
machIndepOpts, Spring 99 © by B.G. Ryder
1

Machine IndependentMachine Independent
OptimizationsOptimizations

• Two classical data-flow problems

– Reaching definitions

– Live variables
• UD, DU Chains

machIndepOpts, Spring 99 © by B.G. Ryder
2

DefinitionsDefinitions

Flow analysis:
Fact finding about a program before its
execution

Control-flow analysis:
Discerning possible execution paths.

Data-flow analysis:
Determining information about modification,
preservation, and use of data entities in a
program.

Two classic data-flow problems

Reaching definitions (REACH), Live uses of
variables (LIVE)

Def-use and Use-def chains, built from
REACH and LIVE, used for many
optimizations

machIndepOpts, Spring 99 © by B.G. Ryder
3

Reaching Definitions (REACH)Reaching Definitions (REACH)

Definition:

A statement that can modify the value of a
variable.

A definition of a variable x at node k
reaches node n if there is a definition-
clear path from k to n.

k

n

x = ...

... = x

x = ...

machIndepOpts, Spring 99 © by B.G. Ryder
4

Live Uses of Variables (LIVE)Live Uses of Variables (LIVE)

Use:

An appearance of a variable as an
operand in 3 address code.

A use of a variable x at node n is live on
exit from node k if there is a definition-
clear path for x from k to n.

k

n

x = ...

... = x

x = ...

machIndepOpts, Spring 99 © by B.G. Ryder
5

REACH and LIVEREACH and LIVE

k

n

x = ...

... = x

x = ...

UD- Chain:

Links each use of variable x to
definition(s) which reach that use.

DU - Chain:

Links each definition of variable x to
those uses which that definition can
reach.

machIndepOpts, Spring 99 © by B.G. Ryder
6

Global Optimizations NeedingGlobal Optimizations Needing
DU - UD ChainsDU - UD Chains

• Live ranges for global register
allocation(DU)

• Dead code elimination (DU)

• Code motion (UD)

• Strength reduction (UD)

• Test elision (UD)

• Constant propagation (UD)

• Copy propagation (DU)

machIndepOpts, Spring 99 © by B.G. Ryder
7

Reaching DefinitionsReaching Definitions

Reach(m1) Reach(m2) Reach(m3)

m1 m2 m3

Reach(j)j

forward
data-flow
problem

machIndepOpts, Spring 99 © by B.G. Ryder
8

Data-Flow EquationsData-Flow Equations

REACH

Reach(j) =
 ∪ { Reach(m) ∩ pres(m) ∪ dgen(m) }

where:
pres(m) is the set of defs

preserved through node m

dgen(m) is the set of defs
generated at node m

pred(j) is the set of immediate
predecessors of node j

 m ∈ pred(j)

machIndepOpts, Spring 99 © by B.G. Ryder
9

Live Uses of VariablesLive Uses of Variables

Live(m1) Live(m2) Live(m3)

m1 m2 m3

Live(j)
j

backward
data-flow
problem

machIndepOpts, Spring 99 © by B.G. Ryder
10

Data-Flow EquationsData-Flow Equations

Live(j) =

 ∪ { Live(m) ∩ upres(m) ∪ ugen(m) }

where:

upres(m) is the set of uses
preserved through node m

ugen(m) is the set of uses
generated at node m

succ(j) is the set of immediate
successors of node j

LIVE

m ∈ succ(j)

machIndepOpts, Spring 99 © by B.G. Ryder
11

Data-flow EquationsData-flow Equations

Compare with textbook’s equations, in[n]
holds on entry to the node; out[n]
holds on exit from the node.

in[n] := use[n] ∪ (out[n] - def[n])

out[n] := ∪ in[s]

out[n] = (use[s1] ∪ (out[s1] - def[s1])) ∪

(use[s2] ∪ (out[s2] - def[s2]))

where use==ugen,

out - def == out ∩ upres

 s ∈ succ(n)
out[n]

n

s1 s2

in[s1] in[s2]

out[s2]out[s1]

machIndepOpts, Spring 99 © by B.G. Ryder
12

Constant PropagationConstant Propagation

=5*i+3

i=1

i=1

i=2

=i*2
i=1

p:

q:

machIndepOpts, Spring 99 © by B.G. Ryder
13

Constant PropagationConstant Propagation

=5*i+3

i=1

i=1

i=2

=i*2
i=1

p:

At program point p, UD chain shows all definitions
reaching this use are constant - but not the same
constant.

∴ No propagation.

q:

machIndepOpts, Spring 99 © by B.G. Ryder
14

Constant PropagationConstant Propagation

= 5*i+3
= 8

i=1

i=1

i=2

 =i*2
i=1

At program point q, UD chain shows all defs
reaching this use are constant - and the same
constant.

p

q

