
WAIT-FREE MEMORY RECLAMATION AND DATA

STRUCTURES

RUSLAN NIKOLAEV

RESEARCH ASSISTANT PROFESSOR

VIRGINIA TECH, SSRG

ABOUT ME

 Worked in industry (Microsoft, Pure Storage)

 Joined Virginia Tech, Electrical and Computer Engineering Department in 2017 as a Research Assistant

Professor

 Working on different projects in systems and concurrency

 Have research publications at SOSP, VEE, PODC, DISC, and PPoPP

 Today’s talk partially overlaps with my recent PPoPP ’20 publication “Universal Wait-Free Memory

Reclamation”, which is co-authored with Prof. Binoy Ravindran from Virginia Tech

2

CONCURRENT DATA STRUCTURES

 Many-core systems today require efficient access to data

 Concurrent data structures

 Multiple threads need to safely manipulate data structures (similar to sequential data structures)

 “nothing bad will happen”

 Concurrency also adds a liveness property, which stipulates how threads will be able to make

progress

 “something good will happen eventually”
Thread

A
Thread

B
Thread

C

Thread
A

Thread
B

Thread
C

3

NON-BLOCKING PROGRESS GUARANTEES

 Obstruction-free: a thread performs an operation in a finite number of steps if executed in isolation

from other threads

 Lock-free: at least one thread always makes progress in a finite number of steps

 Wait-free: all threads make progress in a finite number of steps

4

NON-BLOCKING PROGRESS GUARANTEES

 Obstruction-free: a thread performs an operation in a finite number of steps if executed in isolation

from other threads

 Lock-free: at least one thread always makes progress in a finite number of steps

 Wait-free: all threads make progress in a finite number of steps

 Wait-freedom is the strongest form of non-blocking progress

 Wait-free algorithms are gaining more practical relevance and efficiency (Kogan and Petrank’s fast-path-

slow-path methodology, see [PPoPP ’12])

 CAS (compare-and-swap) is used universally in lock-free and wait-free algorithms

 F&A (fetch-and-add) is often available as a specialized instruction

5

MEMORY RECLAMATION PROBLEM

Delete P

Thread A Thread B Thread C

One thread wants to de-allocate a memory block which

is still reachable by concurrent threads

6

MEMORY RECLAMATION PROBLEM

Dereference P

Delete P

Dereference P

Thread A Thread B Thread C

SEGFAULT!

SEGFAULT!

One thread wants to de-allocate a memory block which

is still reachable by concurrent threads

7

TREIBER’S LOCK-FREE STACK

3 2 1
Next Next Next

Object 3 Object 2 Object 1

 PUSH and POP operations are implemented by updating Top using CAS
8

nullptr

Top

TREIBER’S LOCK-FREE STACK

3 2 1
Next Next Next

Object 3 Object 2 Object 1

 PUSH and POP operations are implemented by updating Top using CAS

4

Object 4

Next

9

nullptr

Top

TREIBER’S LOCK-FREE STACK

4 2 1 nullptr

Top

Next Next Next

Object 4 Object 2 Object 1

 PUSH and POP operations are implemented by updating Top using CAS

3
Next

Object 3

10

EXAMPLE: NO RECLAMATION

struct Node {
Node* next; // Next element
Object* obj; // Stored object

};
Node* Top = nullptr;

11

EXAMPLE: NO RECLAMATION

struct Node {
Node* next; // Next element
Object* obj; // Stored object

};
Node* Top = nullptr;

PUSH(Object* obj) {
Node* node = malloc(…);
node->obj = obj;
while (true) {

node->next = Top;
if (CAS(&Top, node->next, node))

break;
}

}

12

EXAMPLE: NO RECLAMATION

Object* POP() {
Object* obj = nullptr;
while (true) {

Node* node = Top;
if (node == nullptr)

break;
if (CAS(&Top, node, node->next) {

obj = node->obj;
[delete node]
break;

