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Problem: Lack of isolation 
and protection for core 
systems code in monolithic 
OS.
• Well-known problem –

numerous studies & 
experience have 
indicated reliability 
problems, largely with 3rd

party code.

Flexible Decomposition of vertical slices of a monolithic kernel 
into service domains
Strong Isolation & Device Protection through hardware-
supported virtual machines
Separate Failure & Recovery of service domains
Transparent to kernel code
Compatible with POSIX application code
Good Performance due to fast interdomain communication

• Direct system call handling by remote domains via 
exceptionless system call dispatch

• Integrated with M:N threading to avoid interdomain
signaling

• Lock free request and ready queues for dispatch & wakeup
• Supports all of POSIX (including polling & signals)

Source Code available at: 
people.cs.vt.edu/~rnikola

Evaluated Overhead due copying, coordination, evaluated 
Failure Recovery when service domains
fail, and Performance for 
multithreaded & multiprocess
workloads.
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Related Work

Existing Designs: 
Rely on privilege separation and 
protection domains.
Examples: µ-Kernels, User-level 
drivers and file systems, VM-
Based Isolation

Approach: Decompose & Isolate Components.

Architecture: Primary & Service Domains

VirtuOS Implementation Highlights Experimental Results
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