
Ruslan Nikolaev and Godmar Back

Virginia Polytechnic Institute

Blacksburg

Perfctr-Xen: A framework for
Performance Counter Virtualization

1

Overview

2

 IaaS widely use virtual machine monitors
 Type 1 hypervisors: Xen, KVM, ESX …

 Commonly used performance analysis tools (e.g.,
PAPI) cannot be used because existing VMM and
guests do not provide necessary per-thread
virtualization support for hardware event counters

 Our contribution: Perfctr-Xen:
 Framework for performance counter virtualization
 Software-compatible with widely used perfctr library
 Techniques for collaboration of guest and hypervisor

 Experimental validation

Existing Performance Counter
Virtualization Solutions

3

 XenoProf

 Extension of Oprofile system-wide profiler

 Does not provide per-domain abstraction of hardware
counter facilities (supports only 1 domain at a time)

 VPMU driver

 Treats PMU registers like ordinary registers
(saved/restored by VMM)

 Requires use of hardware assisted virtualization mode;
support for limited number of architecture generations
since VMM must contain architecture-specific code

 Not compatible with all architectures

Kernel

Perfctr-Xen

4

 Perfctr (Native)

Profilers

High-level
performance

counters

Low-level
performance
counters

PerfExplorer,
HPCToolkit, etc.

PAPI

Perfctr Lib

Perfctr Driver

Kernel

Perfctr-Xen

4

 Perfctr (Native) Perfctr-Xen

Profilers

High-level
performance

counters

Low-level
performance
counters

PerfExplorer,
HPCToolkit, etc.

PAPI

Perfctr Lib

Perfctr Driver

Guest Kernel

Xen Hypervisor

Kernel

Perfctr-Xen

4

 Perfctr (Native) Perfctr-Xen

Profilers

High-level
performance

counters

Low-level
performance
counters

PerfExplorer,
HPCToolkit, etc.

PAPI

Perfctr Lib

Perfctr Driver

Guest Kernel

Xen Hypervisor

Perfctr Guest
Driver

Kernel

Perfctr-Xen

4

 Perfctr (Native) Perfctr-Xen

Profilers

High-level
performance

counters

Low-level
performance
counters

PerfExplorer,
HPCToolkit, etc.

PAPI

Perfctr Lib

Perfctr Driver

Guest Kernel

Xen Hypervisor

Perfctr Guest
Driver

Kernel

Perfctr-Xen

4

 Perfctr (Native) Perfctr-Xen

Profilers

High-level
performance

counters

Low-level
performance
counters

PerfExplorer,
HPCToolkit, etc.

PAPI

Perfctr Lib

Perfctr Driver

Guest Kernel

Xen Hypervisor

Perfctr Guest
Driver

Perfctr-Xen
Driver

Kernel

Perfctr-Xen

4

 Perfctr (Native) Perfctr-Xen

Profilers

High-level
performance

counters

Low-level
performance
counters

PerfExplorer,
HPCToolkit, etc.

PAPI

Perfctr Lib

Perfctr Driver

Guest Kernel

Xen Hypervisor

Perfctr Guest
Driver

Perfctr-Xen
Driver

Kernel

Perfctr-Xen

4

 Perfctr (Native) Perfctr-Xen

Profilers

High-level
performance

counters

Low-level
performance
counters

PerfExplorer,
HPCToolkit, etc.

PAPI

Perfctr Lib

Perfctr Driver

Guest Kernel

Xen Hypervisor

Perfctr Guest
Driver

Perfctr-Xen
Driver

Perfctr Lib

Kernel

Perfctr-Xen

4

 Perfctr (Native) Perfctr-Xen

Profilers

High-level
performance

counters

Low-level
performance
counters

PerfExplorer,
HPCToolkit, etc.

PAPI

Perfctr Lib

Perfctr Driver

Guest Kernel

Xen Hypervisor

Perfctr Guest
Driver

Perfctr-Xen
Driver

Perfctr Lib

Kernel

Perfctr-Xen

4

 Perfctr (Native) Perfctr-Xen

PerfExplorer,
HPCToolkit, etc.

