
Lexical Analysis-1 BGRyder Spring 99
1

Lexical Analysis-1Lexical Analysis-1

• Compilers

• Our first project

• Tokens

• Regular expressions

Lexical Analysis-1 BGRyder Spring 99
2

Compilers and their contextCompilers and their context

Preprocessor

Source
Code with
#Ifdef’s,
#include

Expanded
Source
code

Compiler

Assembly
Language
program

Assembler

Relocatable
Machine
code

Loader/link
editor

Absolute
Machine
code

Lexical Analysis-1 BGRyder Spring 99
3

Inside a CompilerInside a Compiler

Lexical
Analyzer
(scanner)

Parser
(Syntax
Analyzer)

Semantic
Analyzer

Code
Generator

Optimizer
(optional)

Error
handler

Symbol
Table Manager

All above passes
communicate with
this layer.

Lexical Analysis-1 BGRyder Spring 99
4

Course OverviewCourse Overview

• Learn by doing - project orientation;
supplemented by theoretical underpinings -
weekly problem assignments

• Some familiarity with object-oriented
programming essential (C++, Java, ST80)

• Prerequisites are essential

• Class webpage and newsgroup
http://www.cs.rutgers.edu/~ryder/415
ru.nb.dcs.class.415

Lexical Analysis-1 BGRyder Spring 99
5

First Project: Side-Effect-freeFirst Project: Side-Effect-free
InterpreterInterpreter

• Getting familiar with Java
– javac: Java → Java byte code
– java: Java interpreter
– jdb: Java debugger (Must compile .java files with

javac -g)

• Class directory on remus:
/usr/local/class/cs415/sp99/

• Intermediate compiler representations are
often trees, so this assignment practices tree
walking in Java

Lexical Analysis-1 BGRyder Spring 99
6

Grammar Grammar ExerptExerpt

Stm ::= Stm ; Stm %%compound statement

Stm ::= id := Exp %%assignment statement

Stm ::= print (ExpList) %%print statement

Exp ::= num %%NumExp

Exp ::= Exp Binop Exp %%OpExp

Binop ::= + %%Plus | - %%Minus | *%%Times | / %%Div

Appel, Ch 1

Lexical Analysis-1 BGRyder Spring 99
7

Java ClassesJava Classes
public abstract class Stm{}

public class CompoundStm extends Stm

{ public Stm stm1, stm2;

public CompoundStm(Stm s1, Stm s2)

{ stm1=s1; stm2=s2;}}

public class AssignStm extends Stm

{ public String id; public Exp exp;

public AssignStm(String i, Exp e)

{ id = i; exp = e;} }

public abstract class Exp{}

public class NumExp extends Exp

{ public int num;

public NumExp(int n) {num = n;} }

Stm ::= Stm ; Stm

Stm ::= id := Exp

Exp ::= num %%NumExp

Lexical Analysis-1 BGRyder Spring 99
9

First ProjectFirst Project

• Given a simple programming language (PL)
grammar with binary expressions, prints and
sequences of statements

• Identify each nonterminal with an abstract
class

• Extend abstract class by 1 subclass per
production; can think of each instance
variable of the subclass as a tree root if it’s a
nonterminal or as a leaf if it’s a terminal

Lexical Analysis-1 BGRyder Spring 99
10

First Project ConventionsFirst Project Conventions
1. Trees are described by a grammar

2. Each nonterminal in grammar corresponds
to an abstract class

3. Each production has 1 corresponding class

4. For each nontrivial symbol on rhs of
production, there is a field in this class

5. Every class has a constructor for initializing
fields

6. Data fields are immutable.

Lexical Analysis-1 BGRyder Spring 99
11

First ProjectFirst Project

• To traverse the tree you will need to identify
the type of each node as you encounter it

• To interpret the program, you will define a
Table object, essentially a list of
identifier,value pairs and update that list as
necessary to reflect expression evaluation (see
Table class, Appel p13)

• Copy files from
/usr/local/class/cs415/sp99/tiger/chap1/*

Lexical Analysis-1 BGRyder Spring 99
12

First ProjectFirst Project

• To write interpreter without any side effects
– interpStm(), interpExp() are coded as mutually

recursive functions (see grammar, Appel p7)

– A Table object parameter provides values with
which to interpret the Stm or Exp found.

– interpStm() returns a new Table object,
containing any new identifier,value bindings due
to side effects

– interpExp() returns an IntAndTable object so as
to return a Table plus the value of the expression

Lexical Analysis-1 BGRyder Spring 99
13

Relevant Aspects of JavaRelevant Aspects of Java
• Abstract classes - for organizing shared

functionality (instance variables or method
implementations)

• You cannot create an object of an abstract
class type

• Abstract classes assume you will create
subclasses of them

• Can also leave some methods as abstract, that
is, without implementation

Lexical Analysis-1 BGRyder Spring 99
14

Abstract Classes Abstract Classes vs vs InterfacesInterfaces

• Abstract classes can contain method
implementations and instance variables

• Interfaces can contain specifications of
methods, but not implementations and only
constant instance variables (static final)

• A class can inherit from more than 1
interface but only from one class (abstract or
not).

Lexical Analysis-1 BGRyder Spring 99
15

How to check object type?How to check object type?

• Can simulate enumeration types with a kind()
method that returns a different integer value
in each class
– Helps to identify type of tree nodes

• instanceof allows dynamic checks of the type
of a Java object at run-time

Lexical Analysis-1 BGRyder Spring 99
16

Lexical TokensLexical Tokens

• Sequence of characters that form atomic
pieces from which PL’s are built
– E.g., identifiers, reserved words, operators,

delimeters

– In project 1: print, numbers, identifiers, () + * /

• Simple structure definable using regular
expressions (or corresponding regular
grammars)

• Instance of a token called a lexeme

Lexical Analysis-1 BGRyder Spring 99
17

Lexical TokensLexical Tokens

• Examples of tokens and lexemes
id A1
num 2.5
comma ,

• Tokens have associated attributes or values

• Scanner - part of compiler that
– Finds tokens, helps in error handling (in finding

next source line), finds reserved words

– Handles white space. in Fortran: DO 5 I = 1, 25
versus DO 5 I = 2.5

Lexical Analysis-1 BGRyder Spring 99
18

Regular ExpressionsRegular Expressions

• We say ε is an RE representing the language which
only contains the empty string

• a for a terminal a represents the language {a}

• If s,t are REs then s | t represents L(s) union L(t)

• If s,t are REs then s t represents L(s)L(t)
• If s is an RE then s* represents ε union L(s) union

L(s)L(s) union L(s)L(s)L(s)… (Kleene star)

• Examples: (a+) | b c* ={a, aa, aaa, …, b, bc, bcc,
…}, a+ means a a*

Lexical Analysis-1 BGRyder Spring 99
19

Regular ExpressionsRegular Expressions
• Shorthand notation used in JLex

[abcd] means a|b|c|d

[a-z] means a|b|c|…|z
 a? means a | ε
. means any character except newline (\n)

• Examples of JLex specification of tokens
print reserved word

[0-9]+ num

[a-zA-Z]+ ([a-zA-Z] | [0-9])* id

Lexical Analysis-1 BGRyder Spring 99
20

Regular ExpressionsRegular Expressions

• May need to represent special characters
– \t tab, \n newline

• Use “ ” to surround a string that stands for
itself in a regular expression
([0-9]+ “.”[0-9]*) | ([0-9]* “.” [0-9]+) real

(“--”[a-z]*“\n”) pattern of a comment

