
A Family of Fast and Memory Efficient Lock- and Wait-Free
Reclamation
RUSLAN NIKOLAEV, Pennsylvania State University, USA
BINOY RAVINDRAN, Virginia Tech, USA

Historically, memory management based on lock-free reference counting was very inefficient, especially for

read-dominated workloads. Thus, approaches such as epoch-based reclamation (EBR), hazard pointers (HP), or

a combination thereof have received significant attention. EBR exhibits excellent performance but is blocking

due to potentially unbounded memory usage. In contrast, HP are non-blocking and achieve good memory

efficiency but are much slower. Moreover, HP are only lock-free in the general case. Recently, several new

memory reclamation approaches such as WFE and Hyaline have been proposed. WFE achieves wait-freedom,

but is less memory efficient and performs suboptimally in oversubscribed scenarios; Hyaline achieves higher

performance and memory efficiency, but lacks wait-freedom.

We present a family of non-blocking memory reclamation schemes, called Crystalline, that simultaneously

addresses the challenges of high performance, high memory efficiency, and wait-freedom. Crystalline can

guarantee complete wait-freedom even when threads are dynamically recycled, asynchronously reclaims

memory in the sense that any thread can reclaim memory retired by any other thread, and ensures (an

almost) balanced reclamation workload across all threads. The latter two properties result in Crystalline’s

high performance and memory efficiency. Simultaneously ensuring all three properties requires overcoming

unique challenges. Crystalline supports ubiquitous x86-64 and ARM64 architectures, while achieving superior

throughput than prior fast schemes such as EBR as the number of threads grows.

We also accentuate that many recent approaches, unlike HP, lack strict non-blocking guarantees when used

with multiple data structures. By providing full wait-freedom, Crystalline addresses this problem as well.

CCS Concepts: • Theory of computation→ Concurrent algorithms; Shared memory algorithms.

Additional Key Words and Phrases: memory reclamation, wait-free, hazard pointers

ACM Reference Format:
Ruslan Nikolaev and Binoy Ravindran. 2024. A Family of Fast and Memory Efficient Lock- and Wait-Free

Reclamation. Proc. ACM Program. Lang. 8, PLDI, Article 235 (June 2024), 25 pages. https://doi.org/10.1145/
3658851

1 INTRODUCTION
Exploiting parallelism on multi-core architectures often requires scalable non-blocking data struc-

tures as opposed to more traditional, lock-based designs. As non-blocking data structures do not

use simple mutual exclusion, their memory management is challenging: a concurrent thread may

hold an obsolete pointer to an object which is about to be freed by another thread. Responding

to this problem, safe memory reclamation (SMR) schemes for unmanaged C/C++ code have been

proposed [10, 14, 19, 29, 35, 37, 43, 54]. However, they typically trade off memory efficiency for

high throughput, or high throughput (and memory efficiency) for stronger progress properties.

Authors’ addresses: Ruslan Nikolaev, Pennsylvania State University, University Park, USA, rnikola@psu.edu; Binoy Ravin-

dran, Virginia Tech, Blacksburg, USA, binoy@vt.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2024 Copyright held by the owner/author(s).

ACM 2475-1421/2024/6-ART235

https://doi.org/10.1145/3658851

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 235. Publication date: June 2024.

HTTPS://ORCID.ORG/0000-0002-1699-0593
HTTPS://ORCID.ORG/0000-0002-8663-739X
https://doi.org/10.1145/3658851
https://doi.org/10.1145/3658851
https://orcid.org/0000-0002-1699-0593
https://orcid.org/0000-0002-8663-739X
https://orcid.org/0000-0002-8663-739X
https://doi.org/10.1145/3658851

235:2 Ruslan Nikolaev and Binoy Ravindran

Exacerbating the problem, only a few schemes [10, 14, 29, 35, 37, 43] are truly1 non-blocking and
bound memory usage, i.e., a suspended thread has no adverse impact on progress in other threads.

Moreover, very few schemes [29, 35] are non-blocking when using with multiple data structures

(Section 2) and only one scheme [35] is wait-free.

SMR schemes with high performance and memory efficiency
2
are desirable. The significance

of SMR workload balancing – the task of reclaiming deleted memory objects – across all threads

have not received adequate attention in the literature. Consider the common scenario of read-

dominated workloads, i.e., majority of the operations are reads, but data can still be modified. If the

reclamation workload is unbalanced, as in most existing SMR schemes [19, 29, 43, 54], most threads

are not actively reclaiming memory, which can cause memory waste. As a side-effect, throughput

can also decrease due to the consequent increased pressure on the memory management system.

In oversubscribed scenarios where there are more threads than cores available, this can have a

cascading effect: threads that reclaim memory are preempted, further degrading performance.

The vast majority of SMR schemes (e.g., [29, 43, 54]) are inherently synchronous, i.e., they period-

ically examine which objects marked for deletion can be safely reclaimed. In these schemes, only

threads that modify data can reclaim memory.
3
Thus reclamation becomes unbalanced, especially

if most threads are only reading data, which degrades memory efficiency as well as performance. In

contrast, reference counting [16, 20, 30, 53] is asynchronous: a thread with the last reference to an

object frees it. Since such reclaiming threads are more or less arbitrary, the reclamation workload is

generally balanced. Unfortunately, reference counting has high overheads when accessing objects.

Hyaline [34, 37] solves this problem by using reference counters only when objects are deleted, and

thereby achieves high performance. However, Hyaline can be blocking since the memory usage is

unbounded when threads starve.

Motivated by these concerns, we present a family of SMR schemes, Crystalline, that achieves high

performance, high memory efficiency, and lock-/wait-freedom. Crystalline is inspired by Hyaline,

is asynchronous, and balances the reclamation workload. Whereas Hyaline is very conservative in

terms of when reclamation begins, Crystalline’s key insight is optimism, i.e., it attempts to reclaim

deleted objects as soon as possible, while backtracking without mutating the global state if it is

impossible to do so. Crystalline’s design is complex due to the inherent challenge in achieving all

three properties, and we tame this complexity by an incremental design approach: (1) Crystalline-L,

a lock-free scheme which bounds memory usage even when threads starve; (2) Crystalline-LW, a

wait-free scheme for wait-free data structures that use automatic restarting (e.g., Timnat-Petrank’s

formulation [51]); and (3) Crystalline-W, a wait-free scheme for all data structures.

Crystalline’s flexibility is also important as the wait-free property of SMR is not necessarily

related to the wait-free property of the underlying data structures. For example, while Crystalline-W

does not need Timnat-Petrank’s formulation to bound reclamation operations, some data structures

such as linked lists will still typically need this formulation regardless of the SMR scheme used

to bound the number of unavoidable restarts and guarantee wait-freedom (see Section 7 for more

details). Thus, a more lightweight version, Crystalline-LW, can be used for such data structures.

This helps to tailor Crystalline to different needs without introducing unnecessary complexity.

The three Crystalline schemes bound memory usage and provide roughly similar performance

(Section 6), while even outperforming in some tests prior fast schemes such as Hyaline and EBR.

The schemes differ in terms of their complexity and hardware requirements. All schemes achieve

outstanding performance as well as excellent memory efficiency over a broad range of workloads.

1
Technically speaking, this is just non-blocking but due to discrepancy in the literature, we clarify strict progress properties.

2
A lower theoretical bound does not always imply better efficiency, see Section 6.

3
Although deferring is possible for EBR [2], it is unclear how to bound memory usage, let alone achieve wait-freedom.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 235. Publication date: June 2024.

A Family of Fast and Memory Efficient Lock- and Wait-Free Reclamation 235:3

Table 1. Crystalline vs. existing SMR. Restart specifies progress depending on whether restarting is allowed,
1 DS: one data structure progress, 2+ DS: multiple DS progress. BLK : blocking, LF : lock-free,WF : wait-free.

Scheme Balanced Fast [With Restart] [W/o Restart] S-Free Header
1 DS 2+ DS 1 DS 2+ DS

EBR ✘ ✔ BLK BLK BLK BLK ✔ 1 word
4

IBR ✘ ✓ WF BLK BLK BLK ✘ 3 words

HP ✘ ✘ WF WF LF LF ✘ 1 word
4

HE ✘ ✓ WF BLK LF BLK ✘ 3 words

WFE ✘ ✓ WF WF WF WF ✘ 3 words

Hyaline-1 ✔ ✔ BLK BLK BLK BLK ✔ 3 words

Hyaline-1S ✔ ✔ LF BLK BLK BLK ✔ 3 words

Crystalline-L ✔ ✔ LF BLK LF BLK ✔ 3 words

Crystalline-LW ✔ ✔ WF BLK LF BLK ✔ 3 words

Crystalline-W ✔ ✔ WF WF WF WF ✔ 3 words

2 BACKGROUND
Progress. In the classical non-blocking categorization [25], an algorithm is lock-free if one or more

threads complete an operation in a finite number of steps, and wait-free if all threads complete their

operations in a finite number of steps. Wait-freedom is harder to achieve, but is quite desirable,

especially for applications with tail latency constraints [15]. Non-blocking progress should also

be considered from a memory usage perspective, which must be bounded [29, 43, 44]. Otherwise,

when memory is exhausted, and no thread makes progress, any algorithm becomes blocking.

Challenges. One can argue that bounding memory usage is the whole point of SMR, as otherwise we

could simply leakmemory. EBR [19] is an easy-to-use SMR scheme, but is blocking due to potentially

unbounded memory usage. In contrast, hazard pointers (HP) [29] and hazard eras (HE) [44] are

non-blocking for one data structure (see below for multiple data structures). In addition, they are

mostly wait-free except one method that safely retrieves pointers in an unbounded loop. If a data

structure is specifically designed to restart unsuccessful operations [45], then reclamation also

becomes fully wait-free. Otherwise, these SMR schemes are only lock-free. A similar distinction

exists with other SMR schemes, such as interval-based reclamation (IBR) [54] and Hyaline-1S [37]:

they can be either non-blocking or blocking depending on whether restarting is allowed.

There are even more challenges when software uses multiple data structures. SMR must typically

be shared for more predictable performance and memory usage irrespective of which data structures

are used more frequently. However, progress properties become more subtle. For example, HE,

IBR, and Hyaline-1S are blocking in this case because they use a global era clock, which may

never converge for any thread that operates on one data structure even though some threads

succeed in other data structures. Restarting for just one data structure in this case is useless, while

restarting across multiple data structures is practically infeasible. HP, on the other hand, need to

converge on a pointer local to each data structure and thus is still non-blocking in this case. Due to

locality, restarting still makes sense in HP. Finally, WFE [35], a wait-free extension to HE, is also

non-blocking as threads across all data structures cooperate to guarantee wait-freedom.

4
HP and EBR reserve 1 word for a local limbo list pointer. This overhead can be eliminated altogether by allocating an

intermediate container object when retiring, but that causes undesirable circular allocator dependency (avoided in Section 6).

In the same vein, other schemes can reduce the overhead, e.g., IBR, HE, Hyaline-1S, and Crystalline-L’s overhead is only 1

word with container objects. In practice, overheads are often irrelevant due to objects often being cache-line sized to avoid

false sharing, causing inevitable memory waste. (Though some exceptions also do exist.)

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 235. Publication date: June 2024.

235:4 Ruslan Nikolaev and Binoy Ravindran

1 struct StkNode : Node {
2 StkNode∗ next;
3 Object∗ obj;
4 };
5 StkNode∗ stack_top = nullptr;
6
7 void push(Object∗ obj) {
8 StkNode∗ node = new StkNode;
9 node−>obj = obj;

10 do // Replace the stack top
11 node−>next = stack_top;
12 while (!CAS(&stack_top,
13 node−>next, node));
14 }

15 Object∗ pop() {
16 Object∗ obj = nullptr;
17 while (true) {
18 // Fetch the stack top
19 StkNode∗ node = stack_top;
20 if (!node) break;
21 if (CAS(&stack_top, node,
22 node−>next)) {
23 obj = node−>obj;
24 delete node;
25 break;
26 } }
27 return obj;
28 }

Fig. 1. Lock-free stack (without proper reclamation).

Snapshot Freedom. Many SMRs (HP, IBR, HE, WFE) take a snapshot of the entire state (all hazard
pointers or hazard eras) to avoid repeated access of that state when checking if not-yet-freed blocks

can be safely deleted. These schemes typically examine fundamentally the same state (but not
necessarily exactly the same state) many times per each iteration, which, due to contention, results in
expensive cache misses without taking local snapshots.

5
The need to take snapshots affects usability

of SMR when new threads are created dynamically at runtime as the size of snapshots depends on

the number of threads, 𝑛, which is unknown beforehand. Snapshots also incur a non-negligible

𝑂 (𝑛2) memory overhead. While EBR needs no snapshots, IBR, HE, and WFE trade this quality for

lock- or wait-freedom. Hyaline-1S is still snapshot-free, making it a candidate for extensions.

Comparison. Table 1 compares Crystalline with the existing SMR schemes. Reclamation of (asyn-

chronous) Crystalline schemes is generally balanced across threads. As described before, balanced

reclamation is especially important for read-dominated workloads, wherein most threads are not

actively modifying data structures, and enables faster memory reclamation. Here, we implicitly

assume that all threads can be treated equally, which is also typical for wait-free algorithms that

use the helping technique [25].

Crystalline-L/-LW/-W reserve 3 words in each memory object for a header (similar to HE, WFE,

IBR). EBR and HP need 1 word, but EBR is blocking while HP is slow. Only Crystalline-W, HP, and

WFE provide non-blocking progress when using multiple data structures. Crystalline-W is faster

than HP and WFE, as we show in Section 6.

Atomics. CAS (compare-and-swap) is used universally by most lock- and wait-free algorithms. FAA

(fetch-and-add) and SWAP are two specialized instructions that are often available in hardware (e.g.,

x86-64 and ARM64) and are used by some algorithms [18, 32, 33, 35, 38, 55]. The execution time of

FAA and SWAP is typically bounded, allowing them to be used directly in wait-free algorithms.