PAPI

Profilers

High-level
performance

counters

Low-level
performance
counters

PerfExplorer,
HPCToolkit, etc.

PAPI

Perfctr Lib

Perfctr Driver

Guest Kernel

Xen Hypervisor

Perfctr Guest
Driver

Perfctr-Xen
Driver

Perfctr Lib

Software
Compatible

Per-thread PMU Virtualization

Logical per-thread value includes only events incurred
during the thread execution

5

Per-thread PMU Virtualization

Logical per-thread value includes only events incurred
during the thread execution

Thread 0

Thread 1

Thread 0

Thread 1

Domain 0

Domain 1

5

Per-thread PMU Virtualization

Logical per-thread value includes only events incurred
during the thread execution

Thread 0

Thread 1

Thread 0

Thread 1

Domain 0

Domain 1

Intradomain
Switch

5

Per-thread PMU Virtualization

Logical per-thread value includes only events incurred
during the thread execution

Thread 0

Thread 1

Thread 0

Thread 1

Domain 0

Domain 1

Intradomain
Switch

5

Per-thread PMU Virtualization

Logical per-thread value includes only events incurred
during the thread execution

Thread 0

Thread 1

Thread 0

Thread 1

Domain 0

Domain 1

Intradomain
Switch

Interdomain
Switch

5

Per-thread PMU Virtualization

Logical per-thread value includes only events incurred
during the thread execution

Thread 0

Thread 1

Thread 0

Thread 1

Domain 0

Domain 1

Intradomain
Switch

Interdomain
Switch

5

Per-thread PMU Virtualization

Logical per-thread value includes only events incurred
during the thread execution

Thread 0

Thread 1

Thread 0

Thread 1

Domain 0

Domain 1

Intradomain
Switch

Interdomain
Switch

5

Perfctr Library

66

Sumthread,
Startthread

Sumthread,
Startthread

Sumthread,
Startthread

CPU1

Threads
Kernel level

Hardware CPU2

User level
Perfctr library API or /dev/perfctr

Modes of operation

 A-mode: an event count in some region of a program

 I-mode: an interrupt after a certain number of events has
occurred

Perfctr: A-mode counters

7

Thread 0

Thread 1

Perfctr: A-mode counters

7

Thread 0

Thread 1

Sumthread

Sumthread records accumulated event count

Perfctr: A-mode counters

7

Thread 0

Thread 1

Sumthread

Sumthread records accumulated event count

Kernel records physical value to Startthread = Phys(t1)

t1

Perfctr: A-mode counters

7

Thread 0

Thread 1

Sumthread

Sumthread records accumulated event count

Kernel records physical value to Startthread = Phys(t1)

t1

Perfctr: A-mode counters

7

Thread 0

Thread 1

Sumthread Phys(t2)-Startthread

Sumthread records accumulated event count

Kernel records physical value to Startthread = Phys(t1)

t1 t2

Thread samples physical value Phys(t2), computes
Logical value Logthread = Sumthread + (Phys(t2) – Startthread)

Perfctr: A-mode counters

7

Thread 0

Thread 1

t3

Sumthread

Sumthread records accumulated event count

Kernel records physical value to Startthread = Phys(t1)

t1 t2

Thread samples physical value Phys(t2), computes
Logical value Logthread = Sumthread + (Phys(t2) – Startthread)

Phys(t3)-Startthread

Perfctr: A-mode counters

7

Thread 0

Thread 1

t3

Sumthread records accumulated event count

Kernel records physical value to Startthread = Phys(t1)

Kernel increments Sumthread = Sumthread + (Phys(t3) – Startthread)

t1 t2

Thread samples physical value Phys(t2), computes
Logical value Logthread = Sumthread + (Phys(t2) – Startthread)

Phys(t3)-Startthread

Sumthread

Perfctr: I-mode counters

8

 PMU registers trigger interrupt on zero-overflow

 Physical register initialized to negated sample period

 Requires that physical value be saved & restored on
each context switch

 Compute logical accumulated value similar to a-mode

-5000 -1, 0 -5000 -1, 0 -5000 -1, 0 Events

Time

Perfctr-Xen: A-mode counters
 Requires cooperation of guest kernel and hypervisor:

 Guest: maintains per-thread state: Sumthread, Startthread

 Hypervisor: a per-VCPU (Virtual CPU) state: Sumvcpu, Startvcpu

 Guest kernel makes per-VCPU state available user threads

9

Sumthread,
Startthread

Sumthread,
Startthread

Sumvcpu,
Startvcpu

Sumvcpu,
Startvcpu

Sumthread,
Startthread

CPU

VCPUs

Threads
Guest

Hypervisor

Hardware

Sumvcpu,
Startvcpu

Perfctr-Xen: A-mode counters

Thread 0

Thread 1

Thread 0

Thread 1

Domain 0

Domain 1

10

Perfctr-Xen: A-mode counters

Thread 0

Thread 1

Thread 0

Thread 1

Domain 0

Domain 1

Sumthread

10

Perfctr-Xen: A-mode counters

Thread 0

Thread 1

Thread 0

Thread 1

Domain 0

Domain 1

Sumthread

10

Perfctr-Xen: A-mode counters

Thread 0

Thread 1

Thread 0

Thread 1

Domain 0

Domain 1

Sumthread Sumvcpu

10

Perfctr-Xen: A-mode counters

Thread 0

Thread 1

Thread 0

Thread 1

Domain 0

Domain 1

t1

Sumthread Sumvcpu

10

Startvcpu = Phys(t1)

Perfctr-Xen: A-mode counters

Thread 0

Thread 1

Thread 0

Thread 1

Domain 0

Domain 1

t1 t2

Sumthread Sumvcpu Phys(t2)-Startvcpu

10

Startvcpu = Phys(t1)

Perfctr-Xen: A-mode counters

11

Perfctr-Xen: A-mode counters

Thread 0

Thread 1

Thread 0

Thread 1

Domain 0

Domain 1
11

Perfctr-Xen: A-mode counters

Thread 0

Thread 1

Thread 0

Thread 1

Domain 0

Domain 1

Sumthread

11

Perfctr-Xen: A-mode counters

Thread 0

Thread 1

Thread 0

Thread 1

Domain 0

Domain 1

Hypervisor: Sumvcpu = 0, Startvcpu = Phys(t1)

Sumthread

11

t1

Perfctr-Xen: A-mode counters

Thread 0

Thread 1

Thread 0

Thread 1

Domain 0

Domain 1

Hypervisor: Sumvcpu = 0, Startvcpu = Phys(t1)

Sumthread

11

t1

Hypercall:
- Activate configuration
- Sumvcpu←0
- Startvcpu ←Phys(t1)

Perfctr-Xen: A-mode counters

Thread 0

Thread 1

Thread 0

Thread 1

Domain 0

Domain 1

Hypervisor: Sumvcpu = 0, Startvcpu = Phys(t1)

Sumthread

Start*thread

11

t1 t2

Guest: Start*thread = Sumvcpu + (Phys(t2) – Startvcpu)

Hypercall:
- Activate configuration
- Sumvcpu←0
- Startvcpu ←Phys(t1)

Perfctr-Xen: A-mode counters

Thread 0

Thread 1

Thread 0

Thread 1

Domain 0

Domain 1

Hypervisor: Sumvcpu = 0, Startvcpu = Phys(t1)

Hypervisor: Sumvcpu = Sumvcpu + (Phys(t3) – Startvcpu)

Sumthread Sumvcpu

Start*thread

11

t1 t2

t3

Guest: Start*thread = Sumvcpu + (Phys(t2) – Startvcpu)

Hypercall:
- Activate configuration
- Sumvcpu←0
- Startvcpu ←Phys(t1)

Perfctr-Xen: A-mode counters

Thread 0

Thread 1

Thread 0

Thread 1

Domain 0

Domain 1

Hypervisor: Sumvcpu = 0, Startvcpu = Phys(t1)

Hypervisor: Sumvcpu = Sumvcpu + (Phys(t3) – Startvcpu)
Hypervisor: Startvcpu = Phys(t4)

t4

Sumthread Sumvcpu

Start*thread

11

t1 t2

t3

Guest: Start*thread = Sumvcpu + (Phys(t2) – Startvcpu)

