
RuntimeSystem2  BGRyder Spring 99
1

Runtime System- 2

• Lexical scoping - how to manage with stack
– Use of display

• How to handle dynamic scope?
• Heap allocation

RuntimeSystem2  BGRyder Spring 99
2

Managing Lexical Scoping

• Nested procedure definitions or nested
begin/end blocks or let expressions

• Conceptually can treat let expression as an
unnamed procedure with its own frame

• Display - an invention used with Algol60 to
help with lookup in nested lexical scopes
– Display array has pointers into runtime stack

for each lexically encompassing environment
– Display_top pointer keeps track of current scope

RuntimeSystem2  BGRyder Spring 99
3

Display

• An array such that d[j] points to the frame of
procedure at nesting depth j, where d[1]
points to main’s frame

• How to maintain?
– When procedure p’s frame is put on runtime

stack and p’s declaration is nested at level j,
then save value of d[j] in the new frame and
make d[j] point to the new frame

– When p’s frame is popped from the stack restore
the value of d[j]

RuntimeSystem2  BGRyder Spring 99
4

Examplemain
 proc q()

proc x()
L4: w();
L5:...
end x;
proc p()
L3: x();
end p;

 L2: p();
 end q;
 proc w()
 end w;
L1: q();
end main

main

q()

d[1]

d[2]

d[3]

After execution of L1

main

q()

d[1]

d[2]

d[3]
p()

After execution of L1; L2

RuntimeSystem2  BGRyder Spring 99
5

Example
main

q()

d[1]

d[2]

d[3]

d[4]
p()

x()
saved^p

After execution of L1; L2; L3;

main
 proc q()

proc x()
L4: w();
L5: ...
end x;
proc p()
L3: x();
end p;

 L2: p();
 end q;
 proc w()
 end w;
L1: q();
end main

RuntimeSystem2  BGRyder Spring 99
6

Examplemain
 proc q()

proc x()
L4: w();
L5: ...
end x;
proc p()
L3: x();
end p;

 L2: p();
 end q;
 proc w()
 end w;
L1: q();
end main

main

q()

d[1]

d[2]

d[3]

d[4]
p()

x()
saved ^p

After execution of L1; L2; L3; L4 w()
saved ^q

RuntimeSystem2  BGRyder Spring 99
7

Example

After having returned from L4;

main
 proc q()

proc x()
L4: w();
L5: ...
end x;
proc p()
L3: x();
end p;

 L2: p();
 end q;
 proc w()
 end w;
L1: q();
end main

main

q()

d[1]

d[2]

d[3]

d[4]
p()

x()
saved ^p

RuntimeSystem2  BGRyder Spring 99
8

Examplemain
 proc q()

proc x()
L4: w();
L5: ...
end x;
proc p()
L3: x();
end p;

 L2: p();
 end q;
 proc w()
 end w;
L1: q();
end main

main

q()

d[1]

d[2]

d[3]

d[4]
p()

After having returned from L5;

RuntimeSystem2  BGRyder Spring 99
9

Legal Nesting Patterns
proc p() proc q proc p

call q() proc p proc q

end p call q() end q

proc q() end p call q()

end q end q end p

PL’s with nested procedure declarations permit these
patterns of calls.

RuntimeSystem2  BGRyder Spring 99
10

Dynamic Scope

• Nonlocal names are fetched from most
recently executed scope

• Not a popular mechanism
– Lisp used to use this and then changed to static

scoping when Scheme was designed
– Prolog still uses this

• Can implement using control link in the
runtime stack

RuntimeSystem2  BGRyder Spring 99
11

Heap Storage

• Problems
– Dangling pointers and garbage
– Storage fragmentation

• Modern languages offer user allocation and
deallocation commands
– Need for garbage collection techniques

• Modern OOPL’s have them: Java

