
Lexical Analysis-3 BGRyder Spring 99 1

Lexical Analysis - 3

• Handling errors
• JLex - automating lexical analysis

– Project 2
– Example of input to JLex

• Review of context-free grammars
• Intro to bottom up parsing (shift-reduce)

Lexical Analysis-3 BGRyder Spring 99 2

Error Handling

• Panic mode recovery
– Flush to the next well-formed token, if can
– Often go to next statement delimeter (;)
– When want to match something in case the

listed patterns don’t match, don’t use .* because
this pattern will always match the longest string
in the input!

Lexical Analysis-3 BGRyder Spring 99 3

Error Handling

• Sophisticated alternatives (from spelling
correction technology)
– Delete an extra character and rescan
– Insert a missing character
– Replace incorrect character by correct

character
– Transpose 2 adjacent characters

Lexical Analysis-3 BGRyder Spring 99 4

Error Handling

• Empirical evidence
– 60% punctuation errors (;)
– 20% operator/operand errors (= instead of :=)
– 15% keyword errors (e.g., missing “end”)

• Should report site where error is detected
– Line number and character where error is

recognized

• Stay simple in handling
• Sometimes put in error productions to catch

likely errors and provide better messages

Lexical Analysis-3 BGRyder Spring 99 5

JLex - a Scanner Generator

• What is it?
– A program that produces a Java program from

a lexical specification
• User defines each token and actions to be taken when

recognized

• Program produced can communicate with parser

• JLex is written to be like Lex (the original
scanner generator for C - written in C)

• Warning: the error messages generated are
pretty confusing!

Lexical Analysis-3 BGRyder Spring 99 6

Using JLex

• First, run x.lex file through Jlex to produce
x.lex.java, a scanner for the tokens described
in x.lex

• Second, compile x.lex.java to byte code
• Third, write a data file with examples of the

tokens in it
• Fourth, run Parse.Main main method that

creates new Yylex object that can respond to
nextToken() message and return next token

Lexical Analysis-3 BGRyder Spring 99 7

JLex input files

• Section 1 contains package declarations, any
import statements and classes that may be
used by the Java code in the rest of the file

• Section 2 contains RE abbreviations, state
declarations, and directives to JLex (see
manual), including Java code to be included
in the scanner (Yylex())

• Section 3 contains token REs and their
corresponding actions

Lexical Analysis-3 BGRyder Spring 99 8

Example
package Parse; Section 1: package defs and imports
import ErrorMsg.ErrorMsg;
%%
%implements Lexer Section 2: directives to Jlex
%function nextToken
%type java_cup.runtime.Symbol
%char
%{ {%Java code to be included in scanner %}
private void newline() { that is, in the Yylex class, unless it is a class
 errorMsg.newline(yychar); itself
}
private java_cup.runtime.Symbol tok(int kind, Object value) {
 return new java_cup.runtime.Symbol(kind, yychar, yychar+yylength(), value);

kind: token type; beginning and ending
char position of token, semantic value

…

See Appel, Ch2;
Also myTiger.lex

Lexical Analysis-3 BGRyder Spring 99 9

Example
Yylex(java.io.InputStream s,ErrorMsg e) { definition of Yylex constructor

 this(s);
 errorMsg=e;

}
private void err(int pos, String s) { shows how to define an overloaded function, err

 errorMsg.error(pos,s); Java distinguishes between them by parameter

} types

private void err(String s) {

 err(yychar,s);}
private ErrorMsg errorMsg;

%} end of Java code to be included

%eofval{ another Jlex directive; defines actions to be taken at end of input

 { return tok(sym.EOF, null); }
%eofval}

See Appel, Ch2;
Also myTiger.lex

Lexical Analysis-3 BGRyder Spring 99 10

Example
%% section with REs and actions
" " { }
\n {newline(); }

"," {return tok(sym.COMMA, null); } sym class contains defined

values for token types

[0-9]+ {return tok(sym.INT, new Integer(yytext())); } Integer wrapper class

[a-zA-Z]([a-zA-Z]|[0-9])* {return tok(sym.ID, yytext()); }

. {System.out.println (yychar +” illegal character”);} error match when all
other patterns fail

NOTE: errors are usually traceable to some mistake in your REs or their
associated actions; For example, one error we had was to put {} rather
than { } for an empty action (the second set of braces is separated by a
blank). JLex is picky so be fastidious!

See Appel, Ch2;
Also myTiger.lex

Lexical Analysis-3 BGRyder Spring 99 11

JLex

• To use JLex, you will have to augment your
CLASSPATH to access some packages (see
project 2 webpage)

• JLex uses the Symbol class which is defined
in the java_cup.runtime package
Class Symbol

int sym; /*token type*/
int left, right; /*position in source file*/
Object value; /*semantic value*/
Symbol(int s,int l, int r, Object v){ /*constructor*/

sym=s; left=l; right=r; value=v;}

Lexical Analysis-3 BGRyder Spring 99 12

JLex

• yytext() always returns the string matched
by the regular expression

• yychar returns the beginning position of that
string (remember the 1st position is 0)

• You can use System.out.println statements
liberally in your actions to try to see where
your errors are occurring.