WCAS (wide CAS)
6
updates two contiguous words and is available on x86-64 and ARM64. Typically,

it extends a pointer with a monotonically increasing tag to prevent the ABA problem [25].

Note that Crystalline-L needs no specialized instructions for lock-freedom. Crystalline-LW needs

hardware FAA and SWAP for wait-freedom, which is similar to IBR and HE that require hardware

FAA for that purpose. Finally, Crystalline-W also needs WCAS to identify slow-path cycles and

prevent spurious updates, similarly toWFE [35], the only existent fully wait-free scheme. Compared

5
S-Free schemes can still examine global state several times but only in different iterations that are sufficiently separated

in time, i.e., taking snapshots is not helpful due to the global state divergence. Put differently, this simply means that an

efficient implementation is feasible without taking snapshots.

6
WCAS is not to be confused with double-word CAS, which updates two distinct words and is not widely available.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 235. Publication date: June 2024.

A Family of Fast and Memory Efficient Lock- and Wait-Free Reclamation 235:5

to prior schemes, Crystalline-LW/-W require SWAP in addition to FAA for wait-freedom. This is

not burdensome as all current architectures that implement WCAS and FAA also support SWAP.

This trend will likely continue for the foreseeable future.

Reclamation Model. For all discussed schemes, the API is called explicitly. Each thread retains a

reservation, which is a globally-accessible per-thread state. Memory blocks, which incorporate all

necessary SMR headers, are allocated via standard operating system (OS) means. After memory

blocks appear in a data structure, they can only be reclaimed in two steps. First, after deleting

a pointer from the data structure, a memory block is retired. When the block finally becomes

unreachable by any other concurrent thread, it is returned to the OS.

Usage Example. We discuss SMR using a lock-free stack [52], shown in Figure 1. The stack inserts

or deletes arbitrary objects which are stored in a list consisting of StkNode elements. Each element

incorporates SMR’s Node, an opaque structure that is attached to every reclamation unit.

2.1 Hyaline Reclamation Schemes
Hyaline’s [37] high-level idea is to keep track of all active threads and record the number of active

threads for the corresponding memory object when it is retired. As each thread completes its

operation, it has to go through the list of previously retired objects (accumulated while it was

active) and decrement the corresponding thread reference counters. The last thread to decrement

the reference counter will also deallocate corresponding memory objects. Hyaline is similar to

EBR and HP in its concept of “retiring” objects by putting them into a limbo list, but Hyaline’s

lists are global and two-dimensional (more on this below), whereas EBR’s and HP’s lists are local

(per-thread) and one-dimensional. Unlike classical reference counting, this expensive operation (a

reference counter update) only takes place in Hyaline during retirement, i.e., a simple read on a

data structure does not incur a significant cost.

Four schemes are presented in [37]. Hyaline and Hyaline-1 are blocking just like EBR. Two

“robust” schemes, Hyaline-S/-1S extend former schemes to detect stalled threads with the help of

special progress stamps known as eras, as discussed below. These schemes are lock-free only if

data structures are modified to restart excessively long operations to prevent unbounded memory

usage [37] (e.g., iterating an excessively long and ever-changing list may easily result in unbounded

memory reservation until a thread operation is restarted). However, restarting is not always feasible,

a problem that we address in this paper.

The difference between the Hyaline schemes lies in whether threads can share reservations

(Hyaline, Hyaline-S) or need their own per-thread (Hyaline-1, Hyaline-1S) reservations. Hyaline-1/-

1S are closer to typical schemes (e.g., EBR, IBR, HP, and HE) in the way reservations are managed.

In practice, sharing the same reservation is not that useful, especially for wait-free data structures.

Typical wait-free algorithms that rely on fast-path-slow-path methodologies already maintain

per-thread states, and thus maintaining per-thread reservations does not incur any additional

burden. In this paper, we focus only on Hyaline-1/-1S to increase the tractability of the problem of

lock- and wait-free reclamation.

Hyaline-1. In Hyaline-1, threads accumulate retired memory blocks, nodes, in per-thread lists called

batches. When a batch exceeds a certain size, it is attached to a two-dimensional grid of linked

lists, in which rows represent active threads, and columns represent batches. More specifically, a

batch is inserted into the rows of all active threads. The batch will not be reclaimed until all active
threads have “commented on” the batch, stating that they will no longer access any objects in it.

This “commenting” is done whenever a data structure operation terminates. Eventually, the batch

can be freed once every active thread finishes its operation and comments on the batch. This way,

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 235. Publication date: June 2024.

235:6 Ruslan Nikolaev and Binoy Ravindran

1 struct Node { // Each node takes 3 memory words
2 union {
3 uint64 refc; // REFS: Refcounter
4 Node∗ bnext; // SLOT: Next node
5 };
6 union { // SLOT nodes reuse space after retire
7 uint64 birth; // Node's birth era
8 Reservation∗ slot; // SLOT: During retire
9 Node∗ next; // SLOT: After retire

10 };
11 Node∗ blink; // REFS: First SLOT node,
12 }; // SLOT: Pointer to REFS
13 struct Batch { // Accumulates nodes before retiring
14 Node∗ first, refs; // Init: nullptr, nullptr
15 int counter; // Init: 0
16 };
17 thread_local Batch batch; // Per−thread batches

Fig. 2. Hyaline’s data structures.

Thread 0

Array of Reservations

Node*

Thread i

Thread
MAX_THREADS-1

SLOT

SLOT

SLOT

REFS

SLOT

SLOT

SLOT

SLOT

REFS REFS

Lists of Retired Nodes

bnext

bnext

bnext

next next

Not shown here: REFS – blink points to the first SLOT
 SLOT – blink points to REFS

Each vertical
group is a batch

Node*
Node*
Node*
Node*
Node*
Node*

bnext

bnext

next

next

next next

bnext

bnext

Thread 1 x
x

x
x

x:inactive thread
(invptr),

skipping it when retiring

next Each horizontal
group is a

reservation list

Fig. 3. An example with retired batches.

nodes in a batch are only freed when every thread that could potentially be holding a hazardous

reference to a node in the batch has relinquished its potential access.

Batches are linked lists, and we think of them as being laid out from top to bottom in a two-

dimensional plane. When we say a batch is attached to several rows of the grid, more specifically

we mean that individual nodes of the batch are added to the linked lists that represent rows of the

grid, in a round robin fashion (rather than, say, attaching the head of the batch to each row). Thus,

batches (columns) and thread reservation lists (rows) are each linked lists, but the nodes of these

lists are woven together to form a grid.

The purpose of batches is twofold: (i) eliminate contention due to frequent retire() calls by
retiring multiple nodes together, and (ii) reserve space in every node for a separate per-thread

linked list pointer (i.e., per each row) when retiring the batch. Due to (ii), the number of nodes in

each batch should at least equal to the number of threads, MAX_THREADS. Furthermore, an extra

batch node is needed to keep a reference counter, which reflects the number of active threads when

the batch is retired. Thus, batches should at least contain MAX_THREADS+1 nodes.

When an active thread completes its operation, it traverses its list (its row) and decrement the

corresponding reference counter of every batch. Once a batch’s reference counter is zero, the entire

batch is reclaimed.

Hyaline-1’s [37] API is very similar to that of classical EBR [19] and includes:

• activate(), clear(): methods used by each thread to enclose a data structure operation;

local pointers to shared memory are only valid within each such enclosure. In Figure 1,

activate() must be inserted before L8, L16 and clear() after L13, L26.
• retire(blk): a method which indicates that block blk is deleted and will not be accessed

subsequently. Already running threads can still access blk; when blk can be safely freed, it

will be deallocated. In Figure 1, retire() must be used in lieu of L24.

Figure 2 shows a header (Node), which must be attached to every allocated data structure object.

Union definitions are simply for header compaction. For convenience, we categorize retired nodes

into two types: REFS and SLOT. No such distinction exists when nodes are initially allocated, but as

nodes are retired and attached to a thread-local batch, we start differentiating them. The very first

retired node in the batch is denoted as REFS, and its purpose is to keep batch’s reference counter.

All subsequent nodes are denoted as SLOT, and each of them keeps one list pointer for one row.

SLOT nodes are linked together, and each of them has a reference to the REFS node. The REFS

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 235. Publication date: June 2024.

A Family of Fast and Memory Efficient Lock- and Wait-Free Reclamation 235:7

1 const uint64 REFC_PROTECT = 1 << 63; // Prevents reclam.
2 struct Reservation {
3 Node∗ list; // Init: invptr
4 };
5 Reservation rsrv[MAX_THREADS];
6
7 void activate() { // An empty list
8 rsrv[TID].list = nullptr;
9 }

10
11 void clear() {
12 Node∗ p = SWAP(&rsrv[TID].list, invptr); // p!=invptr
13 traverse(p); // since activate() was called
14 }
15
16 void free_batch(Node∗ refs) { // RNODE is used later for
17 // Cryst−W, dummy (n=refs−>blink) for Hyaline/Cryst−L
18 Node∗ n = RNODE(refs−>blink);
19 do {
20 Node∗ obj = n;
21 // refc & bnext overlap and are 0
22 // (nullptr) for the last REFS node
23 n = n−>bnext;
24 free(obj);
25 } } while (n != nullptr);
26
27 void traverse(Node∗ next) {
28 while (next != nullptr) {
29 Node∗ curr = next;
30 next = curr−>next;
31 Node∗ refs = curr−>blink;
32 if (FAA(&refs−>refc, −1) == 1) free_batch(refs);
33 } }

34 void retire(Node∗ node) {
35 if (!batch.first) { // the REFS node
36 batch.refs = node;
37 node−>refc = REFC_PROTECT;
38 } else { // SLOT: 'blink' points to REFS
39 node−>blink = batch.refs;
40 node−>bnext = batch.first;
41 }
42 batch.first = node;
43 // Need MAX_THREADS+1 nodes to insert
44 // to MAX_THREADS lists, otherwise exit
45 if (batch.counter++ < MAX_THREADS) return;
46 // Now retire, finalize the batch: 'blink'
47 // of the REFS node points to the 1st SLOT
48 batch.refs−>blink = batch.first
49 Node∗ curr = batch.first;
50 int64 cnt = −REFC_PROTECT;
51 for (int i = 0; i < MAX_THREADS; i++) {
52 while (true) {
53 Node∗ prev = rsrv[i].list;
54 if (prev == invptr) break;
55 curr−>next = prev;
56 if (CAS(&rsrv[i].list, prev, curr)) {
57 cnt++;
58 break;
59 } }
60 curr = curr−>bnext;
61 }
62 // Finish retiring: change refc
63 if (FAA(&batch.refs−>refc, cnt) == −cnt)
64 free_batch(batch.refs);
65 batch.first = nullptr; batch.counter = 0;
66 }

Fig. 4. The Hyaline-1 reclamation scheme.

1 struct Reservation { // Add the 'era' field
2 Node∗ list; // Init: invptr
3 uint64 era; // Init: 0
4 };
5
6 void retire(Node∗ node) {
7 if (!batch.first) { // the REFS node
8 ...
9 } else { // SLOT nodes

10 // Reuse REFS' birth era to keep the
11 // minimum birth era in the batch
12 if (batch.refs−>birth > node−>birth)
13 batch.refs−>birth = node−>birth;
14 ...
15 }
16 uint64 min_birth = batch.refs−>birth;
17 ...
18 // After Line 54, Figure 4, add:
19 if (rsrv[i].era < min_birth) break;
20 }

21 uint64 global_era = 1;
22 thread_local int alloc_cnt = 0;
23
24 // Replace malloc() with alloc_node()
25 Node∗ alloc_node(int size) {
26 if (!(alloc_cnt++ % ALLOC_FREQ)) FAA(&global_era, 1);
27 Node∗ node = malloc(size);
28 node−>birth = global_era;
29 return node;
30 }
31
32 Node∗ protect(Node∗∗ obj) {
33 uint64 prev = rsrv[TID].era;
34 while (true) {
35 Node∗ node = ∗obj;
36 uint64 era = global_era;
37 if (prev == era) return node;
38 rsrv[TID].era = era;
39 prev = era;
40 } }

Fig. 5. The Hyaline-1S reclamation scheme (showing only changes with respect to Hyaline-1).

node has a reference to the beginning of the list of SLOT nodes. Figure 3 shows the relation of

retired batches to reservations.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 235. Publication date: June 2024.

235:8 Ruslan Nikolaev and Binoy Ravindran

Figure 4 presents Hyaline-1. We use TID to denote the current thread ID. Each reservation

contains its list of retired nodes. The original Hyaline-1’s paper [37] used a binary reference

counter (0 or 1) associated with each reservation’s list pointer, which would indicate whether the

corresponding thread is active. Figure 4 indicates a “cleared” reservation by using a special invptr
value for reservation’s list pointer, which is similar but without “stealing” one bit. We use the

(void *) -1 value, which is reserved by OSes, e.g., in the mmap(2) system call, for errors and

never appears in data structures. Any legitimate pointer (including nullptr) indicates an “active”

reservation. REFC_PROTECT, a constant, in L37 prevents de-allocation until L63 (adjusted in L50).

Hyaline-1S. Since a batch is not reclaimed until all active threads decrement its reference count, a

crashed or slow thread T can prevent a batch from being freed. And, if all threads continue to attach

their batches to T’s row, then T can prevent all memory from being reclaimed forever. Hyaline-1S

solved this problem by using a hazard era-like approach [43]: T records the last era in which it was

active, and each object records the birth era in which it was allocated. This way, threads can avoid

attaching a batch to T’s row if all objects in the batch were allocated after T was last active (since T

cannot have access to those objects). Such batches can be reclaimed without waiting for the stalled

thread to decrement their reference counts.

