
CodeGeneration  BGRyder Spring 99 1

Code Generation

• Project 6
– Canonicalizing Tree objects

– Basic blocks and program traces

– Instruction selection

• Translation of Expression Trees
– Sethi-Ullman numbering (for register usage)

– Interaction between instruction scheduling and
register allocation

CodeGeneration  BGRyder Spring 99 2

Simplified Code Generation

• Our approach
– Keep all variables in memory

– Locality of temporary register usage is 1
instruction

– Generate SPIM code

– Use canonicalization codes from Appel text

CodeGeneration  BGRyder Spring 99 3

Canonical Tree Objects
• IDEA: to correct some of the mismatches

between the intermediate representation(IR)
and actual machine assembly instructions
– To make code generation easier by standardizing

the Tree objects somewhat

– Use tree rewriting (a form of code
transformation)

– Steps:
• Apply tree rewrites
• Find basic blocks
• Organize basic blocks into traces

CodeGeneration  BGRyder Spring 99 4

Canonical Tree Objects
• Contain no SEQ or ESEQ

• How eliminate these?
– Have to lift them up in the tree through

identities in Figure 8.1(Appel, p 184)

– Important to know: if two expressions or
statements can commute with no effect on the
computation

• Otherwise we may need new temporary locations to
store intermediate results to get canonical trees

CodeGeneration  BGRyder Spring 99 5

Canonical Transformations

ESEQ

ESEQ
s1

s2 e

⇒
ESEQ

SEQ e

s1 s2

ESEQ(s1, ESEQ(s2,e)) = ESEQ(SEQ(s1,s2),e)

BINOP

op ESEQ e2

s e1

⇒

ESEQ

s BINOP

op e1 e2

BINOP(op ,ESEQ(s,e1),e2) = ESEQ(s, BINOP(op,e1,e2))

CodeGeneration  BGRyder Spring 99 6

Canonical Transformations

BINOP

op e1 ESEQ

s e2

ESEQ

MOVE ESEQ

TEMP e1

 t

s BINOP

op TEMP e2

 t

BINOP(op, e1, ESEQ(s,e2)) =
ESEQ(MOVE(TEMP(t), e1),

ESEQ(s, BINOP(op,TEMP(t), e2)))
where t is a new temporary location
PROBLEM: s may have side effects that affect value of e1.
SOLUTION: use a temporary to store value of e1.

CodeGeneration  BGRyder Spring 99 7

Tree Rewriting

• Code provided by Appel does these Tree
transformations

• Eventually get a SEQ of Tree statements
which can be considered a list of statements

CodeGeneration  BGRyder Spring 99 8

Basic Blocks

• Single-entry, single-exit sequences of code

• Used in optimization and as basic element of
code generation algorithms

• Appel’s basic blocks
– Always entered at the beginning and exited at

the end

– Last statement is a JUMP or CJUMP

– Contains no other LABELs, JUMPs or CJUMPs

CodeGeneration  BGRyder Spring 99 9

Basic Block Construction
• Given sequence of intermediate code

statements (Canon.BasicBlocks)
– Scan from beginning to end
– If find LABEL, start a new basic block
– If find JUMP or CJUMP end current basic block

and start new basic block with next instruction
– After finish code scan, add JUMP to next block’s

LABEL to any block not ended by a JUMP or
CJUMP

– If any block is missing a beginning LABEL,
create one for it

CodeGeneration  BGRyder Spring 99 10

Control Flow Graph

• Body of each function is divided into basic
blocks

• Control flow graph whose nodes are basic
blocks and edges are jumps between them
– Used to approximate possible flow of control

through program

– Analyzed for info allowing machine independent
optimizations

– Formed with blocks in original sequential order
of code

CodeGeneration  BGRyder Spring 99 11

Traces
• Can arrange basic blocks in any order and

get same program execution

• So we can choose an ordering so that each
CJUMP is following by its false label