}
}
return obj;

}

struct Node {
Node* next; // Next element
Object* obj; // Stored object

};
Node* Top = nullptr;

PUSH(Object* obj) {
Node* node = malloc(…);
node->obj = obj;
while (true) {

node->next = Top;
if (CAS(&Top, node->next, node))

break;
}

}

13

RECYCLING ELEMENTS

 If we can avoid returning memory to the OS, the simplest approach is to recycle elements

 With simple data structures (such as Treiber’s stack) we can easily do so but

 When calling POP, the same pointer value may point to an already recycled element

 The problem is known as “the ABA problem” and leads to the data structure corruption

 Can be solved by using a “tag”, which is adjacent to the stack top pointer and incremented each time; the tag

uniquely identifies the object

 Need to use WCAS (wide CAS), i.e., cmpxchg16b for x86-64

14

EXAMPLE: RECYCLING ELEMENTS

Object* POP() {
Object* obj = nullptr;
while (true) {

Node* node = Top.Pointer;
if (node == nullptr)

break;
if (WCAS(&Top,

{ node, Top.Tag }
{ node->next, Top.Tag+1 })) {

obj = node->obj;
[recycle node]
break;

}
}
return obj;

}

struct Node {
Node* next; // Next element
Object* obj; // Stored object

};
<Node*,Int> Top = { nullptr, 0 };

PUSH(Object* obj) {
Node* node = [allocate node]
node->obj = obj;
while (true) {

node->next = Top.Pointer;
if (WCAS(&Top,

{ node->next, Top.Tag },
{ node, Top.Tag+1 }))

break;
} }

15

MORE GENERAL SOLUTION

 Need to postpone de-allocation of this memory block until it is safe to do so

 But memory usage must be bounded for non-blocking progress guarantees

 Wait-free reclamation is especially difficult

 No universal wait-free memory reclamation scheme existed for hand-crafted data structures until recently

 The fast-path-slow-path [PPoPP ’12] methodology cannot be applied to reclamation directly

16

17

QUESTIONS?

EPOCH-BASED RECLAMATION (EBR)

 Uses a global epoch counter (aka “era” in other algorithms)

 As part of per-thread state, each thread keeps a reservation

 Many variations of EBR exist, which differ on how to increment the epoch counter (conditionally vs.

unconditionally) and when to trigger memory reclamation

 For the original EBR only 3 distinct epoch values are needed

 As an example, consider a variant with unconditional epoch increments presented in [PPoPP ’18]

[epoch = 1]

[epoch = ∞]

[epoch = 2]

[epoch = ∞]

Thread 1

Thread 2

Thread 3

Thread 4

global_epoch = 2

reservations:

18

EPOCH-BASED RECLAMATION (EBR)

 Each data structure operation is wrapped

 When beginning, a thread records the current global epoch value to its reservation

 When ending, the thread resets its reservation

19

EPOCH-BASED RECLAMATION (EBR)

 Each data structure operation is wrapped

 When beginning, a thread records the current global epoch value to its reservation

 When ending, the thread resets its reservation

PUSH_EBR(Object* obj) {
begin_op();
PUSH(obj);
end_op();

}

Object* POP_EBR() {
begin_op();
Object* obj = POP();
end_op();
return obj;

}

20

EPOCH-BASED RECLAMATION (EBR)

 Each data structure operation is wrapped

 When beginning, a thread records the current global epoch value to its reservation

 When ending, the thread resets its reservation

begin_op() {
reservations[TID] = global_epoch;

}

[epoch = 2][epoch = ∞]

global_epoch = 2

21

EPOCH-BASED RECLAMATION (EBR)

 Each data structure operation is wrapped

 When beginning, a thread records the current global epoch value to its reservation

 When ending, the thread resets its reservation

begin_op() {
reservations[TID] = global_epoch;

}

end_op() {
reservations[TID] = ∞;