Hyaline-1S [37] extends Hyaline-1’s API with:

• protect(ptr): a method which is used to safely retrieve pointers that are about to be

dereferenced by creating a local copy. In Figure 1, we need to wrap stack_top with this

method in L19 when assigning it to node.
• alloc_node(): a method which wraps malloc() to initialize an object with its birth era. In

Figure 1, it must be called in lieu of L8.
All valid pointers (i.e., not marked anyhow for deletion) retrieved between activate() and

clear() can be safely accessed. This semantics, common in other lock-free schemes such as hazard

pointers or IBR, is different from that of Hyaline-1 and EBR. Care must be taken when accessing

pointers, specifically when traversing logically “deleted” nodes as in Harris’ linked-list [21], which

needs to be modified to promptly unlink nodes as discussed in [29].

Figure 5 shows Hyaline-1S’s changes to Hyaline-1’s corresponding methods. Each reservation

additionally adds a 64-bit active era that was last observed by the respective thread. The eras are

assumed to never overflow in practice. When nodes are allocated, alloc_node() initializes their
birth eras with the global era clock value. When retrieving pointers, threads call protect() to

update reservation’s era value.

retire() calculates batch’s minimum birth era, which is used subsequently when the batch is

retired. Unlike in IBR or HE, the birth era field need not survive the retire() call. REFS reuses this
field to keep the minimum birth era, while SLOT reuses the space to keep a reservation list pointer.

3 LOCK-FREE RECLAMATION
Hyaline-1S’s solution is somewhat inefficient: T reserves all eras from the beginning of the execution

until the point when it crashes or becomes slow, irrespective of whether it will access any of the

objects in those eras. In reality, it might only access objects in one or two eras. Worse yet, this

limitation will not guarantee bounded memory usage for an excessively long operation unless the

operation is periodically restarted, which is not always feasible. The problem arises when a thread

reserves an increasing number of local pointers in an unbounded loop (e.g., one “unlucky” thread is

stuck traversing a list because it keeps growing). Though certain data structures can be modified to

restart operations [26, 37, 54], other schemes such as HP and HE are lock-free without restarting.

Comparing HP/HE with IBR/Hyaline-1S, observe that the former two bound memory usage

due to slight API differences, which result in finer granularity of reservations. This leads us to the

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 235. Publication date: June 2024.

A Family of Fast and Memory Efficient Lock- and Wait-Free Reclamation 235:9

1 Reservation rsrv[MAX_THREADS][MAX_IDX];
2
3 void clear() {
4 for (int i = 0; i < MAX_IDX; i++) {
5 Node∗ p = SWAP(&rsrv[TID][i].list, invptr);
6 if (p != invptr) traverse(p);
7 } }
8
9 void try_retire() { // Attempt to retire

10 uint64 min_birth = batch.refs−>birth;
11 Node∗ last = batch.first;
12 // Check if the number of nodes suffice
13 for (int i = 0; i < MAX_THREADS; i++) {
14 for (int j = 0; j < MAX_IDX; j++) {
15 if (rsrv[i][j].list == invptr) continue;
16 if (rsrv[i][j].era < min_birth) continue;
17 if (last == batch.refs)
18 return; // Ran out of nodes, exit
19 last−>slot = &rsrv[i][j];
20 last = last−>bnext;
21 } }
22 // Retire if successful
23 Node∗ curr = batch.first;
24 int64 cnt = −REFC_PROTECT;
25 for (; curr != last; curr = curr−>bnext) {
26 Reservation∗ slot = curr−>slot;
27 while (true) { // Do not check 'era' again,
28 Node∗ prev = slot−>list; // it can
29 if (prev == invptr) break; // only grow
30 curr−>next = prev;
31 if (CAS(&slot−>list, prev, curr)) {
32 cnt++;
33 break;
34 } } }
35 if (FAA(&batch.refs−>refc, cnt) == −cnt)
36 free_batch(batch.refs);
37 batch.first = nullptr; batch.counter = 0;
38 }

39 Node∗ protect(Node∗∗ obj, int index) {
40 uint64 prev_era = rsrv[TID][index].era;
41 while (true) {
42 Node∗ ptr = ∗obj;
43 uint64 curr_era = global_era;
44 if (prev_era == curr_era) return ptr;
45 prev_era = update_era(curr_era, index);
46 } }
47
48 // Clean up the old list and set a new era
49 uint64 update_era(uint64 curr_era, int index) {
50 if (rsrv[TID][index].list != nullptr) {
51 Node∗ list = SWAP(&rsrv[TID][index].list, nullptr)
52 if (list != invptr) traverse(list);
53 curr_era = global_era;
54 }
55 rsrv[TID][index].era = curr_era;
56 return curr_era;
57 }
58
59 void retire(Node∗ node) {
60 if (!batch.first) { // the REFS node
61 batch.refs = node;
62 node−>refc = REFC_PROTECT;
63 } else { // SLOT nodes
64 // Reuse the birth era of REFS to retain
65 // the minimum birth era in the batch
66 if (batch.refs−>birth > node−>birth)
67 batch.refs−>birth = node−>birth;
68 node−>blink = batch.refs; // points to REFS
69 node−>bnext = batch.first;
70 }
71 batch.first = node;
72 if (batch.counter++ % RETIRE_FREQ == 0) {
73 // blink of REFS points to the 1st SLOT node
74 batch.refs−>blink = RNODE(batch.first);
75 try_retire();
76 } }

Fig. 6. Crystalline-L (showing changes with respect to Hyaline-1S), SWAP can be substituted with CAS loops.

question: would it be possible to adopt HP/HE’s API for Hyaline-1S? Surprisingly, not only we can

do it, such an algorithm is faster and more memory efficient than Hyaline, as shown in Section 6.

In Crystalline-L, instead of one row per thread in the grid, there are k rows per thread, where k

is the maximum number of eras a data structure operation needs to access at a time (similar to the

number of hazard eras or hazard pointers a thread would need to reserve). For example, in a simple

linked list, only two nodes might be accessed at a time, so two eras would be reserved at a time,

necessitating two rows per thread. This way, a batch whose objects were not accessible in any of

the eras reserved by a thread will not be prevented from being reclaimed by that thread.

We redefine the API so that each thread bounds the number of retrieved local pointers. This API

is similar to that of HP and has the following subtle differences with Hyaline-1S:

• protect(): additionally passes an index that is assigned to a specific local pointer. protect()
no longer has a cumulative effect, each time it resets any previous reservation associated

with the specified index.

• activate(): removed from the API completely, as protect() is now non-cumulative.

• clear(): resets all (rather than just one) local pointer reservations made by protect().

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 235. Publication date: June 2024.

235:10 Ruslan Nikolaev and Binoy Ravindran

Note that Figure 1 defines only one local pointer in L19, for which index 0 is used. With this

API, each thread holds at most MAX_IDX local pointers (indices are 0..MAX_IDX-1). For each

local pointer, Crystalline-L maintains a separate list and era. Due to the stricter API, even starving

threads do not reserve unbounded memory, making the scheme lock-free (Section 5). Figure 6

shows Crystalline-L’s changes to Hyaline-1S. When retiring, a batch must be attached to all
reservation indices. Therefore, a batch needs to accumulate MAX_THREADS×MAX_IDX+1 rather

than MAX_THREADS+1 nodes before it can be retired.

One problem with Hyaline-1S is that a batch must aggregate all MAX_THREADS+1 nodes before

anything can retired. If this number is too high (aggravated in Crystalline-L), the algorithm becomes

suboptimal due to delayed retirement. In practice, the required number of nodes is much lower as

each node is appended to the respective list only if the list’s era overlaps with batch’s minimum

birth era. In Crystalline-L, retirement can be tried sooner, irrespective of the number of threads.

It implements dynamic batches to avoid their excessive growth. On average, batch sizes roughly

equal the number of cores as eras for preempted threads are going to be behind. Other schemes

(HP/IBR/HE/WFE) amortize their scanning frequency on a similar scale for good performance.

retire() periodically calls try_retire(), which checks how many reservation lists
7
are to be

changed for the batch to be retired and records the location of each such reservation slot. If the

number of nodes in the batch suffices, try_retire() completes the retirement by appending the

nodes to their corresponding slot lists. try_retire() may look similar to the method in EBR, IBR,

HE, or HP which periodically peruses thread-local lists to check if any of the previously retired

nodes are safe to delete. However, its purpose in Crystalline-L is entirely different: it is used for

retirement rather than deallocation. Furthermore, try_retire() has the above-mentioned upper

bound on nodes and is guaranteed to eventually succeed after a finite number of retries.

4 WAIT-FREE RECLAMATION
Challenges. Crystalline-L is not wait-free for two key reasons. First, threads try to attach a batch

to rows of the grid using an unbounded CAS loop in try_retire() (Lines 25-34), and a thread

can starve if other threads repeatedly attach their own batches, ahead of this thread. Second, in

protect(), there is an unbounded loop in which a thread needs to read and validate a pointer

successfully, and the thread can be starved if the era continually changes, preventing it from

validating successfully, a problem similar to that of HE/HP.

Assumptions. Similar to [43], we assume a 64-bit CPU that supports wait-free FAA to manipulate 64-

bit eras. The CPU must also support wait-free SWAP as discussed in Section 2. These requirements

are fully met by commonplace x86-64 and ARM64 architectures.

4.1 Crystalline-LW
Crystalline-LW solves the first problem. In some data structures, this is already sufficient to obtain

wait-free progress. Specifically, for the second problem, it might be possible to argue that protect()
succeeds after a bounded number of attempts. As an example, one could imagine a thread fails to

validate a pointer because the era has changed, but there is some wait-free helping mechanism in

the data structure that guarantees other operations will only change the era a bounded number of

times before helping this thread to complete its operation. In such data structures, the elimination

of the CAS loop used to attach batches to the grid suffices to ensure wait-free progress.

try_retire() in Figure 6, requires a CAS loop (Lines 25-34), which contends with unconditional

SWAP in update_era() (Line 51) or concurrent try_retire(). Crystalline-LW replaces the CAS

7
We call lists of retired objects “reservation lists” since there are multiple lists in Crystalline-L/-W, one list per a separate

reservation.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 235. Publication date: June 2024.

A Family of Fast and Memory Efficient Lock- and Wait-Free Reclamation 235:11

Node*Node*

Node*Node*

Node*Node*

Reservation::list

currcurr

prevprev

nullptr

...
currcurr

prevprev ...

currcurr

prevprev ...

nullptr

(I). Attach the tail

(II). Dispose of the tail (prev)

tainted...

...

Fig. 7. Crystalline-LW: list tainting.

invptrinvptr TAGTAG

Node*Node*

State::result (Input)

State::result (Output)
Node*Node*

Node*Node*

Node*Node*

TAGTAG

TAGTAG

TAGTAG

ERAERA

ERAERA
ERAERA

ERAERA

TAGTAG

TAGTAG

TAGTAG

.V .T .V .T .V .T

Reservation::list Reservation::era

Fig. 8. Crystalline-W: reservations and state.

loop with an unconditional SWAP instruction. Attaching a batch to the grid is a two step process.

First, an object O in the batch is SWAPped into a row of the grid. This may unlink a list of previously

attached batches. If so, the thread attempts to reattach that list of batches to the row, using a single

CAS (not a CAS loop) to change the next pointer of the newly attached O. If the CAS succeeds,

the list of batches was reattached successfully, and the integrity of the row is restored. However,

if it fails, the thread learns something important from the failure. The only way the next pointer

of O can be changed is if the thread corresponding to this row finished its current data structure

operation, and traversed this row, decrementing the reference counts of all batches in the list, and

removing the batches from the list. In this case, rather than reattaching the batches that were

unlinked by the SWAP, the correct action is to simply decrement the reference counts of these

batches. In essence, the thread that SWAPped out these batches helps the thread that corresponds

to this row complete its traversal.

We demonstrate the required changes in Figure 7. Prior to SWAPping, we initialize the next field
of a retired node with nullptr. If the retired node still has its next field intact, it simply attaches the

previous list as its tail using CAS (Figure 7, part I). It is also possible that a thread associated with

the reservation already called traverse() for the just retired node. Crystalline-LW’s traverse()
additionally taints the retrieved next pointer of all traversed nodes by using SWAP. (Note that a

node is merely traversed and dereferenced by the thread; only when the batch’s reference counter

reaches 0 is when the node is deallocated.) try_retire() still holds the batch with the retired

node, and it finds that the next field is tainted (Figure 7, part II). Thus, try_retire() traverses the

tail on behalf of the thread that just finished traverse().
Finally, there is a corner case with a cleared reservation (invptr). We handle this case in Lines 30-

32 of Figure 9 by rolling back to the original state (unless Line 51 of Figure 6 executes concurrently).

Figure 9 shows all corresponding changes in traverse() and try_retire().

4.2 Crystalline-W
Crystalline-W addresses the second problem irrespective of the underlying data structure mecha-

nisms: protect() has an unbounded loop which converges on the era value (Lines 41-46, Figure 6),

but alloc_node() unconditionally increments the era clock to boundmemory usage. Crystalline-W

is inspired by the fast-path-slow-path idea and slow-path tags from WFE, but several additional

challenges are overcome for asynchronous (Hyaline-like) reclamation to make it wait-free. Unlike

WFE, Crystalline-W must complete retirement even in the presence of slow-path conflicts. Also,

Crystalline-W adopts an HP-like idea to manipulate parent objects in the slow path.

Assumptions. Similar to [35], we need WCAS, which is available in x86-64 and ARM64 architectures.

Like WFE [35], Crystalline-W slightly alters protect()’s API. We pass an additional parameter,

parent, which refers to a parent object where the hazardous reference is located (or nullptr for
topmost locations).

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 235. Publication date: June 2024.

