
Type Checking BGRyder Spring 99
1

Type Checking

• Environments, continued
– Name spaces

• Type checking
– Expressions and variable declarations
– Functions
– New types

Type Checking BGRyder Spring 99
2

Name Spaces

• Programs need different name spaces for
types versus functions +variables
– Flexible, if have 2 separate environments
– Different symbol tables for Type environment

and Variable environment
let type a = int

var a : a = 5;
var b : a = a;

in b+a
end

Type Checking BGRyder Spring 99
3

Types in Tiger
• Primitive: int, string
• Record: fields with names and types

– Address of object itself
– Tiger does not use structural equivalence
– Uses name equivalence

let type a = {x: int, y: int}
 type c = a

• Array: type of entries
– Address of object itself

• VOID - return type for procedures

Type Checking BGRyder Spring 99
4

Type Equivalence
• Structural equivalence

– Implies “matching” that only checks “shape” of
aggregate type subpiece by subpiece (used in C
except for records)

– More formally (Sethi, Programming Languages and Concepts,
1989, Addison-Wesley)

A type name is structurally equivalent to itself

Two types are structurally equivalent if they are formed by
applying the same type constructor to structurally
equivalent types

After type n = T, then n andT are structurally equivalent.

Type Checking BGRyder Spring 99
5

Examples

array

pointer

int

array

array

String

a Java 2 diml arraya C array

struct s

a:int b: int c:string

a C struct

struct s

a:int b: int c: s

a recursive
(self-referential)
 type

Type Checking BGRyder Spring 99
6

Type Equivalence

• Name equivalence
– One type declared to be same as another named

type
– More restrictive than structural equivalence;

used in Ada

• Interesting questions about equivalence for
arrays, depending on whether or not array
bounds are considered part of the type

Type Checking BGRyder Spring 99
7

Type Checking in Tiger

• Will build the Semant package
• Will use two different Table objects to

implement type environment and value
environment - tenv, venv

• Types package
abstract class Type

INT STRING RECORD ARRAY NIL VOID NAME

Type Checking BGRyder Spring 99
8

Implementation

• Entry abstract class
– VarEntry subclass for encapsulating variable

type
– FcnEntry subclass for encapsulating function

signature
• Types. RECORD of formals --> Types.Type result

– More instance variables to be added later

• Include predefined functions in value
environment Table venv

Type Checking BGRyder Spring 99
9

Type Checking

• Type checking involves a recursive walk of
the abstract syntax tree of an expression

• Need to define functions for different AST
nodes

• Appel in section 5.3, suggests an
organization for type checking code, that
can be extended later to do other tasks

Type Checking BGRyder Spring 99
10

Type Checking

• Essentially, have to type check each construct
with a separate analysis
– transVar(Absyn.Var e), transExp(Absyn.Exp e),

transDec(Absyn.Dec e), transTy(Absyn.Ty e)

• Result of a type check is a ExpTy object which
encapsulates the expression object plus its
type

Type Checking BGRyder Spring 99
11

Type Checking - Expressions

• Type checking a binary expression involves
checking the type of each operand for
consistency with the operator (Appel, p121)
ExpTy transExp (Absyn.OpExp e){

ExpTy left = transExp(e.left);
ExpTy right= transExp(e.right);
if (e.oper == Absyn.Op.PLUS) {

if (! (left.ty instanceof Types.INT))
error(e.left.pos, “integer required”);

if (! (right.ty instanceof Types.INT))
error(e.right.pos, “integer required”);

return new ExpTy(null, new TYPES.INT());
} }

Type Checking BGRyder Spring 99
12

Type Checking - Variables

• Need to lookup declared type and return
ExpTy object for it or undeclared variable
error (Appel p121)

– Needs to lookup variable in symbol table for
value environment, check it is a VarEntry, and
then return its declared type

– If find a NAME type, need to translate to its
actual type(s) to return as type of variable

Type Checking BGRyder Spring 99
13

Type Checking - Declarations

• Declarations only appear in let expressions
(Appel, p 123)

• When processing let expression, have to
keep track of entering and leaving a new
scope for venv and tenv

• Then call transDec() to process declarations,
building the augmented environment

• Finally, type check the body of the let
expression

Type Checking BGRyder Spring 99
14

Declarations

ExpTy transExp(Absyn.LetExp e) {

env.vevn.beginScope();

env.tenv.beginScope();

for (Absyn.DecList p = e.decs; p!= null; p=;.tail)

transDec(p.head);//augment envs

ExpTy et = transExp(e.body);//type check body expression

env.venv.endScope();
env.tenv.endScope();

return new ExpTy(null, et.ty);// returned type of let expr

}

Type Checking BGRyder Spring 99
15

Declarations

• Of variables - with and without initialization
– Need to check initializing expression is right type

• Of types (nonrecursive) -
– Need to turn Absyn types into Types types
– May need to handle named types through lookup

in tenv

• Of functions (nonrecursive) - need to form a
FcnEntry, then define new scope and add
params one by one, then type check fcn body

Type Checking BGRyder Spring 99
16

Recursive Declarations

• E.g., record types, arrays of array, recursive
functions

• Naïve approach will find undefined type in
function body
– (Appel p 126) For mutually recursive functions,

process fcn declarations twice;
• Form headers from fcn name and types of params

• Rescan params and enter them into environment as
new scope; then type check function body

Type Checking BGRyder Spring 99
17

Example
type a = b;
type b = d;
type c = a;
type d= a;
Cycle of types here a → b → d → a is illegal!

because there is no record or array
declaration corresponding to any of these
types; this should be detected as such by
type checker

Type Checking BGRyder Spring 99
18

Type Checking - Calls

• For function calls, need to type check
function name and all arguments
– Need to lookup function entry in value

environment, check each argument type versus
the parameter type in signature, and return the
result type of call expression

