ystems

oftware
Research Group

ssrg.ece.vt.edu

virGinia | Snapshot-Free, Transparent, and Robust Memory Reclamation for Lock-Free Data Structures
TECH.

S

e Concurrent data structures require special treatment of Thread A Thread B Thread C * Reference counting Scheme Performance Sn?;:fewot- Robust Transparent Extra Memory APl complexity

deleted memory ObjECtS B garbage collectors are impraCtical Is very slow Reference Counting Very Slow Yes Yes Partially (swap) Double each Harder,
in C/C++ and lack suitable progress/performance properties | Robust schemes pointer Intrusive

* Desirable properties for memory reclamation: typlcally lack Hazard Pointers Slow No Yes No (deletion) 1 word Harder
° Non-blocking progress: not using locks Dereference P SNa pshot-freedom Epoch Based Reclamation Fast No No (deletion) 1 word Very Easy

* Robustness: bounding MEMOry Usage even when — Derefeence p HyaIine-S has all the Hazard Eras Medium No (deletion) 3 words Harder
threads are stalled or preemptEd SEGFAULT! — desirable properties Interval Based Reclamation Fast No (deletion) 3 words Medium
* Transparency: avoiding implicit assumptions about | CEGRAULTI | while retaining good hyaiine et Vec S— Very Easy
threads; threads can be created/deleted dynamically one thread deallocates a memory object performance and Hyaline-1 Fast Almost 3 words Very Easy

* Snapshot-freedom: not taking snapshots of the which is still reachable by concurrent reasonable memory Hyaline-s Fast Yes 3 words Medium
global state to alleviate contention threads => postpone deallocation overhead T Fast Aimest e Medium

Ruslan Nikolaev and Binoy Ravindran {rnikola, binoy}@vt.edu

Introduction Hyaline vs. Existing Schemes

Problem: how do we create a safe memory reclamation Evaluation

SCheme WhICh SatISfIES a" these propertIES? 4 NoMM <7 Hyaline © Hyaline-S © IBR HP | & Nomm # Hyaline © Hyaline-S I IBR HP
. . < Epoch ¢ Hyaline-1 -+ Hyaline-1S A HE < Epoch >¢ Hyaline-1 -+ Hyaline-1S A HE
e \We tested Hyaline variants 20075 , 0
=) .) (2 150-
Hyaline’s Main ldea on x86(-64), ARM32/64, 3 3
ot o PowerPC, and MIPS ;OOSO ;
e Use special reference counting, whic handle t Handle = enter(); - - e =0.090] < 100/
. P . & . // deref is for Hyaline-S only e All Hyaline variants exhibit = =100
is triggered only when deleting objects List = deref (sLinkedList) : very high throughput on 2 a N
° ’ Node = deref (&List->Next):;) (2 _ (@) &N \.
Update Head’s refe.rence count.er retire (Node) : /7 Mark for deletion various data structures, and 30025 Linked List 3 50
(HRef) when entering and leaving // Do something else... ensure that the number of & s = Hash Map
. 1 dle) ; I -aomin
thread operations eave (fandle) retired, but not-yet- N (read-dominated) | (read-dominated)
) . i 1
* Append deleted objects to a global Head [HRef, HPT] Handle Handle reclaimed objects is small 1 9 18 27 36 45 54 63 72 81 90 99 108117126135144 1 9 18 27 36 45 54 63 72 81 90 99 108117126135144
. ea ef, r . .
list and propagate reference counters i | ! (Thread i) (Thread) | | o Hyaline’s advantages are Threads Threads
i < Epoch =7 Hyaline © Hyaline-S A& HE < Epoch =7 Hyaline © Hyaline-S 4 HE
e When leaving, a thread traverses a NRer . [NRet especially visible in certain | £ IBR Hyaline-1 — Hyaline-1S — HP Sa000l © BR ¢ Hyaline1 - Hyaline-1S — HP A
i inni : © ©
sublist from the beginning to the read-dominated workloads 3 ; 3 5
object pointed to by a handle New Head. Head HRel,HPt e In oversubscribed scenarios, O°"| &= O 3000-
ew Hea ea e r . . A]
¢ The handle pOIntS to the part + ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, Hyallne Obtalns up to Zx :).J_ 25— :).J_ HaSh Map
of the list when the thread .Y, - throughput boost 8200 Linked List Goo00| (read-dominated)
: : : P e Q Q s
entered its operation e We present results for S | (read-dominated) S &
e Treat the very first list element < ¥86-64. read-dominated B1001 31000
’ Pk \ e / s A
1 . “— — " ,. ~ K >
speually{. HRef rather than NRef tests (90% get, 10% put) 3 G aoe o BE
reflects its reference counter 0 S) S S 0- A
. . 1 9 18 27 36 45 54 63 72 81 90 99 108117126135144 1 9 18 27 36 45 54 63 72 81 90 99 108117126135144
e When appending to the list, Slots Threads Threads

adjust the predecessor’s NRef [HRefo=2]

[HRef1=0]
[HRef2=1]

(previously 0) with the HRef value

e Maintain multiple global lists to
. . [HRef3=0]
alleviate contention HRof=2]
e Each list is for a subset of threads |[HRrefs=0]
e Delete an entire batch of objects | [HRefs=0]
rather than just one object [HRef7=0]
e One reference counter for the entire batch

Conclusions

* With Hyaline, threads can be created and e Hyaline’s code and the benchmark are open-source and
deleted dynamically: threads are “off the available at https://github.com/rusnikola/Ifsmr

hoolf” a5 s00n as.they leave operations e The work is supported by AFOSR under grants
* Hyaline and Hyaline-S are tully transparent: FA9550-15-1-0098 and FA9550-16-1-0371, and ONR under
they need not explicitly (un)register threads grants N00014-18-1-2022 and N00014-19-1-2493

https://github.com/rusnikola/lfsmr