235:12 Ruslan Nikolaev and Binoy Ravindran

1 void traverse(Node∗ next) {
2 while (next != nullptr) {
3 Node∗ curr = next;
4 next = SWAP(&curr−>next, invptr); // Tainting
5 Node∗ refs = curr−>blink;
6 if (FAA(&refs−>refc, −1) == 1) free_batch(refs);
7 } }
8
9 void try_retire() { // A wait−free replacement

10 uint64 min_birth = batch.refs−>birth;
11 Node∗ last = batch.first;
12 // Check if the number of nodes suffice
13 for (int i = 0; i < MAX_THREADS; i++) {
14 for (int j = 0; j < MAX_IDX; j++) {
15 if (rsrv[i][j].list == invptr) continue;
16 if (rsrv[i][j].era < min_birth) continue;
17 if (last == batch.refs)
18 return; // Ran out of nodes, exit
19 last−>slot = &rsrv[i][j];
20 last = last−>bnext;
21 } }

22 // Retire, make it wait−free by list tainting
23 Node∗ curr = batch.first;
24 int64 cnt = −REFC_PROTECT;
25 for (; curr != last; curr = curr−>bnext) {
26 Reservation∗ slot = curr−>slot;
27 if (slot−>list == invptr) continue;
28 Node∗ prev = SWAP(&slot−>list, curr);
29 if (prev != nullptr) {
30 if (prev == invptr) { // Inactive previously
31 if (CAS(&slot−>list, curr, invptr))
32 continue; // Try to rollback
33 } else { // Tainted: traverse a chopped tail
34 if (!CAS(&curr−>next, nullptr, prev))
35 traverse(prev);
36 } }
37 cnt++;
38 }
39 if (FAA(&batch.refs−>refc, cnt) == −cnt)
40 free_batch(batch.refs);
41 batch.first = nullptr; batch.counter = 0;
42 }

Fig. 9. Crystalline-LW changes.

Slow Path. We use a fast-path-slow-path idea, wherein alloc_node(), instead of unconditionally in-
crementing the global era, runs a helper method increment_era(). The latter calls help_thread()
for every thread that needs helping, and only then it increments the global era.

For a few iterations, protect() attempts to converge on the era clock. After that, a slow path

is taken by calling slow_path(). Then, help_thread() collaborates with slow_path() to help

converge protect(). That idea is similar to that of WFE, but Crystalline-W differs substantially

due to its asynchronous reclamation.

Data Formats. The rsrv array is modified to contain pairs {.V, .T} by attaching tags to both the list

and era fields as shown in Figure 8. These tags identify the slow path cycle and are used to prevent

spurious updates. For the Crystalline-W methods that are only shown in Figures 6 and 9, the .V

component is implied. The rsrv array is also extended by two special reservations, i.e., each thread

has𝑀𝐴𝑋_𝐼𝐷𝑋 + 2 indices. The two extra reservations are used internally by help_thread().
Each thread maintains its state for the slow path. The result field of state is used for both input and

output. On input, a current slow path cycle is advertised. Output contains a retrieved pointer with its

corresponding era. In Figure 8, we show how input and output values must be aligned. To distinguish

the two cases unambiguously, invptr is placed as a pointer on input. Finally, slow_counter counts
the number of threads in the slow path. This is used to optimize increment_era().

Retirement Status. alloc_node() initializes blink. When its value is changed in retire(), it
will no longer be nullptr. blink will point to REFS (for SLOT nodes). This indicates that the

node is already in the process of retirement. Furthermore, the reference counter in REFS becomes

immediately reachable from SLOT. To identify the REFS node itself, we steal one bit from the blink
field. (See RNODE, which is defined differently for Crystalline-W.)

Implementation. Crystalline-W’s high-level changes (with respect to Crystalline-L) are shown in

Figure 10. Note that reservation’s list and era are now tagged. Tags are used in slow-path procedures

only; fast-path procedures simply use the value component. Crystalline-W defines per-thread state
(for each corresponding reservation) used in slow-path procedures and slow_counter to identify

if any thread needs helping. Those are somewhat similar to WFE’s [35] corresponding slow-path

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 235. Publication date: June 2024.

A Family of Fast and Memory Efficient Lock- and Wait-Free Reclamation 235:13

1 template <typename type> struct Tag {
2 type V; // Value
3 uint64 T; // Tag, or Era for State::result
4 };
5
6 struct Reservation {
7 Tag<Node∗> list; // Init: {.V = null, .T = 0}
8 Tag<uint64> era; // Init: {.V = 0, .T = 0}
9 };

10
11 struct State {
12 Tag<void∗> result; // Init: {.V = null, .T = 0}
13 uint64 era; // Init: 0
14 Node∗ parent; // Init: nullptr
15 Node∗∗ obj; // Init: nullptr
16 };
17
18 Reservation rsrv[MAX_THREADS][MAX_IDX+2];
19 State state[MAX_THREADS][MAX_IDX];
20 Node∗ parents[MAX_THREADS]; // Init: (all) nullptr
21 int slow_counter = 0;

22 // Help other threads before incrementing the era
23 Node∗ alloc_node(int size) {
24 if (alloc_cnt++ % ALLOC_FREQ == 0) increment_era();
25 Node∗ node = malloc(size);
26 node−>birth = global_era;
27 node−>blink = nullptr; // Retired if != nullptr
28 return node;
29 }
30
31 // Use the fast−path−slow−path method
32 Node∗ protect(Node∗∗ obj, int index, Node∗ parent) {
33 int tries = MAX_TRIES;
34 uint64 prev_era = rsrv[TID][index].era.V;
35 while (−−tries != 0) {
36 Node∗ ptr = ∗obj;
37 uint64 curr_era = global_era;
38 if (prev_era == curr_era) return ptr;
39 prev_era = update_era(curr_era, index);
40 }
41 return slow_path(obj, index, parent);
42 }

Fig. 10. Crystalline-W (API function changes).

variables. Finally, Crystalline-W defines the parent array to facilitate object handover, as discussed

previously. Object handover is unique to Crystalline-W since it cannot simply scan the list of retired

objects twice, as WFE, to avoid race conditions. Figure 10 also modifies alloc_node() to internally
call increment_era() in lieu of doing FAA on the global era directly. Finally, protect() calls

slow_path() if it fails to converge after MAX_TRIES.

Figure 11 shows changes to try_retire() and traverse(). These methods use list tainting, as

previously discussed. Also, unlike WFE [35], we use two slow-path tag transitions (odd and even).

This is needed to make the number of iterations finite in some loops (see Lemmas 2 and 3 in the

extended version of the paper [39]) by collaborating with try_retire() which will skip odd tags.

Figure 11 also shows increment_era()’s implementation as used by alloc_node().
Crystalline-W’s slow-path and helper thread routines are demonstrated in Figure 13. These

routines use several utility methods shown in Figure 12. The idea is similar to that of WFE [35],

with one major difference: we use the parent array to keep parent references to facilitate object

handovers, as previously discussed.

Utility methods in Figure 12 are needed to facilitate the slow path. get_birth_era() uses a trick
to retrieve the birth era irrespective of whether the node is retired. WFE [35] always keeps the

birth era. However, the Hyaline and Crystalline schemes recycle the birth era field after retirement

so that they still use 3 words per each memory object. Since the birth era does not survive node

retirements (except REFS which stores the minimum era for the batch), that presents a challenge

for Crystalline-W which needs to transfer the parent’s era in slow_path(), and the parent object

can already end up being retired. We use the following trick. When the parent node is still not
retired, we simply retrieve the birth era from the node. Otherwise, we retrieve REFS’ value of the

minimum era.

Object Handover. Crystalline-W uses one special reservation for the parent object and the other

one for a retrieved object. However, there is a race condition if the parent object is retired by the

time the reservation is made in help_thread(). Likewise, there is a race condition in the opposite

direction when assigning the retrieved object to the thread which is in slow_path(). (WFE avoids

these issues by scanning the list of retired nodes twice, which is impossible with Crystalline-W.)

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 235. Publication date: June 2024.

235:14 Ruslan Nikolaev and Binoy Ravindran

1 // Redefine RNODE to encode REFS links: steal one bit
2 // to indicate REFS nodes (also applies to other
3 // functions that previously used dummy RNODE)
4 #define IS_RNODE(x) (x & 0x1) // Check if a REFS link
5 #define RNODE(x) (x ^ 0x1) // Encode or decode REFS
6
7 // Another huge addend for the slow path
8 // (in addition to previously defined REFC_PROTECT)
9 const uint64 REFC_PROTECT_HANDOVER = 1 << 62;

10
11 // Adds a special REFS−terminal node and list tainting
12 void traverse(Node∗ next) {
13 while (next != nullptr) {
14 Node∗ curr = next;
15 if (IS_RNODE(curr)) { // REFS−terminal node
16 // It is always the last node, exit
17 Node∗ refs = RNODE(curr);
18 if (FAA(&refs−>refc, −1) == 1) free_batch(refs);
19 break;
20 }
21 next = SWAP(&curr−>next, invptr); // Tainting
22 Node∗ refs = curr−>blink;
23 if (FAA(&refs−>refc, −1) == 1) free_batch(refs);
24 } }
25
26 // Increments the global era, replaces regular FAA
27 // (needs to help other threads first)
28 void increment_era() {
29 if (slow_counter != 0) {
30 for (int i = 0; i < MAX_THREADS; i++) {
31 for (int j = 0; j < MAX_IDX; j++) {
32 if (state[i][j].result.V == invptr)
33 help_thread(i, j);
34 } } }
35 FAA(&global_era, 1);
36 }

37 void try_retire() { // A wait−free replacement
38 uint64 min_birth = batch.refs−>birth;
39 Node∗ last = batch.first;
40 // Also check odd tags to bound slow−path loops
41 for (int i = 0; i < MAX_THREADS; i++) {
42 for (int j = 0; j < MAX_IDX+2; j++) {
43 if (rsrv[i][j].list.V == invptr ||
44 (rsrv[i][j].list.T & 0x1)) continue;
45 if (rsrv[i][j].era.V < min_birth ||
46 (rsrv[i][j].era.T & 0x1)) continue;
47 if (last == batch.refs)
48 return; // Ran out of nodes, exit
49 last−>slot = &rsrv[i][j];
50 last = last−>bnext;
51 } }
52 // Retire, make it wait−free by list tainting
53 Node∗ curr = batch.first;
54 int64 cnt = −REFC_PROTECT;
55 for (; curr != last; curr = curr−>bnext) {
56 Reservation∗ slot = curr−>slot;
57 if (slot−>list.V == invptr) continue;
58 Node∗ prev = SWAP(&slot−>list.V, curr);
59 if (prev != nullptr) {
60 if (prev == invptr) { // Inactive previously
61 if (CAS(&slot−>list.V, curr, invptr))
62 continue; // Try to rollback
63 } else { // Tainted: traverse a chopped tail
64 if (!CAS(&curr−>next, nullptr, prev))
65 traverse(prev);
66 } }
67 cnt++;
68 }
69 if (FAA(&batch.refs−>refc, cnt) == −cnt)
70 free_batch(batch.refs);
71 batch.first = nullptr; batch.counter = 0;
72 }

Fig. 11. Crystalline-W’s try_retire(), traverse(), and increment_era().

These race conditions, obviously, are only considered for retired objects. To properly hand over a

parent object from slow_path(), we maintain the parents array. When initializing the slow path,

state passes a pointer to the parent. When helper_thread() enters, it initializes its entry in parents
with this value. Subsequently, when slow_path() exits, it calls handover_parent(). The latter
iterates through parents and replaces a parent to nullptr with CAS. If successful, the reference

counter of the parent is incremented. (REFC_PROTECT_HANDOVER protects from premature

deallocation.) The other side subsequently detects the handover and dereferences the object.

In a similar problem, when help_thread() passes the retrieved pointer back to slow_path(),
we access the actual retrieved (already retired) node and increment its batch reference counter. Since

we know the exact node, and protect() is not yet complete, we clean up the existing reservation

list and attach this batch’s REFS as a “terminal node.”

REFS-Terminal Nodes. The idea behind REFS-terminal nodes is that they can only appear at the

very end of the list. The same REFS-terminal node can appear in as many lists as desirable. We

steal one bit from the preceding pointer to indicate a REFS-terminal node. When encountering this

node, traverse() immediately terminates.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 235. Publication date: June 2024.

A Family of Fast and Memory Efficient Lock- and Wait-Free Reclamation 235:15

1 // Hand over the parent object if it is retired
2 void handover_parent(Node∗ parent) {
3 if (parent && parent−>blink != nullptr) {
4 Node∗ refs = get_refs_node(parent);
5 FAA(&refs−>refc, REFC_PROTECT_HANDOVER);
6 int64 cnt = −REFC_PROTECT_HANDOVER;
7 for (int i = 0; i < MAX_THREADS; i++)
8 if (CAS(&parents[i], parent, nullptr)) cnt++;
9 FAA(&refs−>refc, cnt);

10 } }
11
12 uint64 get_birth_era(Node∗ node) { // Get parent's
13 if (node == nullptr) return 0; // birth era
14 uint64 birth_era = node−>birth;
15 Node∗ link = node−>blink;
16 // For already retired SLOT nodes, use REFS value
17 if (link != nullptr && !IS_RNODE(link))
18 birth_era = link−>birth;
19 return birth_era;
20 }

21 // Make the tag+1 transition and detach an old list
22 void detach_nodes(int i, int j, int tag) {
23 // A simple era tag transition: tag −> tag+1
24 CAS(&rsrv[i][j].era.T, tag, tag+1);
25 // Detach nodes and increment the list tag
26 do { // Bounded by MAX_THREADS (try_retire checks
27 old = rsrv[i][j].list; // the era tag)
28 if (old.T != tag) break;
29 bool success = WCAS(&rsrv[i][j].list,
30 old, { nullptr, tag+1 });
31 } while (!success);
32 return success ? old.V : invptr; // Previous value
33 }
34
35 // Get REFS node from any node in a batch
36 Node∗ get_refs_node(Node∗ node) {
37 Node∗ refs = node−>blink;
38 if (IS_RNODE(refs)) refs = node; // Itself
39 return refs;
40 }

Fig. 12. Crystalline-W’s utility functions for the slow path.

5 CORRECTNESS
Crystalline-L/-LW is based on Hyaline-1S, for which correctness is proven in [37]. We present

memory bounds in this section and also prove Crystalline-W’s progress in the extended version of

the paper [39].

Theorem 5.1. Crystalline-L, Crystalline-LW, and Crystalline-W are fully memory bounded (i.e.,
memory usage is bounded irrespective of restarting).

