
Parsing-2   BGRyder   Spring 99 1

Parsing - 2

• LR(0) parsing
– Closures and goto sets

• SLR parsing
– Using FOLLOW sets

• LR(k) parsing
– Using lookaheads



Parsing-2   BGRyder   Spring 99 2

LR(0) parsing

• LR(k) parsing
– Left-to-right parse, Rightmost derivation, k-

token lookahead
– Recognize virtually all real programming

languages
– Detects a syntax error as soon as possible in a

left to right scan of the input stream
– Most powerful shift-reduce parsing method, yet

efficient to implement



Parsing-2   BGRyder   Spring 99 3

Building a Parser

• How to build the DFA which is the decision
maker for the stack parser in last lecture?
– Need a stack which takes <state,symbol> pairs
– Transition table contains four kinds of actions:

• shift into state n  (s n)

• reduce by rule y  with lefthandside X and then goto
state m (r y + goto entry  when X on top of stack) ; this
is where actions occur

• accept
• error



Parsing-2   BGRyder   Spring 99 4

LR(0) Parsing

• Given parser in state s  and token j  is next,
parser does action [s, j] in transition table

actions

gotos

LR parser

stack with
state, symbol 
pairs

Input: a1 a2 a3 a4...
sn   j n
sn-1  j n-1
sn-2  j n-2



Parsing-2   BGRyder   Spring 99 5

Example

• Start with distinguished symbol rule and
build start state

S’  → S grammar
S  → a S b | ab
I0 :  S’ → . S start state

• Then add in closure items
       I0 :  S’ → . S

                   S  → . aSb
                   S  → . ab

• Now look for states to transition to on inputs
or to goto if top of stack is a nonterminal



Parsing-2   BGRyder   Spring 99 6

Example

• Transition from I0 on an a to I1
I1 :  S  → a . S b
       S  → a . b

• Now add in closure items to complete I1

 I1 :  S  → a . S b
            S  → a . b
            S  → . aSb

        S  → . ab

• Continue like this until have all the states
and transitions



Parsing-2   BGRyder   Spring 99 7

Example
I3 : S’ →  S .

A very simple grammar:
S’  → S
S  → a S b | ab
First, build states from items.
I0 :  S’ → . S
       S  → . aSb I2 : S  → a  S . b

   S  → . ab

I1 :  S  → a . S b I4 :  S  → a  b.
       S  → a . b
       S  → . aSb I5 :  S  → a  S b .

  S  → . ab

closure(S)

closure(S)

I1  = goto (I0 , a)
I1 = goto (I1 , a)

I3  = goto (I0 , S)

I2  = goto (I1 , S)

I4  = goto (I1 , b)

I5  = goto (I2 , b)



Parsing-2   BGRyder   Spring 99 8

Example

I0 I1 I2 I5

I4I3

a
S b

S b

a

Recognizes prefixes
of right sentential
forms 



Parsing-2   BGRyder   Spring 99 9

Encoding the parser

states\inputs actions gotos

a b $ S

0 s1 _ _ 3

1 s1 s4 _ 2

2 _ s5 _

3 _ _ accept
4 r(iii) r(iii) r(iii)

5 r(ii) r(ii) r(ii)

If A  → α . a β in Ik and 
goto(Ik  , a) = Ij  table entry
for (k,a) is sj for a terminal
symbol. 

If A  → α . in Ik then table
entry for (k,b) is r(rule#)
where b is any input symbol.

If S’ → S.  in Ik then table
entry for (k,$) is accept.



