
RuntimeSystem BGRyder Spring 99
1

Runtime System

• First more about symbol tables
– See AbsractSyntax2 lecture

• Procedure activations
• Activation records
• Runtime stack
• Register save disciplines
• Lexical scoping and static links

RuntimeSystem BGRyder Spring 99
2

Symbol Tables

• In Tiger compiler, symbol tables are not
persistent
– Built, mutated and used during type checking
– Implications

• Not built during parsing

• Types need to be embedded in AST entries or cannot
be used by later compiler phases (e.g., block structure
and its locals) because of destructive updates to Table
objects

RuntimeSystem BGRyder Spring 99
3

Symbol Tables - Alternatives

• Build one symbol table per scope
• Keep list of currently active symbol tables for

correct lookup

• Keep list of ALL symbol tables and thread
them together by the lexical relationships of
their corresponding scopes

• Can build as parse declarations
• Can save for debugging or profiling usage

RuntimeSystem BGRyder Spring 99
4

 Job of Runtime System
• Names versus data objects

– Same name can refer to different data objects
during execution; runtime system provides the
mapping

• Procedure activations
– Each time a procedure is called, a new activation

of that procedure occurs within an environment
(who called it? where it was called from? what
declarations are active at call site?)

– Recursion - a new activation of same procedure
can start before an earlier activation has ended

RuntimeSystem BGRyder Spring 99
5

Activation Lifetime

• Lifetime of an activation of p: sequence
between first and last steps in execution of
procedure body, including time spent
executing any procedures called from p

• Block structured languages allow only nested
procedure lifetimes
– Allows use of stack to define runtime

environment
– Can show relations in procedure activation tree

RuntimeSystem BGRyder Spring 99
6

Procedure Activation Tree

• Each node is a procedure activation, each
edge represents opening an activation while
the parent activation is still open

• Flow of control in program is depth-first
traversal of activation tree

• A node a is to left of node b in tree, if lifetime
of a occurs before lifetime of b

• Root is main program activation

RuntimeSystem BGRyder Spring 99
7

Example

main

{ fact(x){…fact(x-1)}

fib(y) { … fib(y-1)+fib(y-2)}
fact(5)

fib(4)

}

main

fact(5)

fact(4)

fact(3)

fact(2)

fact(1)

fib(4)

fib(3)

fib(2) fib(1)

fib(1)

RuntimeSystem BGRyder Spring 99
8

Procedure Activation Tree

• Depth first traversal of procedure activation
tree represents the sequence of procedure
activations as they occur during execution

• During traversal, stack of procedures on
current path represents currently active
procedures
– Sometimes called the control stack

RuntimeSystem BGRyder Spring 99
9

Q’s re:Runtime Support

• Is recursion allowed?
• Can a procedure refer to non-local names?
• How are parameters passed?
• Are functions/procedures first class?
• How can storage be dynamically allocated

and deallocated?

RuntimeSystem BGRyder Spring 99
10

Imperative PL Memory Model

Code
Global static data
Runtime Stack

Heap

fixed size at
compile time

used for dynamically
growing data

contains
activation frames

RuntimeSystem BGRyder Spring 99
11

Runtime Stack

• Frames on stack for each activation which has
not yet ended (open function/procedure calls)
– Calls and corresponding returns are LIFO
– When called, push the function’s frame onto

stack
– On return from the function, remove its frame

• Dedicated register always points to stack_top

• Exact frame contents depends on architecture
and convention

RuntimeSystem BGRyder Spring 99
12

Tiger Activation Record

• Stored in fixed order in frame; frame pointer
points to frame beginning; fields at offsets

• Static link to encompassing scope
• Local (non-aggregate) variables
• Return address to branch to in code
• Temporaries (used in function code)
• Saved register contents
• Storage for outgoing arguments

RuntimeSystem BGRyder Spring 99
13

Runtime Stack (Appel, p 133)

arg n
...
arg2
arg1
static link
local variables
return address
temps
saved registers
arg m
…
arg 1
static link

incoming
arguments

frame pointer

outgoing
arguments

previous frame

current frame

stack pointer

high addresses

low addresses

RuntimeSystem BGRyder Spring 99
14

Local Non-fixed Size Data

• In a PL with local dynamic storage allocation,
(e.g., non-fixed length parameters A(N))
– Put descriptor for data in fixed size portion of

frame
– Later, allocate storage needed at end of frame in

variable length portion

RuntimeSystem BGRyder Spring 99
15

Context Switching - Registers

• Register contents are saved before context
switching into another procedure
– Callee-save versus Caller-save disciplines
– Contents always saved in frame of saver
– Set by convention of hardware
– Often choose to keep values in registers for

efficiency

RuntimeSystem BGRyder Spring 99
16

Parameter Passing

• By value

• By value result (copy in, copy out)
• By result
• By reference

• By name (by thunk)
Most common mechanisms in italics. Choice

affects how to implement context switching.

RuntimeSystem BGRyder Spring 99
17

Calling Context Switching

• Conventional to pass first few parameters in
specific registers (4-6)

• May need to save registers to put the
argument values into them; Why practical?
– Most procedures are leaves of calling structure
– Interprocedural register allocation allows

parameter passing in different registers
– Needn’t ever save dead variables
– Register windows give fresh set of registers to

each called function

RuntimeSystem BGRyder Spring 99
18

Calling Context Switching
• When a call occurs:

– Caller evaluates actuals and stores them in
callee’s activation record

– Caller stores code return address and stack_top
value in callee’s activation record

– Caller increments stack_top to point within
callee’s activation record to beginning of local
storage

– Callee saves registers into its activation record
– Callee initializes local data and begins execution

Callee saves

RuntimeSystem BGRyder Spring 99
19

Calling Context Switching

• On return from a call
– Callee stores its return value in its activation

record
– Callee restores stack_top to its former value and

restores registers
– Caller can copy return value into its own

activation record

Callee saves

RuntimeSystem BGRyder Spring 99
20

Parameters

• Some conventions are troublesome
– C requires all parameters be in consecutive

storage words
– C allows parameters to have their address taken

(dangling pointer problem)

RuntimeSystem BGRyder Spring 99
21

Return Address

• Address of code instruction right after the call
statement

• Put in a designated register by the calling
procedure

• Return value of a function is also usually
returned in a register

RuntimeSystem BGRyder Spring 99
22

Why ever write to memory?

• Variable is passed by reference
• Variable used in nested procedure
• Value too big to fit in a single register
• Variable is an array
• Register holding variable is needed for

another specific purpose
• Too many local+temp variables to fit all in

registers