Proof. Crystalline uses an HP-like API, where a thread explicitly retrieves a pointer to each

memory object and associates a corresponding index (0..MAX_IDX-1) with each reservation. The

maximum number of reservations each thread holds is MAX_IDX, which is independent from the

number of objects in a data structure.

Let us ignore for simplicity ALLOC_FREQ (the final bound below is adjusted correspondingly

for cases when ALLOC_FREQ > 1). As ALLOC_FREQ = 1, every single memory object gets its

own birth era value. Each batch is limited to MAX_THREADS×MAX_IDX+1 nodes (the upper

bound). Since all memory objects are distinct, every batch gets its own unique minimum birth

era, 𝜖 . In the worst case, every thread makes one or more reservations (via protect()) which
are greater or equal to 𝜖 of the current batch, with the total number of reservations being equal

to MAX_THREADS×MAX_IDX. In the worst case, every thread will have a unique era in its

reservation, which simply happened to satisfy the above condition with respect to 𝜖 . Therefore,

theremay be asmany asMAX_THREADS×MAX_IDX other batches retired, one per each unique era.

Thus, we get MAX_THREADS×MAX_IDX+1 batches with MAX_THREADS×MAX_IDX+1 nodes

in each batch. Consequently, the memory usage is bounded by (MAX_THREADS×MAX_IDX+1)
2
.

The total cost is (ALLOC_FREQ×(MAX_THREADS×MAX_IDX+1))
2
since era increments are also

amortized. (For Crystalline-W, MAX_IDX+2 should be used rather than MAX_IDX since the total

number of indices is higher.)

This theoretical upper bound is worse than that of HP [29]. The bound can be better or worse

than that of HE [44] or WFE [35] depending on RETIRE_FREQ of the corresponding algorithm.

Note that in practice batches do not accumulate this (worst-case) number of nodes and are retired

much faster, often resulting in better practical efficiency. □

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 235. Publication date: June 2024.

235:16 Ruslan Nikolaev and Binoy Ravindran

1 void slow_path(Node∗∗ obj, int idx, Node∗ parent) {
2 // Getting parent birth is tricky: for non−retir−
3 // ed nodes use 'birth', else get the minimum
4 // birth from REFS, see get_birth_era()
5 uint64 parent_birth = get_birth_era(parent);
6 FAA(&slow_counter, 1);
7 state[TID][idx].obj = obj;
8 state[TID][idx].parent = parent;
9 state[TID][idx].era = parent_birth;

10 uint64 tag = rsrv[TID][idx].era.T;
11 state[TID][idx].result = { invptr, tag };
12 uint64 prev_era = rsrv[TID][idx].era.V;
13 do { // Bounded by MAX_THREADS
14 Node∗ list, ∗ ptr = ∗obj;
15 uint64 curr_era = global_era;
16 if (curr_era == prev_era &&
17 WCAS(&state[TID][idx].result,
18 { invptr, tag }, { nullptr, 0 })) {
19 rsrv[TID][idx].era.T = tag+2;
20 rsrv[TID][idx].list.T = tag+2;
21 FAA(&slow_counter, −1);
22 return ptr; // DONE
23 }
24 // Dereference previous nodes & update an era
25 if (rsrv[TID][idx].list.V != nullptr) {
26 list = SWAP(&rsrv[TID][idx].list.V,
27 nullptr);
28 if (rsrv[TID][idx].list.T != tag)
29 goto produced; // Result was just produced
30 if (list != invptr) traverse(list);
31 curr_era = global_era;
32 }
33 // WCAS fails only when the result is produced
34 WCAS(&rsrv[TID][idx].era,
35 { prev_era, tag }, { curr_era, tag });
36 prev_era = curr_era;
37 } while (state[TID][idx].result.V == invptr);
38 list = detach_nodes(TID, idx, tag) //tag+1 state
39 produced:
40 ptr = state[TID][idx].result.V;
41 uint64 era = state[TID][idx].result.T;
42 rsrv[TID][idx].era.V = era;
43 rsrv[TID][idx].era.T = tag+2;
44 rsrv[TID][idx].list.T = tag+2;
45 // Check if the obtained node is already retired
46 if (ptr && ptr−>blink != nullptr) {
47 Node∗ refs = get_refs_node(ptr);
48 FAA(&refs−>refc, 1);
49 if (list != invptr) traverse(list);
50 list = SWAP(&rsrv[TID][idx].list.V,
51 RNODE(refs)); // Put a REFS−terminal node
52 }
53 FAA(&slow_counter, −1);
54 // Traverse the previously detached list
55 if (list != invptr) traverse(list);
56 // Hand over the parent to all helper threads
57 handover_parent(parent);
58 return ptr; // DONE
59 }

60 void help_thread(int i, int j) {
61 Tag<void∗> result = state[i][j].result;
62 if (result.V != invptr) return;
63 uint64 era = state[i][j].era;
64 Node∗ parent = state[i][j].parent;
65 if (parent != nullptr) {
66 rsrv[TID][MAX_IDX].list.V = nullptr;
67 rsrv[TID][MAX_IDX].era.V = era;
68 parents[TID] = parent; // Advertise for a handover
69 }
70 Node∗∗ obj = state[i][j].obj;
71 uint64 tag = rsrv[i][j].era.T;
72 if (tag != result.T) goto changed;
73 uint64 curr_era = global_era;
74 do { // Bounded by MAX_THREADS
75 prev_era = update_era(curr_era, MAX_IDX+1);
76 Node∗ ptr = ∗obj;
77 uint64 curr_era = global_era;
78 if (prev_era == curr_era) {
79 if (WCAS(&state[i][j].result, // Published the
80 result, { ptr, curr_era })) { // result
81 Node∗ list = detach_nodes(i, j, tag);
82 if (list != invptr) traverse(list);
83 do { // Set the new era, <= 2 iterations
84 old = rsrv[TID][idx].era;
85 if (old.T != tag+1) break;
86 } while (!WCAS(&rsrv[TID][idx].era,
87 old, { curr_era, tag+2 }));
88 // If the obtained node is already retired
89 if (ptr && ptr−>blink != nullptr) {
90 Node∗ refs = get_refs_node(ptr);
91 FAA(&refs−>refc, 1);
92 do { // Bounded by MAX_THREADS
93 old = rsrv[TID][idx].list;
94 if (old.T != tag+1) break;
95 ok = WCAS(&rsrv[TID][idx].list,
96 old, { RNODE(refs), tag+2 }));
97 if (ok && old.V != invptr) traverse(old.V)
98 if (ok) goto done;
99 } while (!ok);

100 FAA(&refs−>refc, −1); // Already inserted
101 } else { // A simple tag transition
102 CAS(&rsrv[TID][idx].list.V, tag+1, tag+2);
103 } }
104 break;
105 }
106 } while (state[i][j].result == result);
107 done:
108 Node∗ lst=SWAP(&rsrv[TID][MAX_IDX+1].list.V,invptr)
109 traverse(lst);
110 changed: // If handover occurs, dereference the parent
111 if (parent != nullptr) {
112 if (SWAP(&parents[TID], nullptr) != parent) {
113 Node∗ refs = get_refs_node(parent);
114 if (FAA(&refs−>refc, −1) == 1) free_batch(refs);
115 }
116 Node∗ lst=SWAP(&rsrv[TID][MAX_IDX].list.V,invptr)
117 traverse(lst);
118 } }

Fig. 13. Crystalline-W’s slow-path methods.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 235. Publication date: June 2024.

A Family of Fast and Memory Efficient Lock- and Wait-Free Reclamation 235:17

6 EVALUATION
We evaluate all SMR schemes for up to 192 threads on 4 x Intel Xeon E7-8890 v4 2.20 GHz CPUs

(96 cores in total), 256 GB RAM. (HyperThreading is OFF for reliable measurements.) We use clang

11.0 with -O3. (clang performs marginally better than gcc 9.2.1 for all SMR schemes due to its

better C++11 atomics optimizations.) Similar to [35, 54], we use jemalloc [17] due to its better

performance. We have also considered mimalloc [28] but did not find any significant benefit for the

workload presented in this section. Unfortunately, production-ready memory allocators which are

both (fully) wait-free and high-performant do not seem to exist at the moment. Thus, our overall

progress claims exclude the memory allocator progress properties.

We implemented Crystalline-L/-LW/-W schemes in C++11 and integrated them into the bench-

mark from [35, 54]. We compared our Crystalline schemes against well-known or closely related

baselines (Figure 14). We do not present Crystalline-LW since its results closely match that of

Crystalline-L. We also skip: (i) classical reference counting [16, 20, 30, 53] since it needs a different

(intrusive) API and is already known to be slower than the evaluated approaches; (ii) OS-based

approaches, e.g., DEBRA+ [9], NBR [49] as they are inevitably blocking; (iii) PEBR [26] and lock-free

garbage collectors [10, 14] due to API differences and lack of performance benefits [37] compared

to Hyaline, and consequently – Crystalline; (iv) DRC [5], a scheme that enhances usability but is

generally slower than other presented schemes (DRC also lacks wait-freedom); (v) VBR [47], an

approach with optimistic writes, due to substantial API differences which require data structure

changes, e.g., inserting roll-back instructions (VBR also lacks wait-freedom). Also, despite great per-

formance, NBR and VBR lack a uniform set of API operations and thus forfeit easy integration [48],

which puts them at odds with all other presented schemes.

We have extended the existing benchmark to support skip lists. We based our skip-list imple-

mentation on the approaches described in [19, 25]. The approach in [25] avoids lazy skip-list

traversals and is thus more suitable for the HP-like interface (HP, IBR, HE, Hyaline-1S, Crystalline).

However, the algorithm appeared to have an issue in one corner case with overlapping insertion

and removal operations, which we have fixed. The approach in [19] did not have this issue but was

only considering lazy traversals for the EBR-like interface. Furthermore, additional adaptations

were needed for manual reclamation. Since skip-list nodes effectively maintain multiple sublists

(for faster traversals), we use a reference counter in each node to indicate how many sublists the

node is still attached to. The reference counter is only changed during deletion from each of the

sublists. In our tests, we have used nodes with up to six levels (i.e., that reside in up to six sublists).

The original benchmark was suboptimal for HP, HE, andWFE due to excessive cache misses when

scanning lists of retired nodes. As in [37], we take per-thread snapshots of hazard pointers (or eras)

before scanning the list. This improves performance greatly, especially for HP. This optimization

already existed for IBR. EBR, Hyaline-1/-1S, and Crystalline-L/-LW/-W do not need it.

As in [37], we modified how memory objects are retired in the existing schemes. The original

benchmark used an indirection when retiring by allocating thread-local list nodes (they store

pointers to retired objects), which creates circular allocator dependency. This is problematic because

typical memory allocators are blocking. When using this indirection, retire() becomes also

blocking, effectively forfeiting all SMR’s lock-/wait-free guarantees. Furthermore, a wait-free

malloc implementation may itself require memory reclamation, making it a chicken-and-egg

situation. We note that our change did not significantly impact the results for the existing schemes.

Inability to allocate memory in retire() without affecting progress properties is unfortunate
for other reasons. It could have opened a way for additional optimizations in some algorithms.

For example, HE and WFE could have leveraged batched reclamation using the minimum birth

era of the batch and deduplicated snapshots to improve performance. Although static memory

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 235. Publication date: June 2024.

235:18 Ruslan Nikolaev and Binoy Ravindran

None no reclamation (leaking memory)

Hyaline-1 (non-robust) Hyaline-1 [37]

Hyaline-1S (robust) Hyaline-1S [37]

HP the hazard pointers scheme [29]

HE the hazard eras scheme [43]

IBR 2GEIBR (interval-based) [54]

WFE the wait-free eras scheme [35]

EBR epoch-based reclamation

Fig. 14. Evaluated reclamation schemes.

>>>>>

>>>>>

>>>>>

>>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>>

●●●●●

●●●●●

●●●●●

●●●●● ●●●●● ●●●●●
●●●●● ●●●●● ●●●●● ●●●●● ●●●●● ●●●●● ●●●●●

0

1

2

3

4

5

1 16 32 48 64 80 96 128 160 192

Threads

T
h
ro

u
g
h
p
u
t
(M

 o
p
s
/s

e
c
) ●

>

None
EBR
WFE
HE

Crystalline−W
Crystalline−L
Hyaline−1S
Hyaline−1

IBR
HP

(a) Throughput

>>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>>●●●●● ●●●●●
●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

0

2000

4000

6000

1 16 32 48 64 80 96 128 160 192

Threads

R
e
ti
re

d
 O

b
je

c
ts

 p
e
r

O
p
e
ra

ti
o
n

●

>

EBR
WFE
HE
IBR

Crystalline−W
Crystalline−L
Hyaline−1S
Hyaline−1

HP

(b) Retired objs

Fig. 15. Wait-free CRTurnQueue.

provisioning for the same purpose is still feasible, it is not very practical. In HE and WFE, the

worst-case (as opposed to average-case) number of unreclaimed objects is much higher than in

HP. A lot of memory would have been wasted to accommodate the worst-case scenario and skew

memory consumption results unfavorably for HE and WFE.

In the benchmark, data structures implement abstract key-value interfaces such as insert()-
and-delete() or get()-and-put(). For each data point, the benchmark prefills the data structure

with 50,000 elements and runs 10 seconds. Each thread then randomly chooses the corresponding

abstract operation. The key for each operation is randomly chosen from the range (0, 100,000). We

run the experiment 5 times and report the average. Both Crystalline-W and WFE set the fast path

threshold (MAX_TRIES) to 16.

The default parameters in [35, 54] are suboptimal for our system even for existing schemes, so

we adjust them for a fair comparison. The benchmark’s epochf=110 and emptyf=120 appear to be

optimal for all existing schemes as they attain the best possible throughput with good memory

efficiency. These parameters are also optimal for all Crystalline schemes. Thus, all schemes are

tested identically. (Note that emptyf is used as RETIRE_FREQ for try_retire() in Crystalline.)