}

[epoch = 2][epoch = ∞]

global_epoch = 2

[epoch = 2] [epoch = ∞]

22

EPOCH-BASED RECLAMATION (EBR)

 When deleting, postpone the actual deallocation by retiring a memory block

 Store the global epoch counter at the moment of retiring (“retire epoch”) and place the retired block to a

thread-local list

 Periodically increment the global epoch counter when retiring

 Periodically scan previously retired blocks from the thread-local list and deallocate those for which the epoch

at the moment of retirement is past all reservation values across all threads

[retire=2] [retire=2]

global_epoch = 2

[retire=1] [retire=0]

[epoch = 1]

[epoch = ∞]

[epoch = 2]

[epoch = ∞]

Thread 1

Thread 2

Thread 3

Thread 4

reservations:

Thread 3’s

list

23

EPOCH-BASED RECLAMATION (EBR)

 When deleting, postpone the actual deallocation by retiring a memory block

 Store the global epoch counter at the moment of retiring (“retire epoch”) and place the retired block to a

thread-local list

 Periodically increment the global epoch counter when retiring

 Periodically scan previously retired blocks from the thread-local list and deallocate those for which the epoch

at the moment of retirement is past all reservation values across all threads

can be deleted 24

[retire=2] [retire=2]

global_epoch = 2

[retire=1] [retire=0]
Thread 3’s

list

[epoch = 1]

[epoch = ∞]

[epoch = 2]

[epoch = ∞]

Thread 1

Thread 2

Thread 3

Thread 4

reservations:

EBR SUMMARY

 EBR tracks memory using “epochs”

 Simple API

 Very fast, especially when finding a good balance of how frequently retired nodes need to be scanned

 The scheme is blocking

 If one thread is stuck and never calls end_op(), an unbounded number of blocks can be allocated and never

deleted

 Memory usage is thus unbounded

 The program can eventually crash when memory is exhausted

25

HAZARD POINTERS

 Originally published in [TPDS ’04]

 Wrap all pointer dereferences

 Reservations keep pointers rather than epochs

 Since a thread may reserve multiple pointers, several reservations per thread are needed

 An index identifies a specific reservation in a thread

 When retiring a block, put it in a thread-local list

 Periodically scan the list to check if any of the retired block pointers do not overlap with reservations across

all threads

 Deallocate such blocks

26

EXAMPLE: HAZARD POINTERS’ API

Object* POP() {
Object* obj = nullptr;
while (true) {

Node* node =
get_protected(&Top, 0);

if (node == nullptr)
break;

if (CAS(&Top, node, node->next) {
obj = node->obj;
retire(node);
break;

}
}
clear();
return obj;

}

struct Node {
Reclamation header;
Node* next; // Next element
Object* obj; // Stored object

};
Node* Top = nullptr;

PUSH(Object* obj) {
Node* node = malloc(…);
node->obj = obj;
while (true) {

node->next = Top;
if (CAS(&Top, node->next, node))

break;
}

}

27

EXAMPLE: HAZARD POINTERS’ API

struct Node {
Reclamation header;
Node* next; // Next element
Object* obj; // Stored object

};
Node* Top = nullptr;

PUSH(Object* obj) {
Node* node = malloc(…);
node->obj = obj;
while (true) {

node->next = Top;
if (CAS(&Top, node->next, node))

break;
}

}

Object* POP() {
Object* obj = nullptr;
while (true) {

Node* node =
get_protected(&Top, 0);

if (node == nullptr)
break;

if (CAS(&Top, node, node->next) {
obj = node->obj;
retire(node);
break;

}
}
clear();
return obj;

}

28

EXAMPLE: HAZARD POINTERS’ API

struct Node {
Reclamation header;
Node* next; // Next element
Object* obj; // Stored object

};
Node* Top = nullptr;