Parsing-2   BGRyder   Spring 99 10

Example

stack input action
$ 0 aabb$ s1
$ 0 a 1 abb$ s1
$ 0 a 1 a 1 bb$ s4
$ 0 a 1 a 1 b 4 b$ r(iii), goto(1,b) = 2
$ 0 a 1 S 2 b$ s5
$ 0 a 1 S 2 b 5 $ r(ii), goto(0,$)=3
$ 0 S 3 $ accept

states/inputs actions gotos
a b $ S

0 s1 _ _ 3
1 s1 s4 _ 2
2 _ s5 _
3 _ _ accept
4 r(iii) r(iii) r(iii)
5 r(ii) r(ii) r(ii)



Parsing-2   BGRyder   Spring 99 11

SLR(1)
• Previous parser is called LR(0) because we

used no knowledge of the input
• SLR(1) is a somewhat stronger parser that

adds knowledge about next input symbol
– Sometimes needed to break shift-reduce conflicts
– Need to precompute information about the

grammar (from the rules) to use in parsing



Parsing-2   BGRyder   Spring 99 12

SLR(1)

•  Follow set: the set of terminals which can
follow a specific nonterminal in a rightmost
derivation
– New rule for reduce: only reduce when next

input symbol is an element of Follow set of the
resulting nonterminal

– In the previous example, we would eliminate
reductions in states 4,5 on a because this can’t be
followed by a

– Follow sets are used also in top down parsing



Parsing-2   BGRyder   Spring 99 13

Shift/Reduce Conflict
S’ → S
S  → A b | d c | b A c
A  → d
A very simple language = {db, dc, bdc}
Follow(S) = {$}, Follow(A) = {b,c}
Form part of the SLR(1) parser:
I0  : S’ → . S I1 : S → d . c
       S → .A b       A → d.
       S → .dc But since c  is in Follow(A), we don’t

   S → .b A c know whether to reduce or shift in state
       A → .d I1  if c  is next input symbol!

Deriv1: S’ → S → dc; Deriv2; S’ → S → bAc → bdc



Parsing-2   BGRyder   Spring 99 14

Reduce/Reduce Conflict

S’ → S         Deriv1: S’ → S →Ac → dc
S → b A e | b B d | A c       Deriv2: S’ → S → bBd →bEcd →bdcd
A → d         Deriv3: S’ → S → bAe → bde
B → E c
E → d

I0 : S’ →. S I1 : S → b . A e  I2 : A → d.
      S → . b A e       S → b . B d        E → d.

 S → . b B d       A → . d    Which reduction to take?
      S → . A c       B → . E c      Follow set too imprecise 

A → .d       E → . d     here to decide.



Parsing-2   BGRyder   Spring 99 15

LR(k)

• Solution: keep more information about what
next input symbol can be on any parse
– Idea: keep an input lookahead as part of each

item
– More precise than Follow sets which essentially

union these lookaheads for nonterminal A over
all sentential forms in which the A appears

– Potentially gives rise to much bigger parsers
than SLR(1) (more states)



Parsing-2   BGRyder   Spring 99 16

LR(k)

• LR(k)  looks k symbols ahead into the input
• There are some grammars which are not

parsable with only  k lookahead symbols
• Most computer programming languages are

LR(k)



Parsing-2   BGRyder   Spring 99 17

LR(1) Idea

S’ → S        Deriv1: S’ → S →Ac → dc
S → b A e | b B d| A c       Deriv2: S’ → S → bBd →bEcd →bdcd
A → d         Deriv3: S’ → S → bAe → bde
B → E c
E → d

I0 : S’ →. S, $ I1 : S → b. A e,$ I2 : A → d., e
      S → . b A e, $       S → b . B d,$       E → d., c

 S → . b B d, $       A → .d, e       Now can distinguish
      S → . A c, $       B → . E c, d    derivations by next

 A → .d,c       E → .d, c         expected input symbol.
However potential to generate more states.



Parsing-2   BGRyder   Spring 99 18

LR(1) Example

S’ → S I2 : S → b. B d, $
S → a A d | b B d| a B e | b A e       S → b. A e, $
A → c       B → .c, d
B → c       A →.c, e

I0 : S’ → . S , $ I1 : S → a . B e,$ I3 : A →c., d
  S → .a A d, $       S → a. A d, $       B →c., e
  S → .b B d, $       B → .c, e
  S → .a B e, $       A →.c, d I4 : A →c., e
  S → .b A e, $       B →c., d

a
c

b

c

I3 is for ace  and acd;
I4 is for bcd  and bce

Fill in the 8 missing states.