We focus on common performance metrics including throughput and memory efficiency. Wait-

free data structures are typically more difficult to implement and involve extra variables in their

evaluation. Thus, we primarily focus on lock-free data structures: (i) a hash map [29] and sorted

list [21, 29] already implemented in the original benchmark; (ii) a skip list that we have implemented.

This choice of data structures allows to test all reclamation schemes under different conditions

(short operations in hash tables, long traversal operations in linked lists, and long but expedited

operations in skip lists). We also evaluate CRTurnQueue [45], which has been previously evaluated

with WFE [35]. CRTurnQueue is a memory-bounded wait-free queue, unlike other queues such as

WFQUEUE [55], which has potentially unbounded memory usage [42]. CRTurnQueue is faster [35,

45] than Kogan-Petrank’s memory-bounded wait-free queue [27].

Global retire lists are mandatory features of all Hyaline and Crystalline algorithms by their design

and do not impose any extra overheads. In contrast, EBR, IBR, HE, WFE, and HP use thread-local

lists. While global lists can provide better workload balancing and also be potentially implemented

in these algorithms, they would not come naturally: they require additional memory barriers and

atomic operations, which will likely degrade overall memory reclamation performance. Thus, we

evaluate all schemes based on their original design.

Finally, the original benchmark is not designed to properly count objects in global retire lists,

but we are using a modified method that works with both global and local retire lists from [37].

We first ran a write-dominated workload (50% of insert() and 50% of delete() operations).
This workload stresses SMR algorithms greatly. We found that Crystalline-L/-LW/-W generally

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 235. Publication date: June 2024.

A Family of Fast and Memory Efficient Lock- and Wait-Free Reclamation 235:19

>>>>>

>>>>>

>>>>>

>>>>>

>>>>>

>>>>>

>>>>>

>>>>>

>>>>>
>>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>>

0.00

0.05

0.10

0.15

1 24 48 72 96 120 156 192

Threads

T
h
ro

u
g
h
p
u
t
(M

 o
p
s
/s

e
c
)

>

None
EBR
WFE
HE

Crystalline−W
Crystalline−L
Hyaline−1S
Hyaline−1

IBR
HP

(a) Throughput (write)

>>>>>

>>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>>

0

500

1000

1500

1 24 48 72 96 120 156 192

Threads

R
e
ti
re

d
 O

b
je

c
ts

 p
e
r

O
p
e
ra

ti
o
n

>

EBR
WFE
HE
IBR

Crystalline−W
Crystalline−L
Hyaline−1S
Hyaline−1

HP

(b) Retired objs (write)

>>>>>

>>>>>

>>>>>

>>>>>

>>>>>

>>>>>

>>>>>

>>>>>

>>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>>

0.00

0.05

0.10

1 24 48 72 96 120 156 192

Threads

T
h
ro

u
g
h
p
u
t
(M

 o
p
s
/s

e
c
)

>

None
EBR
WFE
HE

Crystalline−W
Crystalline−L
Hyaline−1S
Hyaline−1

IBR
HP

(c) Throughput (read)

>>>>>

>>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>>

0

100

200

300

400

1 24 48 72 96 120 156 192

Threads

R
e
ti
re

d
 O

b
je

c
ts

 p
e
r

O
p
e
ra

ti
o
n

>

EBR
WFE
HE
IBR

Crystalline−W
Crystalline−L
Hyaline−1S
Hyaline−1

HP

(d) Retired objs (read)

Fig. 16. Lock-free LinkedList. (Crystalline-L and Crystalline-LW are close, showing Crystalline-L only.)

>>>>>

>>>>>

>>>>> >>>>>

>>>>>
>>>>>

>>>>>
>>>>> >>>>>

>>>>>
>>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>>

0

50

100

150

1 24 48 72 96 120 156 192

Threads

T
h
ro

u
g
h
p
u
t
(M

 o
p
s
/s

e
c
)

>

None
EBR
WFE
HE

Crystalline−W
Crystalline−L
Hyaline−1S
Hyaline−1

IBR
HP

(a) Throughput (write)

>>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>>

>>>>>

>>>>> >>>>>

>>>>>

>>>>>

>>>>>
>>>>

>>>>

0

1000

2000

3000

4000

1 24 48 72 96 120 156 192

Threads

R
e
ti
re

d
 O

b
je

c
ts

 p
e
r

O
p
e
ra

ti
o
n

>

EBR
WFE
HE
IBR

Crystalline−W
Crystalline−L
Hyaline−1S
Hyaline−1

HP

(b) Retired objs (write)

>>>>>

>>>>>

>>>>>
>>>>>

>>>>>
>>>>>

>>>>>
>>>>>

>>>>>

>>>>> >>>>>
>>>>> >>>>> >>>>> >>>>> >>>>> >>>>>

0

50

100

150

200

250

1 24 48 72 96 120 156 192

Threads

T
h
ro

u
g
h
p
u
t
(M

 o
p
s
/s

e
c
)

>

None
EBR
WFE
HE

Crystalline−W
Crystalline−L
Hyaline−1S
Hyaline−1

IBR
HP

(c) Throughput (read)

>>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>>

>>>>>

>>>>>

>>>>>
>>>>>

>>>>> >>>>> >>>>> >>>>>

0

1000

2000

3000

4000

5000

1 24 48 72 96 120 156 192

Threads

R
e
ti
re

d
 O

b
je

c
ts

 p
e
r

O
p
e
ra

ti
o
n

>

EBR
WFE
HE
IBR

Crystalline−W
Crystalline−L
Hyaline−1S
Hyaline−1

HP

(d) Retired objs (read)

Fig. 17. Lock-free HashMap. (Crystalline-L and Crystalline-LW are close, showing Crystalline-L only.)

>>>>>

>>>>>

>>>>>

>>>>>

>>>>>

>>>>>

>>>>>

>>>>>

>>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>>

0.0

0.2

0.4

0.6

1 24 48 72 96 120 156 192

Threads

T
h
ro

u
g
h
p
u
t
(M

 o
p
s
/s

e
c
)

>

None
EBR
WFE
HE

Crystalline−W
Crystalline−L
Hyaline−1S
Hyaline−1

IBR
HP

(a) Throughput (write)

>>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>>
0

1000

2000

3000

4000

1 24 48 72 96 120 156 192

Threads

R
e
ti
re

d
 O

b
je

c
ts

 p
e
r

O
p
e
ra

ti
o
n

>

EBR
WFE
HE
IBR

Crystalline−W
Crystalline−L
Hyaline−1S
Hyaline−1

HP

(b) Retired objs (write)

>>>>>

>>>>>

>>>>>

>>>>>

>>>>>

>>>>>

>>>>>

>>>>>

>>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>>

0.0

0.2

0.4

1 24 48 72 96 120 156 192

Threads

T
h
ro

u
g
h
p
u
t
(M

 o
p
s
/s

e
c
)

>

None
EBR
WFE
HE

Crystalline−W
Crystalline−L
Hyaline−1S
Hyaline−1

IBR
HP

(c) Throughput (read)

>>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>>

0

500

1000

1500

1 24 48 72 96 120 156 192

Threads

R
e
ti
re

d
 O

b
je

c
ts

 p
e
r

O
p
e
ra

ti
o
n

>

EBR
WFE
HE
IBR

Crystalline−W
Crystalline−L
Hyaline−1S
Hyaline−1

HP

(d) Retired objs (read)

Fig. 18. Lock-free SkipList. (Crystalline-L and Crystalline-LW are close, showing Crystalline-L only.)

outperform other SMR schemes in both throughput and memory efficiency. Hyaline-1/-1S are often

on par but Hyaline’s memory efficiency can sometimes be worse than that of Crystalline-L/-LW/-W

due to larger granularity and lack of dynamic batches present in more advanced Crystalline schemes.

Though Crystalline’s theoretical memory bound is worse than that of HE and WFE (see Section 5),

its practical efficiency is better than that of HE/WFE and is often comparable to HP’s.

Figure 15 shows CRTurnQueue results. The write-intensive workload is typical for queues

and guarantees that queues will not grow indefinitely. Queues generally do not scale well, and

throughput is almost identical (Figure 15a) for all schemes. Crystalline and Hyaline schemes show

exceptional memory efficiency, which is on par with HP (Figure 15b).

For the sorted list, HP has the worst throughput (Figure 16a), and WFE exhibits a consistent

slight overhead which is already discussed in [35]. Other schemes, including Crystalline, achieve

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 235. Publication date: June 2024.

235:20 Ruslan Nikolaev and Binoy Ravindran

better throughput. Hyaline-1/1S are slightly faster than other schemes, including Crystalline: linked

lists are dominated by traversal operations. They heavily stress the protect() operation, which
is not needed in Hyaline-1 and EBR (or cheaper in Hyaline-1S) but crucial for achieving strong

progress properties in Crystalline, HP, and HE. All Hyaline and Crystalline variants are very

memory efficient (Figure 16b).

For the hash map, Crystalline-L/-LW/-W achieve very high throughput (Figure 17a), which is

especially evident for oversubscribed scenarios, where the gap with other algorithms is as large as

2x. HP’s throughput is worse than that of Crystalline-L/-LW/-W. Hyaline-1’s throughput is worse

than that of Crystalline, which can be explained by a larger granularity of reservations. WFE has the

worst throughput. Memory efficiency (Figure 17b) of Crystalline-L/-LW/-W is mostly superior to

all algorithms except HP. Hyaline-1’s efficiency greatly reduces after oversubscription. Crystalline-

L/-LW/-W and Hyaline-1/-1S are more memory efficient before hitting the oversubscribed situation.

In the oversubscribed situation, however, the throughput also remains higher than that of other

schemes (including Hyaline-1S) which implies that the total number of allocated objects was higher

in the first place. As the throughput reduces to that of EBR (192 threads), the number of unreclaimed

objects evens out.

Figures 18a and 18b present results for the skip list, which benefits from reclaiming memory fast

(Crystalline, Hyaline, HP). Sometimes, reusing memory is more beneficial than allocating fresh

memory (hence the leaky None baseline is not the best one) since the latter involves expensive
operations (updating page tables, expanding the heap, etc). In skip lists, objects are typically larger

and the average number of unreclaimed objects is higher than in linked lists, which should explain

the observed difference. Overall, Crystalline exhibits superior throughput and memory efficiency.

The benefits of the Crystalline schemes are even stronger in a read-dominated workload (90%

of get() and 10% of put() operations). This is partially due to a better balancing of the recla-

mation workload across all threads. As in the write-dominated workload, the hash map (Fig-

ures 17c, 17d) achieves the highest throughput, especially in oversubscribed scenarios. At the same

time, Crystalline-L/-LW/-W achieve exceptional memory efficiency which is on par with hazard

pointers. (Hyaline-1, EBR, IBR, HE, and WFE are visibly less memory efficient.) We only observed

an overhead in the linked list shown in Figure 16c. This overhead is similar to that of WFE [35]

and is due to a higher register spillover when protect() gets inlined into the code. In linked

lists, many nodes need to be traversed, increasing the frequency of protect() calls, especially in

read-dominated workloads. However, protect() does not update eras that frequently, and a better

optimization strategy would be to avoid a premature register spillover, e.g., via customized assembly

code. Although Crystalline is worse than Hyaline in this test (Hyaline’s protect() is cheaper), it

is still more memory efficient than most other schemes, including Hyaline and WFE. Finally, for

the skip list (Figure 18c and 18d), Crystalline-L/-LW/-W, again, show superior throughput to other

schemes due to their better memory efficiency and faster reclamation.

Overall, the overhead of Crystalline-W (vs. Crystalline-L/-LW) is negligible. All these schemes

mostly outperform existing schemes when considering both throughput and memory efficiency,

which make them appealing for many lock- and wait-free data structures. Moreover, Crystalline-

W visibly outperforms WFE, the only fully wait-free scheme that previously existed, even in

non-oversubscribed scenarios. Crystalline-W is also substantially more memory efficient than WFE.

Snapshots. We ignore snapshot overheads, but for HP/IBR/HE/WFE snapshots can create more

memory inefficiency than the schemes themselves if the number of threads is high. For 144 threads

and 16 local pointers in HP and HE, snapshots additionally require 2.5 MB, which is significant.

(For example, if the number of unreclaimed objects is as high as 2000 and the object size is 64 bytes,

we only use 128 KB.) This makes Crystalline even more memory efficient.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 235. Publication date: June 2024.

A Family of Fast and Memory Efficient Lock- and Wait-Free Reclamation 235:21

7 RELATEDWORK
Blocking Techniques. EBR [19] is a common scheme, where threads explicitly make reservations. At

the start of an operation, EBR records the global epoch value. At the end, EBR resets the reservation.

Quiescent-based reclamation (QSBR) [22] makes this automatic as threads go through a “quiescent”

state. Stamp-it [41] can bound reclamation overheads. These techniques do not bound memory

usage, i.e., are blocking when memory is exhausted. Hyaline-1 [34, 37] implements a similar API.

Memory Usage. To bound memory usage and improve usability, several techniques were developed

that exploit OS support. As mentioned in [10], these approaches are not strictly non-blocking,

because typical OS primitives such as signals use locks internally (e.g., in Linux). ThreadScan [4] is

one such mechanism which uses signals. Once the signal is received, every thread scans its own

stack and registers to report its working-set to the reclaiming thread. The reclaiming thread uses

the collected information to determine unreachable objects that can be reclaimed. Forkscan [3] is a

ThreadScan extension that reduces the interruption time to only working threads. DEBRA+ [9]

and NBR [49] are other examples that use signals. QSense [7] relies on the OS scheduler behavior.

(Thus, it is hard to guarantee non-blocking behavior in general.) It mixes QSBR [22] with HP [29].

Lock-Free Techniques That Require Restarting. IBR [54] and PEBR [26] improve upon EBR and are

not dependent on OS environments. IBR only defends against threads that are stalled indefinitely.