PUSH(Object* obj) {
Node* node = malloc(…);
node->obj = obj;
while (true) {

node->next = Top;
if (CAS(&Top, node->next, node))

break;
}

}

Object* POP() {
Object* obj = nullptr;
while (true) {

Node* node =
get_protected(&Top, 0);

if (node == nullptr)
break;

if (CAS(&Top, node, node->next) {
obj = node->obj;
retire(node);
break;

}
}
clear();
return obj;

}

 get_protected(): safely retrieve a pointer to

the protected object by creating a reservation

29

EXAMPLE: HAZARD POINTERS’ API

Object* POP() {
Object* obj = nullptr;
while (true) {

Node* node =
get_protected(&Top, 0);

if (node == nullptr)
break;

if (CAS(&Top, node, node->next) {
obj = node->obj;
retire(node);
break;

}
}
clear();
return obj;

}

struct Node {
Reclamation header;
Node* next; // Next element
Object* obj; // Stored object

};
Node* Top = nullptr;

PUSH(Object* obj) {
Node* node = malloc(…);
node->obj = obj;
while (true) {

node->next = Top;
if (CAS(&Top, node->next, node))

break;
}

}

30

EXAMPLE: HAZARD POINTERS’ API

Object* POP() {
Object* obj = nullptr;
while (true) {

Node* node =
get_protected(&Top, 0);

if (node == nullptr)
break;

if (CAS(&Top, node, node->next) {
obj = node->obj;
retire(node);
break;

}
}
clear();
return obj;

}

struct Node {
Reclamation header;
Node* next; // Next element
Object* obj; // Stored object

};
Node* Top = nullptr;

PUSH(Object* obj) {
Node* node = malloc(…);
node->obj = obj;
while (true) {

node->next = Top;
if (CAS(&Top, node->next, node))

break;
}

}

 retire(): mark an object for deletion

 the retired object must be deleted from the data

structure first, i.e., only in-flight threads can still

access it

31

EXAMPLE: HAZARD POINTERS’ API

Object* POP() {
Object* obj = nullptr;
while (true) {

Node* node =
get_protected(&Top, 0);

if (node == nullptr)
break;

if (CAS(&Top, node, node->next) {
obj = node->obj;
retire(node);
break;

}
}
clear();
return obj;

}

struct Node {
Reclamation header;
Node* next; // Next element
Object* obj; // Stored object

};
Node* Top = nullptr;

PUSH(Object* obj) {
Node* node = malloc(…);
node->obj = obj;
while (true) {

node->next = Top;
if (CAS(&Top, node->next, node))

break;
}

}

32

EXAMPLE: HAZARD POINTERS’ API

Object* POP() {
Object* obj = nullptr;
while (true) {

Node* node =
get_protected(&Top, 0);

if (node == nullptr)
break;

if (CAS(&Top, node, node->next) {
obj = node->obj;
retire(node);
break;

}
}
clear();
return obj;

}

struct Node {
Reclamation header;
Node* next; // Next element
Object* obj; // Stored object

};
Node* Top = nullptr;

PUSH(Object* obj) {
Node* node = malloc(…);
node->obj = obj;
while (true) {

node->next = Top;
if (CAS(&Top, node->next, node))

break;
}

}

 clear(): reset all prior reservations made by the

current thread in get_protected()

33

HAZARD POINTERS’ SUMMARY

 Hazard Pointers track memory blocks using pointers

 Lock-free in general

 In certain cases can be used in wait-free manner

 Typically much slower than EBR

34

COMBINATION OF EBR AND HAZARD POINTERS

 Combine EBR and Hazard Pointers

 Use epochs (or “eras”) for reservations, as in EBR (64-bit values)

 Wrap all pointer dereferences, as in Hazard Pointers, using get_protected()

 When allocating blocks, initialize them with the current global epoch value

 Each block records an interval (“allocation” and “retire” epochs)

