
IntermedRep   BGRyder   Spring 99
1

Intermediate Representations

• Machine independent translation
– Keep independent of target architecture for as

long as possible

• Intermediate forms
– 3 address code (triples, quads)
– Expression trees

• Some examples of Tiger intermediate code



IntermedRep   BGRyder   Spring 99
2

Why an intermediate
representation?

• Need representation closer to actual
instructions for ease of translation

• Compiler
– Front end does lexical analysis, parsing, semantic

analysis, translation to IR
– Back end does optimization of IR, translation to

machine instructions

• Try to keep machine dependences out of IR
for as long as possible



IntermedRep   BGRyder   Spring 99
3

How IR is useful?

Java

ML

Pascal

C

C++

IR

Sparc

MIPS

Pentium

Alpha

SPIM code



IntermedRep   BGRyder   Spring 99
4

Three Address Code

• Result, operand, operand, operator
– x := y  op z, where op is a binary operator and x,

y, z  can be variables, constants or compiler-
generated temporaries (intermediate results)

• Can write this as a shorthand
– <op, arg1, arg2, result > -- quadruples
– Let line number of instruction stand for the result

• <op, arg1, arg2> -- triples (saves space)



IntermedRep   BGRyder   Spring 99
5

Three Address Code

• Set of statements allowed
– Assignment   x := y op z
– Copy stmts  x := y
– Goto L
– if x relop y goto L
– Indexed assignments  x := y[j] or s[j] := z
– Address and pointer assignments (for C)

x := &y, x := *p; *x := y

– Parm x; call p, n;  return y; (for calls)



IntermedRep   BGRyder   Spring 99
6

How this works?

z := 2==3 or
3==4;

t1 := 2 == 3
t2 := 3 == 4

t3 := t1 or t2

z := t3

S

id E

T          R

D  Relop D

2     ==    3

or     T     R

D  Relop D    ε

3      ==    4

S ::= id := E
E ::= T R 
R ::= or  T R | ε
T ::= D Relop D

t1

t2

t3



IntermedRep   BGRyder   Spring 99
7

Expression Trees (Tiger)

• Simple intermediate representation (IR)
• Convenient to translate into actual machine

instructions for several target machines
• Convenient to produce from abstract syntax
• Each construct must have a clear meaning
• Take “big” pieces of abstract syntax and

translate them into many small pieces of
abstract machine instructions



IntermedRep   BGRyder   Spring 99
8

Tiger IR - Exp’s

• Const(j), integer constant j
• Name(n), symbolic constant n (to correspond

to assembly language label)
• Temp(t), temporary t (unlimited in number)
• Binop(o, e1,e2), application of binary

operator o to operands e1 and e2. (Appel, p 157)

• Mem(e), contents of wordSize bytes of memory



IntermedRep   BGRyder   Spring 99
9

Tiger IR- Exp’s

• Call(f,l), application of function f to argument
list l

• Eseq(s,e) statement s evaluated for side effects
and then e is evaluated for a result



IntermedRep   BGRyder   Spring 99
10

Tiger IR - Stm’s

• Move(Temp t, e), evaluate e and move it into t
• Move (Mem(e1,k),e2), evaluate e1 yielding

address a. then evaluate e2 and store result
into k bytes of memory starting at a.

• Exp(e), evaluate e and discard result
• Jump (e,labs),  transfer control to address e;

labs tells all possible locations that e can
evaluate to



IntermedRep   BGRyder   Spring 99
11

Tiger IR - Stm’s

• Cjump(o, e1, e2, t, f), evaluate e1, then e2,
yielding values of a,b. now compare a to b
using relational operator o. if result is true,
jump to t, else jump to f.

• Seq(s1,s2), statement s1 follows statement s2
• Label(n), define the constant value of name n

to be the current machine code address
• No abstract instructions for procedure entry

or exit



IntermedRep   BGRyder   Spring 99
12

Project Organization: Packages

Parse

Symbol

Semant

Translate

Types

Temp
Util 
Tree

Frame

SPIM

Absyn

Code
Generation

Parsing and 
Lexing

Semantic 
Analysis



IntermedRep   BGRyder   Spring 99
13

Package Absyn

• Class Exp
– ArrayExp,AssignExp, BreakExp, CallExp, ForExp, IfExp, IntExp,

LetExp, NilExp, OpExp, RecordExp, SeqExp, StringExp, VarExp

• Class Dec
– TypeDec, VarDec

• Class Ty
– ArrayTy, NameTy, RecordTy

• Class FieldList

• Class FieldExpList



IntermedRep   BGRyder   Spring 99
14

Package Tree

• Class Exp
– BINOP ,CALL, CONST, ESEQ, MEM, NAME, TEMP

• Class Stm
– SEQ, EXP, JUMP, CJUMP, LABEL, MOVE

• ExpList

• StmList

• Print

Essentially, the job of assignment 5 is to translate Absyn trees to
sequences of Tree trees.