• Trace - sequence of statements that can be
consecutively executed (can include
conditional branches)

• Program is a set of traces (see Algorithm 8.2,
Appel p 191)
– Can flatten set of traces back into a linear list of stmts

CodeGeneration  BGRyder Spring 99 12

Basic Blocks

• Used for local register allocation
– Small set of registers saved for local computation

– Algorithms to choose which results to save
locally in registers

– Other registers used for quantities needed across
region of control flow graph

• Used for simple instruction scheduling; more
complex algorithms use parts of a trace to do
instruction scheduling

CodeGeneration  BGRyder Spring 99 13

Example, (ASU p 529)

SOURCE CODE

{ prod := 0;

j := 1;

do {

prod := prod + a[j] * b[j];

j := j+1;

}

while j <= 20

}

3 ADDRESS CODE
prod := 0;
j := 1;
t1 := 4 * j; (3)
t2 := a[t1];
t3 := 4 * j;
t4 := b[t3];
t5 := t2 * t4;
t6 := prod + t5;
prod := t6;
t7 := j + 1;
j := t7;
if j <= 20 goto (3)

CodeGeneration  BGRyder Spring 99 14

Example
3 ADDRESS CODE
(1) prod := 0;
(2) j := 1;
(3) t1 := 4 * j;
(4) t2 := a[t1];
(5) t3 := 4 * j;
(6) t4 := b[t3];
(7) t5 := t2 * t4;
(8) t6 := prod + t5;
(9) prod := t6;
(10) t7 := j + 1;
(11) j := t7;
(12) if j <= 20 goto (3)

B1
(1) prod := 0;
(2) j := 1;

B2 (3) t1 := 4 * j;
(4) t2 := a[t1];
(5) t3 := 4 * j;
(6) t4 := b[t3];
(7) t5 := t2 * t4;
(8) t6 := prod + t5;
(9) prod := t6;
(10) t7 := j + 1;
(11) j := t7;
(12) if j <= 20 goto (3)

Control Flow Graph

CodeGeneration  BGRyder Spring 99 15

Local Register Allocation

• Within a basic block

• Simplest basic block represents a complex
expression computation
– Important to know how to most efficiently

translate such expression trees

– Measure efficiency in number of instructions

– Try to keep intermediate results in registers to
avoid delays in load/store to memory

CodeGeneration  BGRyder Spring 99 16

Code Generation Example

+

+
+

m1 m2 m3 m4

Cycles With Interlocks W/O Interlocks

1. load m1, r1 load m1, r1
2. load m2, r2 load m2, r2
3. load m3, r3
4. add r1, r2, r2 load m4, r4
5. load m3, r1 add r1, r2, r2
6. load m4, r3 add r3, r4, r4
7. add r2, r4, r4
8. add r1, r3, r3
9. add r2, r3, r3

Wasted delay slots

Here, 2nd sequence of instructions is more efficient!

CodeGeneration  BGRyder Spring 99 17

Sethi-Ullman Numbering

• A way of estimating the number of registers
needed to evaluate an expression tree
(MinRegs)

• Can prove code generated is optimal in sense
it uses least number of registers

• Can also reorder intermediate code (that is,
rewrite the trees) so that a better translation
is possible

CodeGeneration  BGRyder Spring 99 18

Sethi-Ullman Algorithm
/*** assume reg to memory instructions are possible and ***/
/*** can’t use same destination register as an operand***/
Visit nodes in postorder traversal of expression tree

if n is a leaf then
{ if n is leftmost child of its parent then label(n):= 1

 else label(n) := 0;
}

else
/***allow for reorganization of order of subexpr

computation***/
{ let n1, n2,…,nk be the children of n in order of

highest to lowest label;
label(n) := max (label(nj) + j - 1) for (1<=j<=k)
}

CodeGeneration  BGRyder Spring 99 19

Example 1

• For binary interior node n, label(n) will be
either max(l1,l2) if its child node labels are
l1 != l2, or l1+1 if l1==l2

-, t4

+, t1 -, t3

a b e +, t2

c d
1 0

1

1

1 0

2

2 so this expression
needs only 2
registers to evaluate

load a, R1
add b, R1
load c, R2
add d, R2
add e, R2
add R1,R2,R2

(a+b) -(e-(c+d))

CodeGeneration  BGRyder Spring 99 20

Example 2
How many registers does this expression need to
be evaluated ((a-b)+(g*h)) +((c+d)+(e*f))?