Starving threads may still reserve an unbounded number of blocks. Thus, IBR’s authors advise

to restart operations that are unable to progress. Although restarting is trivial for simple data

structures such as linked lists, it is more problematic for complex data structures. In the same vein,

PEBR’s authors demonstrated their scheme while assuming restarting. PEBR inherently requires

restarting to retain simple EBR-like semantics [1]. Moreover, PEBR’s API does not put any explicit

bound on how many blocks each thread can reserve. PEBR’s authors only compare against EBR, and

PEBR’s performance appears to be only 85-90% of EBR’s, i.e., worse than IBR’s and only marginally

better than HP’s. Due to potentially unbounded memory usage and restarting, IBR and PEBR are

not lock-free in general. Hyaline-1S [37] has an IBR-like API and similar progress guarantees.

General Lock-Free Techniques. A number of lock-free approaches that bound memory usage were

proposed over the years. Traditional reference counting [16, 20, 30, 53] is fine-grained but has high

overheads, especially in read-dominated workloads. HP [29] and pass-the-buck [23, 24] are also very

precise as they track each object individually. However, these techniques still have high overheads

due to their extensive use of memory barriers for each pointer retrieval. Some approaches [8]

aim to reduce overheads of HP, but they are only suitable for specific data structures such as

linked lists. Other techniques [11, 12] do not have this limitation, but require data structures to

be represented in a normalized form [51]. This, however, can be burdensome. FreeAccess [10]

removes this burden and uses a garbage collector. However, it does not transparently handle SWAP,

which coincidentally is a prerequisite for making our Crystalline-LW/-W algorithms wait-free.

OrcGC [14] is another lock-free garbage collector with great performance, but it can be slower in

some tests than HP. VBR [47], an approach with optimistic writes and great performance, requires

data structure adaptations. Similar optimistic lock-free techniques [31] can be used for specific

applications, e.g., memory allocators. DRC [5], a scheme that enhances usability, can be slower than

other lock-free schemes. Hazard eras (HE) [43] is a lock-free scheme with bounded memory usage,

which is inspired by HP but uses epochs to expedite the algorithm. Our Crystalline-L scheme also

provides lock-free progress guarantees but is often faster and more efficient.

Wait-Free Techniques. HP and HE support restartable wait-free data structures [45]. In fact, HP’s

original paper [29] claimed HP to be “wait-free”. Crystalline-LW provides identical wait-freedom

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 235. Publication date: June 2024.

235:22 Ruslan Nikolaev and Binoy Ravindran

guarantees if restarting is allowed. The above schemes are not fully wait-free, which makes it

difficult to use them in every wait-free data structure without modification. Wait-free SMR has

recently received increasing attention. OneFile [46] implements Software Transactional Memory

(STM) with wait-free reclamation. CX [13] implements a universal construct which converts the

sequential specification of a data structure into a wait-free implementation. Although OneFile and

CX enable the implementation of many wait-free data structures, customized, hand-crafted data

structures can often better utilize parallelism and achieve higher overall performance. To that end,

a wait-free SMR approach, WFE [35] was proposed. Crystalline-W goes beyond WFE by achieving

high memory efficiency and performance over a broader range of conditions. Crystalline can also

adopt a recent auto SMR approach [6] that already extends Hyaline and other schemes.

ERA Theorem. It is proven [48] that at most 2 out of 3 properties (robustness, easy integration, wide

applicability) can be achieved. Crystalline achieves the first two properties.

Lazy List Traversals. Given that Crystalline, like many other existing schemes such as IBR, HP, HE,

WFE, and Hyaline-1S, does not achieve the wide applicability property, care must be taken to handle

traversals in linked lists, skip lists, and similar data structures. Whereas non-robust schemes, such

as EBR and Hyaline-1, can work with the original lock-free linked list [21], many robust schemes

(Crystalline, IBR, HP, HE, WFE, and Hyaline-1S) require a modification [29] that timely retires

deleted list nodes and thus avoids read-only lazy traversals across logically deleted nodes. A similar

approach is used with skip lists: a skip list [25] timely retires nodes, whereas a skip list [19] uses

lazy traversals instead. One consequence of non-lazy traversals is that a search operation may need

to be restarted from the very beginning whenever, due to overlapping operations, the data structure

state diverges substantially and cannot be recovered locally. However, this restart is fundamentally

unavoidable in the algorithm: it is already required in insertion and deletion operations irrespective

of lazy traversals and the reclamation scheme used. It should be differentiated from restarts due to

the reclamation scheme itself, which are avoidable with both WFE and Crystalline-W.

Wait-Free Restarts. Unavoidable restarts have to be bounded to guarantee wait-freedom. Timnat-

Petrank’s method [50, 51] can be used for many data structures, including linked lists. In fact, [50]

explicitly mentions HP as a solution for memory management in their wait-free linked list, which

makes it possible to use the same approach with Crystalline. Crystalline provides a compatible API

but otherwise even stronger progress guarantees than HP. In [50], the traversal operation can be

restarted when the list changes in a bounded manner. That makes wait-free traversals feasible.

8 CONCLUSION
Crystalline is a family of memory-bounded SMR schemes. Crystalline-W’s uniquely distinguishing

aspect is that it incorporates all desirable properties of prior schemes including wait-freedom,

asynchronous reclamation, and balanced reclamation workload in the same algorithm. The only

existing wait-free scheme, WFE, lacks the two latter properties. Unsurprisingly, Crystalline-W

outperforms WFE in almost all test cases. Crystalline-W is based on a simpler wait-free algorithm,

Crystalline-LW. Crystalline-LW, in turn, is based on Crystalline-L, which is an improved version of

Hyaline-1S that additionally guarantees bounded memory usage even in the presence of starving

threads. Crystalline-L introduces dynamic batches which resolve one major inconvenience with

Hyaline-1S and also improve overall performance in certain cases.

All Crystalline schemes exhibit very high throughput and great memory efficiency, which is

especially evident in read-dominated workloads. Crystalline’s performance is occasionally superior

to that of Hyaline-1S, which proves the benefits of dynamic batches and a more fine-grained API.

Finally, Crystalline-W is a great alternative when used with multiple non-blocking data structures.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 235. Publication date: June 2024.

A Family of Fast and Memory Efficient Lock- and Wait-Free Reclamation 235:23

ACKNOWLEDGMENTS
We would like to thank the anonymous reviewers for their insightful comments and suggestions,

which helped greatly improve the paper. We especially thank the reviewers for asking challenging

questions and suggesting alternative approaches to retire memory objects in existing SMR schemes.

A preliminary version of Crystalline previously appeared as a brief announcement at DISC ’21 [36].

An extended and up-to-date version of this paper is available at https://arxiv.org/abs/2108.02763.

This work is supported in part by the startup fund (Pennsylvania State University) as well as

ONR under grants N00014-18-1-2022, N00014-19-1-2493, and N00014-21-1-2523, and AFOSR under

grant FA9550-16-1-0371 (Virginia Tech).

ARTIFACT AVAILABILITY
The benchmark and data to support this paper are available on Zenodo [40]. Our artifact consists of:

(1) a Linux VM image which can be deployed using VirtualBox; (2) source code for the benchmark,

all evaluated data structures, and all evaluated reclamation schemes; (3) benchmark scripts to run

tests and generate charts. We provide all relevant instructions which describe how to reproduce the

results presented in this paper. Crystalline’s latest source code and benchmark are also available

via GitHub: https://github.com/rusnikola/wfsmr/.

REFERENCES
[1] 2020. Private communication with PEBR’s authors.

[2] 2024. Crossbeam: epoch-based memory reclamation. https://docs.rs/crossbeam/latest/crossbeam/epoch/index.html.

[3] Dan Alistarh, William Leiserson, Alexander Matveev, and Nir Shavit. 2017. Forkscan: Conservative Memory Reclama-

tion for Modern Operating Systems. In Proceedings of the 12th European Conference on Computer Systems (Belgrade,
Serbia) (EuroSys ’17). ACM, New York, NY, USA, 483–498. https://doi.org/10.1145/3064176.3064214

[4] Dan Alistarh, William M. Leiserson, Alexander Matveev, and Nir Shavit. 2015. ThreadScan: Automatic and Scalable

Memory Reclamation. In Proceedings of the 27th ACM Symposium on Parallelism in Algorithms and Architectures
(Portland, Oregon, USA) (SPAA ’15). ACM, New York, NY, USA, 123–132. https://doi.org/10.1145/2755573.2755600

[5] Daniel Anderson, Guy E. Blelloch, and Yuanhao Wei. 2021. Concurrent Deferred Reference Counting with Constant-

Time Overhead. In Proceedings of the 42nd ACM SIGPLAN International Conference on Programming Language Design
and Implementation (PLDI ’21). ACM, New York, NY, USA, 526–541. https://doi.org/10.1145/3453483.3454060

[6] Daniel Anderson, Guy E. Blelloch, and Yuanhao Wei. 2022. Turning Manual Concurrent Memory Reclamation into

Automatic Reference Counting. In Proceedings of the 43rd ACM SIGPLAN International Conference on Programming
Language Design and Implementation (San Diego, CA, USA) (PLDI ’22). 61–75. https://doi.org/10.1145/3519939.3523730

[7] Oana Balmau, Rachid Guerraoui, Maurice Herlihy, and Igor Zablotchi. 2016. Fast and Robust Memory Reclamation for

Concurrent Data Structures. In Proceedings of the 28th ACM Symposium on Parallelism in Algorithms and Architectures
(Pacific Grove, California, USA) (SPAA ’16). ACM, 349–359. https://doi.org/10.1145/2935764.2935790

[8] Anastasia Braginsky, Alex Kogan, and Erez Petrank. 2013. Drop the Anchor: Lightweight Memory Management for

Non-blocking Data Structures. In Proceedings of the 25th Annual ACM Symposium on Parallelism in Algorithms and
Architectures (Montreal, Quebec, Canada) (SPAA ’13). ACM, 33–42. https://doi.org/10.1145/2486159.2486184

[9] Trevor Alexander Brown. 2015. Reclaiming Memory for Lock-Free Data Structures: There Has to Be a Better Way. In

Proceedings of the 2015 ACM Symposium on Principles of Distributed Computing (Donostia-San Sebastian, Spain) (PODC
’15). ACM, New York, NY, USA, 261–270. https://doi.org/10.1145/2767386.2767436

[10] Nachshon Cohen. 2018. Every Data Structure Deserves Lock-free Memory Reclamation. Proc. ACM Program. Lang. 2,
OOPSLA, Article 143 (Oct. 2018), 24 pages. https://doi.org/10.1145/3276513

[11] Nachshon Cohen and Erez Petrank. 2015. Automatic Memory Reclamation for Lock-free Data Structures. In Proceed-
ings of the 2015 ACM SIGPLAN International Conference on Object-Oriented Programming, Systems, Languages, and
Applications (Pittsburgh, PA, USA) (OOPSLA 2015). ACM, 260–279. https://doi.org/10.1145/2814270.2814298

[12] Nachshon Cohen and Erez Petrank. 2015. Efficient Memory Management for Lock-Free Data Structures with Optimistic

Access. In Proceedings of the 27th ACM Symposium on Parallelism in Algorithms and Architectures (Portland, Oregon,
USA) (SPAA ’15). ACM, New York, NY, USA, 254–263. https://doi.org/10.1145/2755573.2755579

[13] Andreia Correia, Pedro Ramalhete, and Pascal Felber. 2020. A Wait-Free Universal Construction for Large Objects.

In Proceedings of the 25th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming (San Diego,

California) (PPoPP ’20). ACM, New York, NY, USA, 102–116. https://doi.org/10.1145/3332466.3374523

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 235. Publication date: June 2024.

https://arxiv.org/abs/2108.02763
https://github.com/rusnikola/wfsmr/
https://docs.rs/crossbeam/latest/crossbeam/epoch/index.html
https://doi.org/10.1145/3064176.3064214
https://doi.org/10.1145/2755573.2755600
https://doi.org/10.1145/3453483.3454060
https://doi.org/10.1145/3519939.3523730
https://doi.org/10.1145/2935764.2935790
https://doi.org/10.1145/2486159.2486184
https://doi.org/10.1145/2767386.2767436
https://doi.org/10.1145/3276513
https://doi.org/10.1145/2814270.2814298
https://doi.org/10.1145/2755573.2755579
https://doi.org/10.1145/3332466.3374523

235:24 Ruslan Nikolaev and Binoy Ravindran

[14] Andreia Correia, Pedro Ramalhete, and Pascal Felber. 2021. OrcGC: Automatic Lock-Free Memory Reclamation. In

Proceedings of the 26th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming (PPoPP ’21). ACM,

205–218. https://doi.org/10.1145/3437801.3441596

[15] Christina Delimitrou and Christos Kozyrakis. 2018. Amdahl’s Law for Tail Latency. Commun. ACM 61, 8 (jul 2018),

65–72. https://doi.org/10.1145/3232559

[16] David L. Detlefs, Paul A. Martin, Mark Moir, and Guy L. Steele Jr. 2002. Lock-free reference counting. Distributed
Computing 15, 4 (01 Dec 2002), 255–271. https://doi.org/10.1007/s00446-002-0079-z

[17] Jason Evans. 2006. A scalable concurrent malloc (3) implementation for FreeBSD. In Proceedings of the BSDCan
Conference, Ottawa, Canada. https://www.bsdcan.org/2006/papers/jemalloc.pdf

[18] Panagiota Fatourou and Nikolaos D. Kallimanis. 2011. A Highly-Efficient Wait-Free Universal Construction. In

Proceedings of the Twenty-Third Annual ACM Symposium on Parallelism in Algorithms and Architectures (San Jose,

California, USA) (SPAA ’11). ACM, New York, NY, USA, 325–334. https://doi.org/10.1145/1989493.1989549

[19] Keir Fraser. 2004. Practical lock-freedom. Technical Report. Univ. of Cambridge, Computer Laboratory. https:

//www.cl.cam.ac.uk/techreports/UCAM-CL-TR-579.pdf

[20] A. Gidenstam,M. Papatriantafilou, H. Sundell, and P. Tsigas. 2009. Efficient and Reliable Lock-FreeMemory Reclamation

Based on Reference Counting. IEEE Transactions on Parallel and Distributed Systems 20, 8 (Aug 2009), 1173–1187.

https://doi.org/10.1109/TPDS.2008.167

[21] Timothy L. Harris. 2001. A Pragmatic Implementation of Non-blocking Linked-lists. In Proceedings of the 15th
International Conference on Distributed Computing (DISC ’01). Springer Berlin Heidelberg, Berlin, Heidelberg, 300–314.

https://doi.org/10.1007/3-540-45414-4_21

[22] Thomas E. Hart, Paul E. McKenney, Angela Demke Brown, and Jonathan Walpole. 2007. Performance of memory

reclamation for lockless synchronization. J. Parallel and Distrib. Comput. 67, 12 (2007), 1270 – 1285. https://doi.org/10.

