Parsing - 1

- What is parsing?
- Shift-reduce parsing
- Shift-reduce conflict
- Reduce-reduce conflict
- Operator precedence parsing

Parsing

- Parsing is the reverse of doing a derivation
- By looking at the terminal string, effectively try to build the parse tree from the bottom up
- Finding which sequences of terminals and nonterminals form the right hand side of production and reducing them to the left hand side nonterminal

Shift-reduce Parsing

- Handle- substring which is right hand side of some production; corresponds to the last expansion in a rightmost derivation
- Replacement of handle by its corresponding nonterminal left hand side, results in reduction to the distinguished nonterminal by a reverse rightmost derivation
- Parse works by shifting symbols onto the stack until have handle on top; then reduce; then continue

Example

$$
\begin{array}{lr}
\hline \mathbf{S} \rightarrow \mathrm{E} & (1) \\
\mathrm{E} \rightarrow \mathrm{E}+\mathrm{T}(2) \\
\mathrm{E} \rightarrow \mathbf{T} & \text { (3) } \\
\mathbf{T} \rightarrow \boldsymbol{i d} \tag{4}
\end{array}
$$

Example

	ept, error
\$	id1 + id2 + id3 \$
\$ id1	+ id2 + id3 \$
\$ T	+ id2 + id 3 \$
\$ E	+ id $2+\mathrm{id} 3$ \$
\$ E +	id $2+\mathrm{id} 3$ \$
\$ E + id2	+id3 \$
\$ E + T	+id3 \$
\$ E	+id3 \$
\$ E +	id3 \$
\$ E + id3	\$
\$ E + T	\$
\$ E	\$
\$ S	\$

	$\begin{aligned} & \mathrm{S} \rightarrow \mathrm{E} \\ & \mathrm{E} \rightarrow \mathrm{E}+\mathrm{T}(1) \\ & \text { (2) } \end{aligned}$
	$\mathrm{E} \rightarrow \mathrm{T}$
Action	$\mathrm{T} \rightarrow$ id (4)
shift	
reduce (4)	
reduce (3)	
shift	
shift	
reduce(4)	
reduce (2)	
shift	
shift	
reduce (4)	
reduce(2)	
reduce (1)	
accept	

Possible Problems

- Can get into conflicts where one rule implies shift while another implies reduce $S \rightarrow$ if E then $S \mid$ if E then S else S
On stack: if E then S
Input: else
Should shift trying for 2nd rule or reduce by first rule?

Possible Problems

- Can have two grammar rules with same right hand side which leads to reduce-reduce conflicts
$A \rightarrow \alpha$ and $B \rightarrow \alpha$ both in grammar
When α on top of the stack, how know which production choose? That is, whether to reduce to A or B?
- In both kinds of conflicts, problem is with the grammar, not necessarily the language
- Recall, there can be many context-free grammars corresponding to the same language!

Shift-Reduce Parsing

- Actions
- Shift - push token onto stack
- Reduce - remove handle from stack and push on corresponding nonterminal
- Accept - recognize sentence when stack contains only the distinguished symbol and input is empty
- Error - happens when none of the above is possible; means original input was not a sentence!

Handles

- Any string of terminals and nonterminals derived from the distinguished nonterminal is called a sentential form
- If grammar is unambiguous, then each right sentential form has a unique handle
$\mathbf{Z} \underset{\mathrm{rm}}{\stackrel{*}{\rightarrow}} \alpha \mathbf{A} \mathbf{w} \rightarrow \alpha \beta \mathbf{w}$,
where α is a mixture of terminals and nonterminals; β is the handle;
and w is a string of terminals

A Handle in the Parse Tree

Ambiguity Example

$\mathrm{Z} \rightarrow \mathbf{E}$
$\mathbf{E} \rightarrow \mathbf{E}$ or $\mathbf{E} \mid \boldsymbol{a}$
Two rightmost derivations (handles in red):
$\mathbf{Z} \rightarrow \mathbf{E} \rightarrow \mathbf{E}$ or $\mathbf{E} \rightarrow \mathbf{E}$ or $a \rightarrow \mathbf{E}$ or \mathbf{E} or $a \rightarrow \mathbf{E}$ or a or $a \rightarrow$ aoraora
$\mathbf{Z} \rightarrow \mathbf{E} \rightarrow \mathbf{E}$ or $\mathbf{E} \rightarrow \mathbf{E}$ or \mathbf{E} or $\mathbf{E} \rightarrow \mathrm{E}$ or \mathbf{E} or $a \rightarrow$
Eor a or a \rightarrow a or a or a
Shift a, reduce to E, shift or, shift a, reduce to E (now have E or \mathbf{E} on stack). In deriv1, reduce \mathbf{E} or \mathbf{E} to \mathbf{E}. In deriv2 shift or and a onto stack. SHIFT-REDUCE conflict.