IntermedRep   BGRyder   Spring 99
15

IR vs AST (Appel,p 103,157)

package Tree package Absyn

abstract class Exp abstract class Exp

CONST (int value) IntExp(int pos, int value)

NAME(Label label)

TEMP (Temp.Temp temp)

BINOP (Int binop, Exp left, OpExp(int pos, Exp left, 
 Exp right) int oper, Exp right)

MEM(Exp exp) VarExp(int pos, Var var)

CALL(Exp func, ExpList args) CallExp(int pos,

  Symbol func, Explist args)

ESEQ(Stm stm, Exp exp)



IntermedRep   BGRyder   Spring 99
16

Translating Expressions

• Translation discussed in Chapter 7 talks about
3 sorts of expressions, pp 159ff:

• unExp - a single valued expression
• unNx - an expression that is a statement (yields no value)

• unCx - a conditional expression (that jumps to t or f)

package Translate: abstract class Exp

class Ex   class Nx     abstract class Cx



IntermedRep   BGRyder   Spring 99
17

Translating Expressions

• Use simpler translation scheme (Appel, p 178)

• Translate all expressions as values
– Can think of translating these using one

Translate.Exp class without subclasses with a
member Tree.Exp and only an unEx() method

• unExp translated as usual to an Ex (an expression returning a
value)

• an Nx(s) is translated as Ex(ESEQ(s, CONST(0)))

• For conditionals, use a value expression that evaluates to 0(false)
or 1(true) --more later



IntermedRep   BGRyder   Spring 99
18

ExpTy transExp(Absyn.Exp e)
• Use as a dispatcher method which calls other

methods particularized to translation of a
specific expression’s Absyn AST
– In class Translate.Exp,  Exp(Tree.Exp)

encapsulates its parameter object in a
Translate.Exp object which can be stored in the
first field of an ExpTy object (the field we had
been leaving null in assignment 4)

– Every ExpTy object has one each Translate.Exp,
Types.Type members for intermediate code and
type respectively



IntermedRep   BGRyder   Spring 99
19

What about conditional exprs?
/* if input is Absyn.IfExpr with else clause */

1. generate 3 jump labels - one for true, other for false, one for end of if

2. generate a temp to hold the numerical result

3. create a code sequence which first calculates the test as a value expression,

compares its value versus 0 and then jumps to true label or false label.

4. associate the true label with the code for  the thenclause and jump to

end of if

5. associate the false label with the code for the elseclause and fall through to
end of if.

/* you will probably use JUMP, ESEQ, CONST, CJUMP from
Tree package in combination to translate an IfExpr*/



IntermedRep   BGRyder   Spring 99
20

Memory
• Any intermediate instructions that contain

simple variables will involve accesses to
memory through a frame
– Frame interface to be provided
– Access should be frame_pointer+offset through a

Mem instruction

• Array elements will be addressed as
base_address + subscript*elementsize
– base_address is contents of Frame element

corresponding to the array
– elementsize is assumed same for all data
– subscript is calculated as value of a temp



IntermedRep   BGRyder   Spring 99
21

Memory

• Simple variable
(in frame)

• Array element
(memory-resident

array variable
a[j])

Mem

Binop

Plus Temp  fp Const k

Mem

Plus

Mem Binop
    
   e Mul j Const

  
  w



IntermedRep   BGRyder   Spring 99
22

Translations

• Arithmatic expressions
– Unary negation implemented as subtraction from

0
– Can be translated at first using just CONSTs as

operands to check out transExp() driver and a
small subset of translator routines



IntermedRep   BGRyder   Spring 99
23

Translations - Loops

• While code
 test:  if not(condition) goto done

body

goto test

done:

– Have to identify break statements with the done
label for the closest enclosing loop

– But this has to happen during transExp()
recursive processing of a program expression



IntermedRep   BGRyder   Spring 99
24

Translations - Loops

• For loop - most easily translated by
considering as a form of while
for j := lo to hi  do body   becomes
let var j := lo

     var limit := hi

in while j <= limit

do (body ; j := j+1)

end



IntermedRep   BGRyder   Spring 99
25

Translations - Declarations

• Variables
– Must reserve space for variables on frame
– May need to emit code for intializations using

assignments



IntermedRep   BGRyder   Spring 99
26

Fragments

• Overall program expression is translated into
a list of Fragment objects, one per function
– Also translate String literal pool as a Fragment

• Necessary Fragments package to be supplied