1016/j.jpdc.2007.04.010

[23] Maurice Herlihy, Victor Luchangco, Paul Martin, and Mark Moir. 2005. Nonblocking Memory Management Support

for Dynamic-sized Data Structures. ACM Trans. Comput. Syst. 23, 2 (May 2005), 146–196. https://doi.org/10.1145/

1062247.1062249

[24] Maurice Herlihy, Victor Luchangco, and Mark Moir. 2002. The Repeat Offender Problem: A Mechanism for Supporting

Dynamic-Sized, Lock-Free Data Structures. In Proceedings of the 16th International Conference on Distributed Computing
(DISC ’02). Springer-Verlag, Berlin, Heidelberg, 339–353. https://doi.org/10.1007/3-540-36108-1_23

[25] Maurice Herlihy and Nir Shavit. 2008. The Art of Multiprocessor Programming. Morgan Kaufmann Publishers Inc., San

Francisco, CA, USA.

[26] Jeehoon Kang and Jaehwang Jung. 2020. A Marriage of Pointer- and Epoch-Based Reclamation. In Proceedings of the
41st ACM SIGPLAN Conference on Programming Language Design and Implementation (London, UK) (PLDI ’20). ACM,

New York, NY, USA, 314–328. https://doi.org/10.1145/3385412.3385978

[27] Alex Kogan and Erez Petrank. 2011. Wait-free Queues with Multiple Enqueuers and Dequeuers. In Proceedings of the
16th ACM Symposium on Principles and Practice of Parallel Programming (San Antonio, TX, USA) (PPoPP ’11). ACM,

New York, NY, USA, 223–234. https://doi.org/10.1145/1941553.1941585

[28] Daan Leijen, Benjamin G. Zorn, and Leonardo Mendonça de Moura. 2019. Mimalloc: Free List Sharding in Action. In

Asian Symposium on Programming Languages and Systems (APLAS ’19). https://doi.org/10.1007/978-3-030-34175-6_13

[29] Maged M. Michael. 2004. Hazard pointers: safe memory reclamation for lock-free objects. IEEE Transactions on Parallel
and Distributed Systems 15, 6 (June 2004), 491–504. https://doi.org/10.1109/TPDS.2004.8

[30] Maged M. Michael and Michael L. Scott. 1995. Correction of a Memory Management Method for Lock-Free Data Structures.
Technical Report. University of Rochester, CS. https://www.cs.rochester.edu/u/scott/papers/1995_TR599.pdf

[31] Pedro Moreno and Ricardo Rocha. 2023. Releasing Memory with Optimistic Access: A Hybrid Approach to Memory

Reclamation and Allocation in Lock-Free Programs. In Proceedings of the 35th ACM Symposium on Parallelism in
Algorithms and Architectures (Orlando, FL, USA) (SPAA ’23). ACM, 177–186. https://doi.org/10.1145/3558481.3591089

[32] Adam Morrison and Yehuda Afek. 2013. Fast Concurrent Queues for x86 Processors. In Proceedings of the 18th ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming (Shenzhen, China) (PPoPP ’13). ACM, New

York, NY, USA, 103–112. https://doi.org/10.1145/2442516.2442527

[33] Ruslan Nikolaev. 2019. A Scalable, Portable, and Memory-Efficient Lock-Free FIFO Queue. In Proceedings of the 33rd
International Symposium on Distributed Computing (DISC 2019) (Leibniz International Proceedings in Informatics (LIPIcs),
Vol. 146). Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 28:1–28:16. https://doi.org/10.4230/LIPIcs.DISC.2019.28

[34] Ruslan Nikolaev and Binoy Ravindran. 2019. Brief Announcement: Hyaline: Fast and Transparent Lock-Free Memory

Reclamation. In Proceedings of the 2019 ACM Symposium on Principles of Distributed Computing (Toronto, ON, Canada)

(PODC ’19). ACM, New York, NY, USA, 419–421. https://doi.org/10.1145/3293611.3331575

[35] Ruslan Nikolaev and Binoy Ravindran. 2020. Universal Wait-Free Memory Reclamation. In Proceedings of the 25th
ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming (San Diego, California) (PPoPP ’20). ACM,

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 235. Publication date: June 2024.

https://doi.org/10.1145/3437801.3441596
https://doi.org/10.1145/3232559
https://doi.org/10.1007/s00446-002-0079-z
https://www.bsdcan.org/2006/papers/jemalloc.pdf
https://doi.org/10.1145/1989493.1989549
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-579.pdf
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-579.pdf
https://doi.org/10.1109/TPDS.2008.167
https://doi.org/10.1007/3-540-45414-4_21
https://doi.org/10.1016/j.jpdc.2007.04.010
https://doi.org/10.1016/j.jpdc.2007.04.010
https://doi.org/10.1145/1062247.1062249
https://doi.org/10.1145/1062247.1062249
https://doi.org/10.1007/3-540-36108-1_23
https://doi.org/10.1145/3385412.3385978
https://doi.org/10.1145/1941553.1941585
https://doi.org/10.1007/978-3-030-34175-6_13
https://doi.org/10.1109/TPDS.2004.8
https://www.cs.rochester.edu/u/scott/papers/1995_TR599.pdf
https://doi.org/10.1145/3558481.3591089
https://doi.org/10.1145/2442516.2442527
https://doi.org/10.4230/LIPIcs.DISC.2019.28
https://doi.org/10.1145/3293611.3331575

A Family of Fast and Memory Efficient Lock- and Wait-Free Reclamation 235:25

New York, NY, USA, 130–143. https://doi.org/10.1145/3332466.3374540

[36] Ruslan Nikolaev and Binoy Ravindran. 2021. Brief Announcement: Crystalline: Fast and Memory Efficient Wait-

Free Reclamation. In Proceedings of the 35th International Symposium on Distributed Computing (DISC 2021) (Leibniz
International Proceedings in Informatics (LIPIcs), Vol. 209). Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl,

Germany, 60:1–60:4. https://doi.org/10.4230/LIPIcs.DISC.2021.60

[37] Ruslan Nikolaev and Binoy Ravindran. 2021. Snapshot-Free, Transparent, and Robust Memory Reclamation for Lock-

Free Data Structures. In Proceedings of the 42nd ACM SIGPLAN International Conference on Programming Language
Design and Implementation (PLDI ’21). ACM, New York, NY, USA, 987–1002. https://doi.org/10.1145/3453483.3454090

[38] Ruslan Nikolaev and Binoy Ravindran. 2022. wCQ: A FastWait-Free Queuewith BoundedMemory Usage. In Proceedings
of the 34th ACM Symposium on Parallelism in Algorithms and Architectures (Philadelphia, PA, USA) (SPAA ’22). ACM,

New York, NY, USA, 307–319. https://doi.org/10.1145/3490148.3538572

[39] Ruslan Nikolaev and Binoy Ravindran. 2024. A Family of Fast and Memory Efficient Lock- and Wait-Free Reclamation

(an extended arXiv version of this paper). https://arxiv.org/abs/2108.02763

[40] Ruslan Nikolaev and Binoy Ravindran. 2024. Artifact for PLDI’24. https://doi.org/10.5281/zenodo.10775789

[41] Manuel Pöter and Jesper Larsson Träff. 2018. Brief Announcement: Stamp-it, a More Thread-efficient, Concurrent

Memory Reclamation Scheme in the C++ Memory Model. In Proceedings of the 30th on Symposium on Parallelism in
Algorithms and Architectures (Vienna, Austria) (SPAA ’18). ACM, 355–358. https://doi.org/10.1145/3210377.3210661

[42] Pedro Ramalhete and Andreia Correia. 2016. A Wait-Free Queue with Wait-Free Memory Reclamation (Full Version).

https://github.com/pramalhe/ConcurrencyFreaks/raw/master/papers/crturnqueue-2016.pdf

[43] Pedro Ramalhete and Andreia Correia. 2017. Brief Announcement: Hazard Eras - Non-Blocking Memory Reclamation.

In Proceedings of the 29th ACM Symposium on Parallelism in Algorithms and Architectures (Washington, DC, USA)

(SPAA ’17). ACM, New York, NY, USA, 367–369. https://doi.org/10.1145/3087556.3087588

[44] Pedro Ramalhete and Andreia Correia. 2017. Hazard Eras - Non-Blocking Memory Reclamation (Full Version).

https://github.com/pramalhe/ConcurrencyFreaks/raw/master/papers/hazarderas-2017.pdf

[45] Pedro Ramalhete and Andreia Correia. 2017. POSTER: A Wait-Free Queue with Wait-Free Memory Reclamation. In

Proceedings of the 22nd ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming (Austin, Texas,

USA) (PPoPP ’17). ACM, New York, NY, USA, 453–454. https://doi.org/10.1145/3018743.3019022

[46] Pedro Ramalhete, Andreia Correia, Pascal Felber, and Nachshon Cohen. 2019. OneFile: A Wait-Free Persistent

Transactional Memory. In 2019 49th Annual IEEE/IFIP International Conference on Dependable Systems and Networks
(DSN). 151–163. https://doi.org/10.1109/DSN.2019.00028

[47] Gali Sheffi, Maurice Herlihy, and Erez Petrank. 2021. VBR: Version Based Reclamation. In 35th International Symposium
on Distributed Computing, DISC 2021, October 4-8, 2021, Freiburg, Germany (Virtual Conference) (LIPIcs, Vol. 209). Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 35:1–35:18. https://doi.org/10.4230/LIPIcs.DISC.2021.35

[48] Gali Sheffi and Erez Petrank. 2023. The ERA Theorem for Safe Memory Reclamation. In Proceedings of the 2023 ACM
Symposium on Principles of Distributed Computing (Orlando, FL, USA) (PODC ’23). ACM, New York, NY, USA, 102–112.

https://doi.org/10.1145/3583668.3594564

[49] Ajay Singh, Trevor Brown, and Ali Mashtizadeh. 2021. NBR: Neutralization Based Reclamation. In Proceedings of
the 26th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming (PPoPP ’21). ACM, 175–190.

https://doi.org/10.1145/3437801.3441625

[50] Shahar Timnat, Anastasia Braginsky, Alex Kogan, and Erez Petrank. 2012. Wait-Free Linked-Lists. In Proceedings of
the International Conference on Principles of Distributed Systems (OPODIS 2012). Springer Berlin Heidelberg, Berlin,

Heidelberg, 330–344. https://doi.org/10.1007/978-3-642-35476-2_23

[51] Shahar Timnat and Erez Petrank. 2014. A Practical Wait-Free Simulation for Lock-Free Data Structures. In Proceedings
of the 19th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming (Orlando, Florida, USA) (PPoPP
’14). ACM, New York, NY, USA, 357–368. https://doi.org/10.1145/2555243.2555261

[52] R. K. Treiber. 1986. Systems Programming: Coping with Parallelism. Technical Report RJ 5118. IBM Almaden R. Center.

[53] John D. Valois. 1995. Lock-free Linked Lists Using Compare-and-swap. In Proceedings of the 14th Annual ACM
Symposium on Principles of Distributed Computing (Ottawa, Ontario, Canada) (PODC ’95). ACM, New York, NY, USA,

214–222. https://doi.org/10.1145/224964.224988

[54] Haosen Wen, Joseph Izraelevitz, Wentao Cai, H. Alan Beadle, and Michael L. Scott. 2018. Interval-based Memory

Reclamation. In Proceedings of the 23rd ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming
(Vienna, Austria) (PPoPP ’18). ACM, New York, NY, USA, 1–13. https://doi.org/10.1145/3178487.3178488

[55] Chaoran Yang and John Mellor-Crummey. 2016. A Wait-free Queue As Fast As Fetch-and-add. In Proceedings of the
21st ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming (Barcelona, Spain) (PPoPP ’16). ACM,

New York, NY, USA, Article 16, 13 pages. https://doi.org/10.1145/2851141.2851168

Received 2023-11-16; accepted 2024-03-31

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 235. Publication date: June 2024.

https://doi.org/10.1145/3332466.3374540
https://doi.org/10.4230/LIPIcs.DISC.2021.60
https://doi.org/10.1145/3453483.3454090
https://doi.org/10.1145/3490148.3538572
https://arxiv.org/abs/2108.02763
https://doi.org/10.5281/zenodo.10775789
https://doi.org/10.1145/3210377.3210661
https://github.com/pramalhe/ConcurrencyFreaks/raw/master/papers/crturnqueue-2016.pdf
https://doi.org/10.1145/3087556.3087588
https://github.com/pramalhe/ConcurrencyFreaks/raw/master/papers/hazarderas-2017.pdf
https://doi.org/10.1145/3018743.3019022
https://doi.org/10.1109/DSN.2019.00028
https://doi.org/10.4230/LIPIcs.DISC.2021.35
https://doi.org/10.1145/3583668.3594564
https://doi.org/10.1145/3437801.3441625
https://doi.org/10.1007/978-3-642-35476-2_23
https://doi.org/10.1145/2555243.2555261
https://doi.org/10.1145/224964.224988
https://doi.org/10.1145/3178487.3178488
https://doi.org/10.1145/2851141.2851168

	Abstract
	1 Introduction
	2 Background
	2.1 Hyaline Reclamation Schemes

	3 Lock-Free Reclamation
	4 Wait-Free Reclamation
	4.1 Crystalline-LW
	4.2 Crystalline-W

	5 Correctness
	6 Evaluation
	7 Related Work
	8 Conclusion
	References

