ASU 4.39

Show that the following grammar

$$
\mathrm{S} \rightarrow \mathrm{Aa}|\mathrm{bAc}| \mathrm{dc} \mid \mathrm{bda}
$$

$$
A \rightarrow a
$$

is LALR(1) but not $\operatorname{SLR}(1)$.
Answer: In addition to the rules given above, one extra rule $S^{\prime} \rightarrow S$ as the initial item. Following the procedures for constructing the $\operatorname{LR}(1)$ parser, here is the initial state and the resulting state diagram by taking closure:

Based on the state diagram, we derive the $\operatorname{LR}(1)$ parsing table as follows:

State	Action					Goto	
	a	b	c	d	$\$$	S	A
0		s3		s4		1	2
1					acc		
2	s5						
3				s7			6
4	r5		s8				
5							
6			s9				
7	s10		r5				
8					r3		
9					r2		
10					r4		

Then, the LALR(1) parsing table can be obtained by merging items with common first components, In this problem, no merging occurs. That is, the final LALR(1) parsing table is the same as the LR(1) one. Thus, the given grammar is LALR(1).

Next, following the similar procedures for taking closure, but without including the lookahead in items, we obtain the state diagram as follows:

Let's assume that the parser is in state I_{7}, and the next symbol is a , since $\mathrm{a} \in \operatorname{Follows}(\mathrm{A})=\{\mathrm{a}, \mathrm{c}\}$, it causes a shift-reduce conflict. Same problem also happens to state I_{4}. Thus, the given grammar is not $\operatorname{SLR}(1)$.

ASU 4.40

Show that the following grammar
$\mathrm{S} \rightarrow \mathrm{Aa}|\mathrm{bAc}| \mathrm{Bc} \mid \mathrm{bBa}$
$\mathrm{A} \rightarrow \mathrm{d}$
B \rightarrow d
is $\operatorname{LR}(1)$ but not $\operatorname{LALR}(1)$.
Answer: In addition to the rules given above, one extra rule $S^{\prime} \rightarrow S$ as the initial item. Following the procedures for constructing the $\operatorname{LR}(1)$ parser, here is the resulting state diagram:

Based on the state diagram, we derive the $\operatorname{LR}(1)$ parsing table as follows:

State	Action					Goto		
	a	b	c	d	\$	S	A	B
0		s3		s4		1	2	4
1					acc			
2	s6							
3				s9			7	8
4			s10					
5	r5		r6					
6								
7			s11					
8	s10							
9	r6		r5					
10					r3			
11					r2			
12					r4			

Since there are no mutiple actions in any entry, the given grammar is LR(1). However, when obtaining the LALR(1) parsing table by merging states, we will merge states I_{5} and I_{9}, and the resulting state will be as follows:

$$
\begin{aligned}
\mathrm{I}_{5+9}: \mathrm{A} & \rightarrow \mathrm{~d} ., \mathrm{a} / \mathrm{c} \\
\mathrm{~B} & \rightarrow \mathrm{~d} ., \mathrm{a} / \mathrm{c}
\end{aligned}
$$

It is basically a reduce-reduce conflict. So, the given grammar is not LALR(1).

ASU 4.44

Construct an SLR parsing table for the following grammar:

$$
\begin{aligned}
& \mathrm{R} \rightarrow \mathrm{R} \mid \mathrm{R} \\
& \mathrm{R} \rightarrow \mathrm{R} \\
& \mathrm{R} \rightarrow \mathrm{R}^{*} \\
& \mathrm{R} \rightarrow(\mathrm{R}) \\
& \mathrm{R} \rightarrow \mathrm{a} \\
& \mathrm{R} \rightarrow \mathrm{~b}
\end{aligned}
$$

Resolve the parsing action conflicts in such a way that regular expression will be parsed normally.
Answer: In addition to the rules given above, one extra rule $R^{\prime} \rightarrow R$ as the initial item. Following the procedures for constructing the $\mathrm{LR}(1)$ parser, here is the resulting state transition:

The initial state for the SLR parser is:

$\mathrm{I}_{0}:(0) \mathrm{R}^{\prime} \rightarrow$. R	$\operatorname{goto}\left(\mathrm{I}_{0},()=\mathrm{I}_{2}: \mathrm{R} \rightarrow(. \mathrm{R})\right.$	$\operatorname{goto}\left(I_{1}, R\right)=I_{6}: R \rightarrow R R$.
(1) $R \rightarrow . R \mid R$	$\mathrm{R} \rightarrow \mathrm{R} \mid \mathrm{R}$	$\mathrm{R} \rightarrow \mathrm{R} . \mid \mathrm{R}$
(2) $R \rightarrow . R R$	$\mathrm{R} \rightarrow$. R R	$\mathrm{R} \rightarrow$ R.R
(3) $R \rightarrow . R^{*}$	$\mathrm{R} \rightarrow$. ${ }^{*}$	$\mathrm{R} \rightarrow \mathrm{R}$.*
(4) $\mathrm{R} \rightarrow$. R)	$\mathrm{R} \rightarrow$. R)	$\mathrm{R} \rightarrow . \mathrm{R} \mid \mathrm{R}$
(5) $\mathrm{R} \rightarrow$.a	$\mathrm{R} \rightarrow$ a	$\mathrm{R} \rightarrow$.RR
(6) $\mathrm{R} \rightarrow$. b	$\mathrm{R} \rightarrow$ b	$\mathrm{R} \rightarrow$. ${ }^{*}$
$\operatorname{goto}\left(\mathrm{I}_{0}, \mathrm{R}\right)=\mathrm{I}_{1}: \mathrm{R}^{\prime} \rightarrow \mathrm{R}$.	$\operatorname{goto}\left(\mathrm{I}_{0}, \mathrm{a}\right)=\mathrm{I}_{3}: \mathrm{R} \rightarrow \mathrm{a}$.	$\mathrm{R} \rightarrow$ (R)
$\mathrm{R} \rightarrow \mathrm{R} . \mid \mathrm{R}$	$\operatorname{goto}\left(\mathrm{I}_{0}, \mathrm{~b}\right)=\mathrm{I}_{4}: \mathrm{R} \rightarrow \mathrm{b}$.	$\mathrm{R} \rightarrow$. a
$\mathrm{R} \rightarrow \mathrm{R} . \mathrm{R}$		$\mathrm{R} \rightarrow$ b
$\mathrm{R} \rightarrow \mathrm{R}$.*	$\operatorname{goto}\left(\mathrm{I}_{1}, \mid\right)=\mathrm{I}_{5}: \mathrm{R} \rightarrow \mathrm{R} \mid . \mathrm{R}$	$\operatorname{goto}\left(\mathrm{I}_{1}, *\right)=\mathrm{I}_{7}: \mathrm{R} \rightarrow \mathrm{R}^{*}$.
$\mathrm{R} \rightarrow \mathrm{R} \mid \mathrm{R}$	$\mathrm{R} \rightarrow \mathrm{R} \mid \mathrm{R}$	$\operatorname{goto}\left(\mathrm{I}_{1},()=\mathrm{I}_{2}\right.$
$\mathrm{R} \rightarrow$.RR	$\mathrm{R} \rightarrow \mathrm{RR}$	$\begin{aligned} & \operatorname{goto}\left(\mathrm{I}_{1}, \mathrm{a}\right)=\mathrm{I}_{3} \\ & \operatorname{goto}\left(\mathrm{I}_{1}, \mathrm{~b}\right)=\mathrm{I}_{4} \end{aligned}$
$\mathrm{R} \rightarrow$. ${ }^{*}$	$\mathrm{R} \rightarrow$. ${ }^{*}$	
$\mathrm{R} \rightarrow$. R$)$	$\mathrm{R} \rightarrow$. R$)$	
$\mathrm{R} \rightarrow . \mathrm{a}$	$\mathrm{R} \rightarrow$. a	
$\mathrm{R} \rightarrow$. b	$\mathrm{R} \rightarrow$.	

$$
\begin{aligned}
& \operatorname{goto}\left(\mathrm{I}_{2}, \mathrm{R}\right)=\mathrm{I}_{8}: \mathrm{R} \rightarrow(\mathrm{R} .) \\
& \mathrm{R} \rightarrow \mathrm{R} . \mid \mathrm{R} \\
& \mathrm{R} \rightarrow \text { R.R } \\
& \mathrm{R} \rightarrow \mathrm{R} \text {.* } \\
& \mathrm{R} \rightarrow \mathrm{R} \mid \mathrm{R} \\
& \mathrm{R} \rightarrow \text {.RR } \\
& R \rightarrow \text {. * } \\
& \mathrm{R} \rightarrow \text {. } \mathrm{R} \text {) } \\
& \mathrm{R} \rightarrow \text {. } \mathrm{a} \\
& \mathrm{R} \rightarrow \text {. } \mathrm{b} \\
& \operatorname{goto}\left(\mathrm{I}_{2},()=\mathrm{I}_{2}\right. \\
& \operatorname{goto}\left(\mathrm{I}_{2}, \mathrm{a}\right)=\mathrm{I}_{3} \\
& \operatorname{goto}\left(\mathrm{I}_{2}, \mathrm{~b}\right)=\mathrm{I}_{4}
\end{aligned}
$$

From the grammar, we have computed $\operatorname{Follow}(\mathrm{R})=\{\mid, *,(), a, b,, \$\}$. In the sets of items mentioned above, we can easily find shift-reduce conflicts, e.g. states I_{6} and I_{9}, but we can use the operator precedence and associativity mentioned in Section 3.3 to resolve it. Here is the operator precedence:

$$
()>*>\text { catenate }^{\dagger}>\mid
$$

And all these operators are left-associative. Based on this extra information, we construct the parssing table as follows:

State	Action							
	l	$*$	$($	$)$	a	b	$\$$	R
0			s2		s3	s4		1
1	s5	s7	s2		s3	s4	acc	6
2			s2		s3	s4		8
3	r5							
4	r6							
5			s2		s3	s4		9
6	r2	s7	r2	r2	r2	r2	r2	6
7	r3							
8	s5	s7	s2	s10	s3	s4		6
9	r1	s7	s2	r1	s3	s4	r1	6
10	r4							

\dagger The catenate operator is implicit, and always exists between two consecutive R nonterminals.

