>

>>>>>

>>>>>

>>>>>

>>>>>

>>>>>

>>>>>

>>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>>

0.000

0.025

0.050

0.075

1 9 18 27 36 45 54 63 72 81 90 99 108117126135144

Threads

T
h
ro

u
g
h
p
u
t
(M

 o
p
s
/s

e
c
)

>No MM
Epoch

Hyaline
Hyaline-1

Hyaline-S
Hyaline-1S

IBR
HE

HP

>>>>>

>>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>>

0

100

200

300

400

1 9 18 27 36 45 54 63 72 81 90 99 108117126135144

Threads

R
e
ti
re

d
 O

b
je

c
ts

 p
e
r

O
p
e
ra

ti
o
n

>

Epoch
IBR

Hyaline
Hyaline-1

Hyaline-S
Hyaline-1S

HE
HP

Linked List
(read-dominated)

>>>>>

>>>>>

>>>>>
>>>>>

>>>>>
>>>>>

>>>>>
>>>>>

>>>>>

>>>>>

>>>>>
>>>>> >>>>> >>>>> >>>>>

>>>>> >>>>>

0

50

100

150

200

1 9 18 27 36 45 54 63 72 81 90 99 108117126135144

Threads

T
h
ro

u
g
h
p
u
t
(M

 o
p
s
/s

e
c
)

>No MM
Epoch

Hyaline
Hyaline-1

Hyaline-S
Hyaline-1S

IBR
HE

HP

>>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>>0

1000

2000

3000

4000

1 9 18 27 36 45 54 63 72 81 90 99 108117126135144

Threads

R
e
ti
re

d
 O

b
je

c
ts

 p
e
r

O
p
e
ra

ti
o
n

>

Epoch
IBR

Hyaline
Hyaline-1

Hyaline-S
Hyaline-1S

HE
HP

Linked List
(read-dominated)

Hash Map
(read-dominated)

Hash Map
(read-dominated)

https://github.com/rusnikola/lfsmr

