
POSTER:
wCQ: A Fast Wait-Free 
Queue with Bounded 

Memory Usage
Ruslan Nikolaev *, rnikola@psu.edu, Penn State University, USA

Binoy Ravindran, binoy@vt.edu, Virginia Tech, USA

* Most of the work was done while the 
author was at Virginia Tech

mailto:rnikola@psu.edu
mailto:binoy@vt.edu


Concurrent Data Structures

 Many-core systems today require efficient access to data

– Concurrent data structures

 Multiple threads need to safely manipulate data structures (similar to 
sequential data structures)

– "nothing bad will happen"
Thread

A
Thread 

B
Thread 

C



Concurrent Data Structures

 Many-core systems today require efficient access to data

– Concurrent data structures

 Multiple threads need to safely manipulate data structures (similar to 
sequential data structures)

– "nothing bad will happen"
 Concurrency also adds a liveness property, which stipulates how 

threads will be able to make progress
– "something good will happen eventually"

Thread
A

Thread 
B

Thread 
C

Thread
A

Thread 
B

Thread 
C



Wait-Freedom

 Non-blocking data structures

– Lock-free data structures require that at least one thread completes an 
operation after a finite number of steps

– Wait-free data structures require that all threads complete any 
operation after a finite number of steps

 Wait-free algorithms have increasingly gained more attention due to their 
strongest non-blocking progress property

– But building wait-free queues is challenging



Existing Approaches

 Kogan-Petrank’s queue [PPoPP’11]

– Wait-free but slow

 CRTurn queue [PPoPP’17]

– Wait-free but is still slow

 Yang and Mellor-Crummey (YMC) queue [PPoPP’16]

– Fast but has flawed memory reclamation => not truly wait-free

 LCRQ [PPoPP’13]

– Fast and memory reclamation is correct but is only lock-free

 Scalable Circular Queue (SCQ) [DISC’19]

– Fast but is only lock-free

 We present wait-free circular queue (wCQ) which extends SCQ



wCQ’s Key Idea

 Memory reclamation is tough when also considering progress properties

– Key insight: avoid memory reclamation altogether

 Kogan-Petrank’s fast-path-slow-path method [PPoPP’12] does not support 
specialized instructions such as fetch-and-add (FAA)

– FAA scales better and is the key instruction in SCQ

– We design our own fast-path-slow-path method for SCQ that also supports 
FAA

 Slow path: eventually all active threads help a thread that is stuck

– One of these threads will eventually succeed due to the underlying SCQ’s 
lock-free guarantees (i.e., at least one thread always succeeds)

– All helpers must repeat exactly the same procedure as the helpee



Results

 wCQ is the fastest wait-free queue

– wCQ generally outperforms YMC, for which memory usage can be 
unbounded

– LCRQ can yield better performance but lacks wait-freedom

 wCQ’s performance is close to the SCQ algorithm 



More Details

 Code is open-source and available at:
 https://github.com/rusnikola/wfqueue

 Full paper is available as an arXiv report:
 https://arxiv.org/abs/2201.02179

THANK YOU!

https://github.com/rusnikola/wfqueue
https://arxiv.org/abs/2108.02763
https://arxiv.org/abs/2201.02179

	Brief Announcement: Crystalline: Fast and Memory Efficient Wait
	Slide 2
	Slide 3
	Memory Reclamation
	Memory Reclamation (2)
	Slide 6
	Crystalline-W
	More Details