Lexical Analysis-3 BGRyder Spring 99 13

makefile
JFLAGS=-g shows dependences between program parts

helps to build large systems

Parse/Main.class: Parse/*.java Parse/Yylex.java

javac ${JFLAGS} Parse/*.java

Parse/Yylex.java: Parse/Tiger.lex dependences shown

cd Parse; java JLex.Main Tiger.lex; a:b a depends on b

 mv Tiger.lex.java Yylex.java

ErrorMsg/ErrorMsg.class: ErrorMsg/*.java

javac ${JFLAGS} ErrorMsg/*.java

clean:

rm Parse/*.class ErrorMsg/*.class Parse/Yylex.java

Lexical Analysis-3 BGRyder Spring 99 14

main() in Parse.Main class
 public static void main(String argv[]) throws java.io.IOException {
 String filename = argv[0];

 ErrorMsg errorMsg = new ErrorMsg(filename);
 java.io.InputStream inp=new java.io.FileInputStream(filename);

 Lexer lexer = new Yylex(inp,errorMsg); create new scanner as Yylex object

 java_cup.runtime.Symbol tok; with its own input stream and error
 handler

 do {

 tok=lexer.nextToken();
 System.out.println(symnames[tok.sym] + " " + tok.left);

 } while (tok.sym != sym.EOF);

 inp.close();
 }

Lexical Analysis-3 BGRyder Spring 99 15

New Java Features

• Interfaces (e.g., Lexer)
• Envelope classes (e.g., Integer)

– Needed because everything in Java is an object
– A consistent way of integrating primitive types

in an OOPL
– A way of doing input cleanly, so every value

read on input is a String which is then converted
to, for example, Integer objects that then can
have their int values accessed.

– Envelope classes: Integer, Double, Character,
Boolean

Lexical Analysis-3 BGRyder Spring 99 16

Integer Class

• Interface (partial)
Integer (int value); //creates an Integer object
int IntValue();//obtains int value from Integer

receiver
Integer valueOf(String s);//class method which

converts a String object to an Integer object
Integer Iobj = new Integer (5);

System.out.println(Iobj.intValue());

 String item = nextToken();
 (Integer.valueOf(item.trim())).intValue();

class method, class Integer

String method
Integer method

Lexical Analysis-3 BGRyder Spring 99 17

Class Methods and Variables

• Class methods are something like utility
procedures requiring no receiver object
– Invoked by <class-name>. <method-name>
– Defined by static keyword
– Often used to change values of class variables

• Class variables are shared by all objects in
the class (i.e., static)
– Values can be changed only by class methods
– Only one copy of each class variable for all

objects in the class

Lexical Analysis-3 BGRyder Spring 99 18

Context-free Grammars

• Grammar consists of
– Terminal symbols
– Nonterminal symbols
– Rules for forming nonterminals from sequences

of terminals and nonterminals
– Distinguished symbol

• If rules are of form nonterminal alone on left
hand side, grammar is context-free

Lexical Analysis-3 BGRyder Spring 99 19

Definitions to Review

• Canonical derivation
• Parse tree
• Ambiguity
• Precedence

G ::= E
E ::= E + E | E * E | F
F ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
G-->E-->E+E-->1+E-->1+E+E-->1+2+E-->1+2+3
G-->E-->E+E-->E+E+E-->1+E+E-->1+2+E-->1+2+3

G

E

E + E

E + E1

2 3

G

E

E + E

E + E

1 2

3

Lexical Analysis-3 BGRyder Spring 99 20

Parsing

• Is reverse of doing a derivation
• By looking at the terminal string, effectively

try to build the parse tree from the bottom
up

• Finding which sequences of terminals and
nonterminals form the right hand side of
production and reducing them to the left
hand side nonterminal

Lexical Analysis-3 BGRyder Spring 99 21

Shift-reduce Parsing

• Handle- substring which is right hand side of
some production; corresponds to the last
expansion in a rightmost derivation

• Replacement of handle by its corresponding
nonterminal left hand side, results in
reduction to the distinguished nonterminal
by a reverse rightmost derivation

• Parse works by shifting symbols onto the
stack until have handle on top; then reduce;
then continue

Lexical Analysis-3 BGRyder Spring 99 22

Example
S → Ε (1)
Ε → Ε + Τ (2)
Ε → T (3)
T → id (4)

Rightmost derivation of
a+b+c, handles in red
S → E
 → Ε + Τ
 → Ε + id

→ Ε + Τ + id
 → Ε + id + id
 → T + id + id
 → id + id + id

S

E

E + T

idE + T

idT

id

Lexical Analysis-3 BGRyder Spring 99 23

Shift-Reduce Parser, Example
Actions: shift, reduce, accept, error
Stack Input Action
$ id1 + id2 + id3 $ shift
$ id1 + id2 + id3 $ reduce (4)
$ T + id2 + id3 $ reduce (3)
$ E + id2 + id3 $ shift
$ E + id2 + id3 $ shift
$ E + id2 + id3 $ reduce(4)
$ E + T + id3 $ reduce (2)
$ E + id3 $ shift
$ E + id3 $ shift
$ E + id3 $ reduce (4)
$ E + T $ reduce(2)
$ E $ reduce (1)
$ S $ accept

S → Ε (1)
Ε → Ε + Τ (2)
Ε → T (3)
T → id (4)

Lexical Analysis-3 BGRyder Spring 99 24

Possible Problems

• Can get into conflicts where one rule implies
shift while another implies reduce
S → if E then S | if E then S else S

On stack: if E then S
Input: else
Should shift trying for 2nd rule or reduce by first

rule?

Lexical Analysis-3 BGRyder Spring 99 25

Possible Problems

• Can have two grammar rules with same
right hand side which leads to reduce-reduce
conflicts
A → α and B → α both in grammar
When α on stack, how know which production
choose? That is, whether to reduce to A or B?

