Abstract Syntax - 2

Abstract syntax (parse) trees - an intermediate
program representation

Symbol tables - keeping information about
Identifiers

Hashing

abstractSyntax-2& BGRyder Spring 99

Abstract Syntax Trees

« Allow separation of parsing from semantic
checking (e.g., type checking)

« Shows the abstract syntax of the language

(only keeps nonterminals which have some
meaning attached)

— Different from concrete syntax with punctuation,
trivial productions (e.g., E® T ® F ® 1d)

— Compilers can manipulate the abstract syntax
once concrete syntax has been checked

abstractSyntax-2& BGRyder Spring 99

2+3

abstractSyntax-2& BGRyder Spring 99

Example

Parse tree

+expr

2/ \3

Abstract syntax tree

More examples in Appel, Chp 4

Abstract Syntax Trees

« Should maintain some pointer back into the
Input (line number In file + character
position in line) corresponding to tree

e Scanner passes beginning and ending
positions of each token

* Internal tree nodes can figure out their own
position as a function of positions of leaf
nodes beneath them

abstractSyntax-2& BGRyder Spring 99

Tiger Abstract Syntax, E.G.sS

IfEXxp (int pos, Exp test, Exp thenclause)

IfEXp

/ \ Appel, Chp 4.2

Exp (test) Exp (thenclause)

whileExp (Int pos, Exp test, Exp body)

whileExp

/o

Exp (test) Exp (body)

abstractSyntax-2& BGRyder Spring 99

Tiger Abstract Syntax

Boolean expressions translated in optimized
form as Ifs

SegExp(null) is empty statement

See abstract syntax defined for all Tiger
constructs, Appel p 103

abstractSyntax-2& BGRyder Spring 99

Design of Abstract Syntax

o Syntax separate from interpretations (SSI)
style of programming

— E.g., Appel, program 1.5, used instanceof and
public class variables to access abstract syntax

e Object-oriented (OO) style

— No public instance variables (need observer
methods)

* Choice of style affects modularity

 Kinds of objects (e.g., assignments, prints, If
statements)

abstractSyntax-2& BGRyder Spring 99

Design of Abstract Syntax

e Types of interpretations (or analyses) (e.g.,
type checking, code generation)

o SSI finds it easy to add another
Interpretation but hard to add another kind

— Impacts all previous interpretations which now
need to handle new kind

e OO finds It easy to add another kind, but
difficult to add another interpretation

— Impacts all previous classes that now need to add
a method for the new interpretation

abstractSyntax-2& BGRyder Spring 99

Environment

* Environment - a set of bindings denoted as
pairs: <id ® value>

* Environment embodies scoping of identifiers

 In lexical scoping, you build environments
from previous ones by adding bindings that
supercede any previous ones for the same
Identifier or deleting bindings no longer
current

abstractSyntax-2& BGRyder Spring 99

Nested Environments

sO

function f (int X, inty) (
letvarz :=1

In print_int (x+z)
end;

)

sl

sl

sO

s0: defining environment
s1=s0+{x® iInt; y ® int}
s2=s1+{z® Int}

abstractSyntax-2& BGRyder Spring 99

Environments

e Can handle environments either in functional
style (always make copies) or in imperative
style (do destructive updates)

e Choice is independent of whether the

language being parsed Is functional or
Imperative

abstractSyntax-2& BGRyder Spring 99

11

Symbol Table

* Maps from identifier to meanings (e.g., types,
function signatures, array bounds)

 Two functions need efficient implementation:
— Add new entries
— Search for existing entries

o Entries are usually of uniform size

— Some data kept in auxiliary store and pointed to
from table

abstractSyntax-2& BGRyder Spring 99 12

Open Addressing Hash Tables

o All elements stored in the hash table itself
o Complexity

— O(1) expected time for search or insertion

— O(m) space for size m table

 In case of collision, have to offer a way to
resolve collisions
— Linear resolution f(key)=k, try k-1, k-2, etc until
find empty entry
e Simple, but forms long chains

abstractSyntax-2& BGRyder Spring 99

13

Open Addressing Hash Tables

— Add the hash rehash, f(key) =k, try 2*f(key),
3*f(key), etc. until find empty entry

e Reduces clustering found in linear rehash

— Quadratic rehash, f(key)=k, (f(key)+1) mod m,
(f(key)+22) mod m, (f(key)+32) mod m, etc

« Sometimes use 2 level table, top level for
Indices (sparse), bottom level for entries of
varying size pointed to by top level entries.

abstractSyntax-2& BGRyder Spring 99

14

Bucket Hash Tables

Fixed-size array of m buckets (linked lists)
— Combines sparse index with list of items

Use stack discipline (LIFO) when adding to
or searching a bucket

LLookup In constant time to correct bucket
and then linear in number of bucket entries
— Worst case assumed very unlikely

— Average search time 1/2*(n/m)

— Average insertion time n/m

— O(n+m) space needed

abstractSyntax-2& BGRyder Spring 99 15

Bucket Hash Tables

* Lookup and insertion:
— Hash to index

— If table[index] empty
* Lookup fails
e |nsertion adds into bucket at index

— If table[index] full

« Match in bucket implies lookup succeeds; otherwise,
fails

e Insert at head of bucket list

abstractSyntax-2& BGRyder Spring 99

16

Hash Functions

e Try to map n items uniformly into n of m
distinct entries in table; use a mod size
calculation

o Usually pick m to be a large prime number
« Collision - when f(keyl) = f(key2) or two keys
hash to the same entry

e Desirable that f(key) is cheap to evaluate and
randomizing (i.e., similar names map to
different indices)

abstractSyntax-2& BGRyder Spring 99

17

Hash Functions

 How hard is it to design a good hash
function?

— Say have 31 keywords and want a 41 element
hash table; Have 4131 @10 50 choices of hash
mappings; 41*40*39*...*11 of them will map
each key to a distinct entry (1 out of 107)

— Good hash functions can be hard to find

abstractSyntax-2& BGRyder Spring 99 18

Collisions

 |f there are more than 24 people at a
birthday party then probability that at least 2
will have the same birthday Is more than
50%

— You didn’t try to invite people with the same
birthday,

e Conclusion: collisions will happen in hash

tables

abstractSyntax-2& BGRyder Spring 99 19

Hash Functions

 How to build a good hash function?

— Select only certain characters from the key
* Not evenly distributed

— Partition the key into parts and then combine
them
e E.g., take a function of each byte
— Convert key to integer by modulo arithmetic

using a very large prime number (spreads the
keys fairly uniformly about) f(k)=k mod M

abstractSyntax-2& BGRyder Spring 99

20

Symbol Table

e Operations
— Insert: make new entry
— Delete: remove most recently created entry

— Lookup: find most recently created entry of
name

 |If use buckets with LIFO strategy, then
dealing with nested lexical scopes Is easy

e Conceptually think of 1 symbol table per
scope, but actually use same table with LIFO
to accomplish (see Symbol package in project)

abstractSyntax-2& BGRyder Spring 99 21

Symbol package, appeichps

 Map strings to symbol objects so can
compare more easily

« Symbol package contains classes Table and

Symbol

— Table creates bucket hash table with scope entry
and exit methods to mark and process the
buckets

— Symbol uses String instance method intern() to

return a unigue value for any string; this value is
encapsulated in the Symbol object created and

used for comparison

abstractSyntax-2& BGRyder Spring 99

22