+, t4

-, t1

+, t6

a b

+, t2

c d

*, t3

e f

+, t5

*, t4

g h

CodeGeneration  BGRyder Spring 99 21

SPIM version of Sethi-Ullman

• For SPIM codes the invariants assumed
previously aren’t true
– Only register to register instructions are allowed

– Can use same destination register as operand

• Q: Does the Sethi-Ullman algorithm still
work here? If so, why; if not, why not?

CodeGeneration  BGRyder Spring 99 22

Example

+, t4

*, t1

offset_a($fp) -,t5

What is the minimum
number of registers
to code this in SPIM?

+, t6

+, t2

offset_c($fp) offset_d($fp)

-, t3

offset_e($fp) offset_ f($fp) offset_b($fp) const

10

CodeGeneration  BGRyder Spring 99 23

Instruction Scheduling

• Delayed load architecture requires that
destination of load not be accessed by some
number of clock cycles, although unrelated
instructions can execute

• This limitation on instruction scheduling (or
ordering) interacts with register allocation
– Allocation and scheduling are interdependent

• Delayed load scheduling (DLS) tries to move
loads as early as possible in the schedule

CodeGeneration  BGRyder Spring 99 24

DLS Scheduling
T.Proebsting, C. Fischer, “Linear-time Optimal Code Scheduling for Delayed-Load

Architectures, PLDI’91

• Overview
– If have instruction sequence with R registers, L

loads, and (L-1) operations, then
• Do R loads,

• Followed by an alternating sequence of L-R pairs,

• Followed by the remaining R operations

• Uses Sethi-Ullman numbering

– If can add registers, may be able to eliminate
delays

CodeGeneration  BGRyder Spring 99 25

 Example+

+

m1 m2

+

+

m3 m4

+

m5 m6

Cycle SU(3) Canonical(3) Canonical(4)

1. load m3, r1 load m3, r1 load m3, r1
2. load m4, r2 load m4, r2 load m4, r2
3. load m5, r3 load m5, r3
4. add r1, r2, r2 add r1, r2, r2 load m6, r4
5. load m5, r1 load m6, r1 add r1, r2, r2
6. load m6, r3 load m1, r1
7. add r3, r1, r1 add r3, r4, r4
8. add r1, r3, r3 load m1, r3 load m2, r3
9. add r2, r3, r3 add r2, r1, r1 add r2, r4, r4
10. load m1, r1 load m2, r2 add r1, r3, r3
11. load m2, r2 add r4, r3, r4
12. add r3, r2, r2
13. add r1, r2, r2 add r1, r2, r2 BEST Schedule
14. add r3, r2, r2

Three schedules for this expression
tree. Last is shortest at cost of
another register!

CodeGeneration  BGRyder Spring 99 26

Problems

• By moving Loads up in code schedule may
increase length of time values need to be in
registers and thus increase register pressure
at arbitrary program points
– Register pressure - number of times that MinReg

registers will be live (their values still needed) in
Sethi-Ullman evaluation order

CodeGeneration  BGRyder Spring 99 27

Example

+ (1)

+ (3)
+ (1)

m1 (1)

m2 (1)

m3 (1) m4 (1)

+ (1)

+ (2)
m5 (1) m6 (1)

1 1

21

2
1

2

1 1

2

3

Sethi-Ullman numbers
(register pressure)

if have only 2 registers,
r1, r2 will be live 3 times
in left subtree