 To safely delete a block, its interval must not overlap with all reservations

35

COMBINATION OF EBR AND HAZARD POINTERS

 Hazard Eras [SPAA ’17]

 API is mostly compatible with Hazard Pointers, except when allocating memory blocks

 Generally much faster than Hazard Pointers

 Interval-Based Reclamation (IBR) [PPoPP ’18]

 Simpler EBR-like API, but data structures need to modified to restart operations for starving threads

 Turns out that Hazard Eras (unlike Hazard Pointers) can be modified to guarantee wait-freedom

 Wait-Free Eras (WFE) [PPoPP ’20] is based on Hazard Eras but is wait-free

36

HAZARD ERAS’ API CHANGES

Object* POP() {
Object* obj = nullptr;
while (true) {

Node* node =
get_protected(&Top, 0);

if (node == nullptr)
break;

if (CAS(&Top, node, node->next) {
obj = node->obj;
retire(node);
break;

}
}
clear();
return obj;

}

struct Node {
Reclamation header;
Node* next; // Next element
Object* obj; // Stored object

};
Node* Top = nullptr;

PUSH(Object* obj) {
Node* node = alloc_block();
node->obj = obj;
while (true) {

node->next = Top;
if (CAS(&Top, node->next, node))

break;
}

}

37

HAZARD ERAS’ API CHANGES

Object* POP() {
Object* obj = nullptr;
while (true) {

Node* node =
get_protected(&Top, 0);

if (node == nullptr)
break;

if (CAS(&Top, node, node->next) {
obj = node->obj;
retire(node);
break;

}
}
clear();
return obj;

}

struct Node {
Reclamation header;
Node* next; // Next element
Object* obj; // Stored object

};
Node* Top = nullptr;

PUSH(Object* obj) {
Node* node = alloc_block();
node->obj = obj;
while (true) {

node->next = Top;
if (CAS(&Top, node->next, node))

break;
}

}

 alloc_block(): allocate and initialize a memory

block

 Wraps malloc()

 Not in the original Hazard Pointers scheme but in

Hazard Eras and WFE

38

OTHER MEMORY RECLAMATION SCHEMES

 Schemes based on lock-free garbage collection

 Can be unsuitable for C++, especially when using low-level programming models

 Schemes that rely on certain OS primitives or mechanisms

 QSense [SPAA ’16], DEBRA+ [PODC ’15]

 Can be convenient for user-space programs but problematic for kernel-space code or for strict non-blocking

guarantees since typical OSes use locks

39

IMPORTANCE OF API FOR NON-BLOCKING PROGRESS

 IBR’s API is similar to that of EBR, except it additionally wraps pointer dereferences (no indices

needed)

 Relatively simple, can be hidden inside smart pointers

 Not always memory-bounded, e.g., when having starving threads

 The Hazard Eras’ and WFE’s APIs are based on Hazard Pointers’ API

 Hazard Pointers’s API is carefully designed to make sure that a finite number of blocks are reserved (i.e.,

protected from reclamation)

40

41

QUESTIONS?

WAIT-FREEDOM CHALLENGE

Object* POP() {
Object* obj = nullptr;
while (true) {

Node* node =
get_protected(&Top, 0);

if (node == nullptr)
break;

if (CAS(&Top, node, node->next) {
obj = node->obj;
retire(node);
break;

}
}
clear();
return obj;

}

struct Node {
Reclamation header;
Node* next; // Next element
Object* obj; // Stored object

};
Node* Top = nullptr;

PUSH(Object* obj) {
Node* node = alloc_block();
node->obj = obj;
while (true) {

node->next = Top;
if (CAS(&Top, node->next, node))

break;
}

}

42

WAIT-FREEDOM CHALLENGE: HAZARD ERAS

int reservations[maxThreads][maxHEs];

int global_era = 0;

Node* get_protected(Node** ptr, int indx) {
int prev = reservations[tid][indx];
while (true) {

