
Motivation

VirtuOS: an operating system with kernel virtualization
Ruslan Nikolaev, Godmar Back

Virginia Tech, Blacksburg

Problem: Lack of isolation 
and protection for core 
systems code in monolithic 
OS.
• Well-known problem –

numerous studies & 
experience have 
indicated reliability 
problems, largely with 3rd

party code.

Flexible Decomposition of vertical slices of a monolithic kernel 
into service domains
Strong Isolation & Device Protection through hardware-
supported virtual machines
Separate Failure & Recovery of service domains
Transparent to kernel code
Compatible with POSIX application code
Good Performance due to fast interdomain communication

• Direct system call handling by remote domains via 
exceptionless system call dispatch

• Integrated with M:N threading to avoid interdomain
signaling

• Lock free request and ready queues for dispatch & wakeup
• Supports all of POSIX (including polling & signals)

Source Code available at: 
people.cs.vt.edu/~rnikola

Evaluated Overhead due copying, coordination, evaluated 
Failure Recovery when service domains
fail, and Performance for 
multithreaded & multiprocess
workloads.

Apache throughput

OLTP/Sysbench mySQL

FileIO/Sysbench

Failure recovery

User Process k

libc-sclib

/dev/syscall

syscall-frontend

syscall-xen Hypervisor

Kernel

Primary Domain

Ready
Queue

Shared
Regions

Request
Queue

Dispatch

Kernel Worker
Thread 1.1

...
Kernel Worker

Thread 1.n

syscall-backend

Kernel Worker
Thread n.1

...
Kernel Worker

Thread n.k

syscall-backend

…

Request
Queue

Resume

Resume

Service Domain 1

Service Domain n

Lo
ca

l system
 ca

ll

M:N pthread

File
System

SATA

TCP/IP

Ethernet

µKernel

µKernel OS

PCI

User
Processes

Process
Manager

Memory
Manager

kernel

PCI
Process

Manager

Memory
ManagerSATA Ethernet

File
System

TCP/IP

User
Processes Monolithic

OS

Kernel

VirtuOS Design Characteristics

Virtual
Machines

Hypervisor

Guest OS 1 Guest OS n…

Related Work

Existing Designs: 
Rely on privilege separation and 
protection domains.
Examples: µ-Kernels, User-level 
drivers and file systems, VM-
Based Isolation

Approach: Decompose & Isolate Components.

Architecture: Primary & Service Domains

VirtuOS Implementation Highlights Experimental Results

Ethernet

TCP/IP

PCI

Network
Domain

Storage
Domain

SATA

File System

PCI

Process
Manager

Primary
Domain

User
Processes

Hypervisor

VirtuOS

Memory
Manager

PCI