Justification of Handle Use

- How can we be sure that the handle will always be at the top of the stack?
- Conventions: Greek letters for strings of terminals and nonterminals. Arabic letters for strings of terminals only. Capital letters are nonterminals.
- The following is a rightmost derivation:

Case 1: A's production contains a rightmost nonterminal B.

$$
\underset{\mathbf{Z}}{\mathbf{B} \xrightarrow{*} \boldsymbol{m}} \alpha \underset{\sim}{A} \mathbf{q} \underset{\mathrm{rm}}{\rightarrow} \alpha \beta \mathbf{B} \mathbf{y} \mathbf{q} \underset{\mathrm{rm}}{\rightarrow} \alpha \beta \gamma \mathbf{y} \mathbf{q}, \text { where }
$$

Justification, cont.

Stack will contain $\$ \alpha \beta \gamma$ with $\mathbf{y q}$ in the input. This will be reduced to $\$ \alpha \beta B$ with yq still in the input.
Handle can't be below B in the stack or else the derivation would have to have been:
...X...B \rightarrow... $\delta . . . B$ with δ in the $\alpha \beta$ on the stack. But this isn't a rightmost derivation, because B is to the right of X and X is being expanded first! \#CONTRADICTION

Justification, cont.

Therefore handle must contain B and it is not "buried" in the stack.

Assume the handle is $\beta B y$ (β or y may be empty)
Case 2: A's production does not contain a nonterminal
$\mathbf{Z} \underset{\mathrm{rm}}{\stackrel{*}{\rightarrow}} \alpha \mathbf{C} \times \mathbf{A} \underset{\mathrm{rm}}{\rightarrow} \alpha \mathbf{C} \times \mathbf{y} \underset{\mathrm{rm}}{\rightarrow} \alpha \gamma \times \mathbf{y} \mathbf{r}$ where $\mathrm{A} \rightarrow \mathrm{y}$ and $\mathrm{C} \rightarrow \gamma$

Justification, cont.

- Stack will contain $\$ \alpha \gamma$ with input $x y r$. This will be reduced to $\$ \alpha C$, and then x and y will be shifted onto stack. Then $\$ \alpha C x y$ will be reduced to $\$ \alpha$ CxA on the stack with r remaining in the input.
- So the handle is not buried in the stack.

Operator Precedence Parsing

 ASU, Ch 4.6- A simplified bottom up parsing technique used for expression grammars
- Requires
- No right hand side of rule is empty
- No right hand side has 2 adjacent nonterminals
- Drawbacks
- Small class of grammars qualify
- Overloaded operators are hard (unary minus)
- Parser correctness hard to prove

Operator Precedence

- Define three precedence relations
$-\mathrm{a}<\mathrm{b}$, a yields in precedence to b
$-\mathbf{a}>\mathbf{b}$, a takes precedence over b
$-\mathbf{a}=\mathbf{b}$, \mathbf{a} has same precedence as b
- Find handle as <====> pattern at top of stack;
- Check relation between top of stack and next input symbol
- Basically, ignore nonterminals

Example

$\mathbf{Z} \rightarrow \mathbf{E}$
$\mathbf{E} \rightarrow \mathrm{E} * \mathrm{E}|\mathrm{E}+\mathrm{E}|$ id
Define precedence relations between + and $*$.
$+\langle *, *\rangle+,+\rangle+, *\rangle$ (last 2 ensure left associativity)
Form table of precedences. Now parse using the table, and keep track of the operand nonterminals, too. Sometimes can embed error

	id	+	$*$	$\$$
id		$>$	$>$	$>$
+	$<$	$>$	$<$	$>$
$*$	$<$	$>$	$>$	$>$
$\$$	$<$	$<$	$<$	

Example

Compare top of stack token to next input token.

Stack
$\$$
$\$<\mathbf{i d} 1$
$\$ \mathbf{E}$
$\$ \mathbf{E}+$
$\$ \mathbf{E}+<\mathrm{id} 2$
$\$ \mathbf{E}+\mathbf{E}$
$\$ \mathbf{E}+\mathbf{E} *$
$\$ \mathbf{E}+\mathbf{E} *<\mathbf{i d} 3$
$\$ \mathbf{E}+<\mathbf{E} * \mathbf{E}$
$\$<\mathbf{E}+\mathbf{E}$
$\$<\mathbf{E}$
accept

Compares Input
id1 + id2 * id3 \$
+id2 * id3 \$
+id2 * id3 \$
id2 * id3 \$

* id3 \$
* id3 \$
id3 \$
\$
\$
\$
\$

Making OP parsing practical

- How to store these precedences compactly?
- Precedence functions
- Find functions f(), g() such that
- $f($ token 1$)>g($ token 2$)$ means token $1>$ token 2
- $f($ token 1$)=g($ token 2$)$ means token $1=$ token2
- f(token1) < g(token2) means token1 < token2
- Graph partitioning algorithm to find $f(), g()$ if possible.

Precedence Functions

- Form graph from table of precedences
- Nodes formed by f(token1),f(token2),...g(token1) etc.
- Form equivalence classes of nodes based on the $=$ relation (equal precedence, e.g., */)
- Edges show required relations between function values
- If token1 > token2, then $f($ token 1$)-->g(t o k e n 2)$
- If token1 < token2, then $f($ token1)<--g(token2)
- If the graph is acyclic, then can find integer value assignments for the range values of f, g.
- Let value of $f($ token 1$)$ be the length of the longest path from the node representing $f($ token1)

Example