Node* ret = *ptr;
int new = global_era;
if (prev == new)

return ret;
reservations[tid][indx] = new;
prev = new;

}
}

retire(Node* node) {
…
increment_era();
…

}

increment_era() {
F&A(&global_era, 1);

}

43

WAIT-FREEDOM CHALLENGE: HAZARD ERAS

int reservations[maxThreads][maxHEs];

int global_era = 0;

Node* get_protected(Node** ptr, int indx) {
int prev = reservations[tid][indx];
while (true) {

Node* ret = *ptr;
int new = global_era;
if (prev == new)

return ret;
reservations[tid][indx] = new;
prev = new;

}
}

retire(Node* node) {
…
increment_era();
…

}

increment_era() {
F&A(&global_era, 1);

}

44

TIMNAT AND PETRANK’S FORMULATION

 [PPoPP ’14] proposed a method to automatically convert lock-free data structures into wait-free ones

 The original lock-free data structure needs to be written in a “normalized” form

 Normalized data structures are defined in [PPoPP ’14]

 One of the key requirements is “Any modification of the shared data structure is executed using a CAS operation”

 Operations can be restarted if things go wrong, therefore get_protected() does not need to be

unbounded

 Examples include [PPoPP ’17]’s implementations of CRTurnQueue and KPQueue using Hazard Pointers

45

WAIT-FREE ERAS (WFE)

 Although wait-free reclamation is feasible in special cases, it is much harder to guarantee for arbitrary

formulated wait-free data structures

 Specialized instructions such as F&A can still be useful in wait-free data structures for performance reasons

 Even CAS-only wait-free data structures are not necessarily derived from “normalized” form

 Our recent [PPoPP ’20] publication, Wait-Free Eras (WFE), solves wait-free memory reclamation for a

more general case

46

WAIT-FREE ERAS (WFE)

 Bird’s-eye view

 Use a fast-path-slow-path method for get_protected()

 retire() increments the global era (or alternatively alloc_block()): it calls a helper method before

incrementing the era clock

 Wait-free consensus is achieved with the help of

 F&A: available on x86-64 and AArch64 as of v8.1 and suitable for wait-free algorithms due to bounded

execution time

 WCAS: also available on x86-64 and AArch64

47

WAIT-FREE ERAS (WFE)

get_protected_fast()

Request help through

per-thread state

increment_era() in

retire()

help_thread()

result 1

result 2

result 3

result 4

Thread 1

Thread 2

Thread 3

Thread 4

state:get_protected_slow()
Scan all state entries

to find requests

F&A(global_era, 1)Gather output 48

WAIT-FREE ERAS (WFE)

 Introduce tags to identify slow-path cycles

 They prevent spurious (belated) updates

 Per-thread state: result is used for both input and output

 Use pairs for result { .A, .B }

 Reservations also use pairs { .A, .B }

 Two special reservations for helpers (maxHEs, maxHEs+1),

i.e., the total number is maxHEs+2

49

WAIT-FREE ERAS (WFE)

block* get_protected_slow(block** ptr, int indx, block* parent) {
int allocEra = parent->allocEra;
int tag = reservations[tid][indx].B;

state[tid][indx].ptr = ptr;
state[tid][indx].era = allocEra;
state[tid][indx].result = { invptr, tag };

50

WAIT-FREE ERAS (WFE)

block* get_protected_slow(block** ptr, int indx, block* parent) {
int allocEra = parent->allocEra;
int tag = reservations[tid][indx].B;

state[tid][indx].ptr = ptr;
state[tid][indx].era = allocEra;
state[tid][indx].result = { invptr, tag };
…
// Try retrieving a pointer in a loop