Hypercall:
- Activate configuration
- Sumvcpu←0
- Startvcpu ←Phys(t1)

Perfctr-Xen: A-mode counters

Thread 0

Thread 1

Thread 0

Thread 1

Domain 0

Domain 1

Hypervisor: Sumvcpu = 0, Startvcpu = Phys(t1)

Hypervisor: Sumvcpu = Sumvcpu + (Phys(t3) – Startvcpu)
Hypervisor: Startvcpu = Phys(t4)

t4 t5

Sumthread Sumvcpu

Start*thread

Phys(t5)-Startvcpu

11

t1 t2

t3

Logthread = Sumthread + Sumvcpu + (Phys(t5) – Startvcpu) - Start*thread

Guest: Start*thread = Sumvcpu + (Phys(t2) – Startvcpu)

Hypercall:
- Activate configuration
- Sumvcpu←0
- Startvcpu ←Phys(t1)

Perfctr-Xen: I-mode counters

12

 Suspension hypercall to increment Sumvcpu and sample
Startvcpu

 Resumption hypercall to restore per-VCPU values

Physical Counter
Registers

Sumvcpu,
Startvcpu

Sumthread,
Startthread

Intra-domain
context switch

Inter-domain
context switch

Save Save

Logthread = Sumvcpu + (Phys(t) – Startvcpu)

RestoreRestore

Perfctr-Xen: Interrupt delivery
 Hypervisor delivers overflow interrupts to guest via

VIRQ_PERFCTR virtual interrupts

 Upon receipt, guest kernel signals user thread

 Virtual interrupts are delivered asynchronously (as
soft interrupts)

 Guest must ensure that overflow interrupt is delivered
to correct thread by rechecking overflow status

 If thread causing overflow is suspended before virtual
interrupt arrives at guest, mark as pending and deliver
on next resume

13

Experimental Results

14

 Baseline: native execution

 Exercise multiple VCPU/PCPU scenarios

 Exercise multiple virtualization modes

 Paravirtualization

 Hardware-assisted virtualization (HVM)

 Hybrid mode (HVM + guest enhancement)

 Correctness of implementation and accuracy of results

 Microbenchmarks for a-mode, PAPI test for i-mode

 Macrobenchmarks: SPEC CPU 2006

 Verify Profiling (HPCToolkit)

Microbenchmarks

1. Each domain on 2
dedicated PCPUs; each
thread on a dedicated
VCPU.

2. Each domain on a
dedicated PCPU; all
threads in a domain on a
shared VCPU.

3. All domains on a shared
PCPU; all threads on a
shared VCPU.

4. Random migration
PCPUs and VCPUs

15

SPEC CPU2006: L2 Cache Misses

1. Native mode
2. Fully-virtualized Dom1

and Dom2, each on a
dedicated core

3. Fully-virtualized Dom1
and Dom2 on the same
core

4. Paravirtualized Dom0
and Dom1, each on a
dedicated core

5. Paravirtualized Dom0
and Dom1 on the same
core

16

SPEC CPU2006: L2 Cache References

1. Native mode
2. Fully-virtualized Dom1

and Dom2, each on a
dedicated core

3. Fully-virtualized Dom1
and Dom2 on the same
core

4. Paravirtualized Dom0
and Dom1, each on a
dedicated core

5. Paravirtualized Dom0
and Dom1 on the same
core

17

Related Work
 Performance counter support for VMM

 XenoProf [Menon 2005]

 Counter Virtualization for KVM [Du 2010, 2011]

 VTSS++ system [Bratanov 2009]

 Performance counters in non-virtualized systems

perf_counter, Perfmon [Eranian 2006], Intel VTune,
AMD Code Analyst

 Higher-level libraries:

 PAPI [Browne 1999]

18

Conclusion

19

 PerfCtr-Xen

• Efficient and accurate per-thread virtualization of
hardware event counters

• Supports all commonly used virtualization modes

• Plug-in Compatibility with PAPI, HPCToolkit, etc.

• Techniques extend to other Type I hypervisors and
low-level virtualization libraries

 Available at http://people.cs.vt.edu/~rnikola/

(LGPL license)

http://people.cs.vt.edu/~rnikola/