51

WAIT-FREE ERAS (WFE)

block* get_protected_slow(block** ptr, int indx, block* parent) {
int allocEra = parent->allocEra;
int tag = reservations[tid][indx].B;

state[tid][indx].ptr = ptr;
state[tid][indx].era = allocEra;
state[tid][indx].result = { invptr, tag };
…
// Try retrieving a pointer in a loop
…
if (result.A != invptr) {

int era = result.B;
reservations[tid][indx].A = era;
reservations[tid][indx].B = tag+1;
return result.A;

} }

52

WAIT-FREE ERAS (WFE)

help_thread(int i, int j, int tid) {
int_pair result = state[i][j].result;
if (result.A != invptr)

return;
int era = state[i][j].era;
reservations[tid][maxHEs].era = era;
block** ptr = state[i][j].ptr;
int tag = reservations[i][j].B;
if (result.B != tag) {

reservations[tid][maxHEs].era = ∞;
return;

}
…

}

53

WAIT-FREE ERAS (WFE)

help_thread(int i, int j, int tid) {
…
int prev = global_era;
do {

reservations[tid][maxHEs+1].A = prev;
block* ret_ptr = *ptr;
int new = global_era;
if (prev == new) {

// DONE! Can produce the result
break;

}
prev = new;

} while (state[i][j].result == { invptr, tag });
reservations[tid][maxHEs+1].era = ∞;
reservations[tid][maxHEs].era = ∞;

}

54

WAIT-FREE ERAS (WFE)

help_thread(int i, int j, int tid) {
…
int prev = global_era;
do {

reservations[tid][maxHEs+1].A = prev;
block* ret_ptr = *ptr;
int new = global_era;
if (prev == new) {

// DONE! Can produce the result
break;

}
prev = new;

} while (state[i][j].result == { invptr, tag });
reservations[tid][maxHEs+1].era = ∞;
reservations[tid][maxHEs].era = ∞;

}

55

WAIT-FREE ERAS (WFE)

 Avoiding race conditions when scanning deleted nodes

 Check reservations 0..maxHEs-1

 Check reservations maxHEs, maxHEs+1

 Check reservations 0..maxHEs-1 again

56

EVALUATION

 4x24 Intel Xeon E7-8890 v4 (2.20GHz) 256GB RAM, GCC 8.3.0 with -O3

 Using the benchmark from IBR/PPoPP ’18 (by Wen et al.) comparing:

 Wait-Free Eras (WFE) [PPoPP ’20]

 Hazard Eras (HE) [SPAA ’17]

 Interval-Based Reclamation, 2GEIBR (IBR) [PPoPP ’18]

 Epoch-Based Reclamation (EBR)

 Hazard Pointers (HP) [TPDS ’04]

 No reclamation (Leak Memory)

 Results are for write-intensive (50% insert, 50% delete) tests

 See WFE/PPoPP ’20 for read-mostly (90% get, 10% put) results 57

EVALUATION: KOGAN AND PETRANK’S WAIT-FREE QUEUE

58

EVALUATION: CRTURN WAIT-FREE QUEUE

59

EVALUATION: SORTED LOCK-FREE LINKED LIST

60

EVALUATION: LOCK-FREE HASH MAP

61

EVALUATION: LOCK-FREE NATARAJAN TREE

62

CONCLUSIONS

 Concurrent data structures require careful consideration of the memory reclamation problem

 Memory reclamation itself is subject to progress guarantee requirements

 Wait-free reclamation is feasible through WFE

 Opens the way for wide adoption of wait-free data structures

 The only remaining obstacle is efficient wait-free allocation and deallocation

 Can spur further research in wait-free reclamation

63

AVAILABILITY

 My personal website

 https://rusnikola.github.io

 WFE’s code

 https://github.com/rusnikola/wfe

64

https://rusnikola.github.io/
https://github.com/rusnikola/wfe

AVAILABILITY

 My personal website

 https://rusnikola.github.io

 WFE’s code

 https://github.com/rusnikola/wfe
THANK YOU!

65

https://rusnikola.github.io/
https://github.com/rusnikola/wfe

