
!"n-standard Types5 # BGR, Fall05

1

Non-Standard Types

• Using types to collect properties of program

constructs

– Points-to sets for pointers

– Analysis of pointer safety

– References:

• G. Necula, S. McPeak, W. Weimer, “Ccured: Type-safe

Retrofitting of Legacy Code”, POPL’02

• J. Condit, M. Harren, S. McPeak, G. Necula, W. Weimer,

“Ccured in the Real World”, PLDI’03

!"n-standard Types5 # BGR, Fall05

2

Non-standard Types

• Non-standard types

– Use machinery of type systems and type

reconstruction to solve for other properties of

variables in programming languages

– E.g., can be used to prove properties of pointer-

valued variables

• CCured - A dialect of C that guarantees pointer usage

safety properties

• Calculating points-to sets using non-standard types

!"n-standard Types5 # BGR, Fall05

3

Pointer Analysis w Constraints

• We had equality constraints in our type
reconstruction work.

– How about extension to PLs that allow subtypes?

• Then inequality constraints meaning subtyping, e.g., int<=float.

• With systems of inequality and equality constraints,
more interesting properties can be described

– E.g., ‘points-to sets’ for pointer-valued variables, where
the inequality refers to set inclusion,

 int *p,*q; … p = q // means that anything q points to now p can
point to, or PtsTo(q) <= PtsTo(p) (i.e., PtsTo(q) $ PtsTo(p))

– A satisfying assignment of sets is a solution to these
relations and gives a safe estimate of what a pointer can
point to during execution.

!"n-standard Types5 # BGR, Fall05

4

CCured

• A way of ensuring type safety of legacy C

code through type inferencing and runtime

checks

– Type pointers by their usage

– Insert runtime checks where necessary to check

safety (e.g., in presence of pointer arithmetic)

– Use to find bugs involving pointers in real C

programs

!"n-standard Types5 # BGR, Fall05

5

Assumptions

• Even in C, a large portion of the program can be
shown type safe statically; rest of program will need
runtime checks

• Loss of performance due to runtime checks is
bearable to ensure type safety

• Pointer types can be designed that match ordinary
C usage

– Physical types (that is, OO coding style using structs)

– Array traversal through pointer arithmetic

!"n-standard Types5 # BGR, Fall05

6

CCured - Intuition

• IDEA: think of C as a PL that is a union of 2
PLs, one strongly typed and one an untyped
PL requiring run-time type checking

– SAFE pointers (no pointer arithmetic, no casts;
only needs null ptr checks)

– SEQ pointers (pointer arithmetic, but no casts;
needs bounds and null ptr checks)

– WILD pointers (need type tags, can be cast to
other pointer types, needs runtime type checks
before any operation)

POPL’02, p129-130

!"n-standard Types5 # BGR, Fall05

7

Example - Ugly C code

int **a, **p; int k, acc; int *e; //declarations

acc = 0;

for (k=0; k<100; k++){

p = a + k; //ptr arith

e = *p; //read array element

while ((int) e % 2 == 0) { //check tag

 e = * (int **) e; //unbox integer value

}

acc += ((int) e >> 1); //strip tag off e

}

POPL’02, p 129

!"n-standard Types5 # BGR, Fall05

8

Example in CCured

dynamic ref SEQ a;//array

int ref SAFE p_k; // index

int ref SAFE p_acc; //accumulator

dynamic ref SAFE ref SAFE p_p; //element ptr

dynamic ref SAFE p_e; //unboxer --- all these are implicit in Ccured prgm

p_acc = 0;

for (p_k := 0; !p_k<100; !p_k+1) {

p_p := (dynamic ref SAFE) (a % !p_k); //ptr arith

p_e := !! p_p;//read array element

while ((int) !p_e % 2 == 0) { //check tag

 p_e := !! p_ e; //unbox integer value

}

p_acc := !p_acc + ((int) !p_e >> 1);

//strip tag off e before adding unboxed value

}

POPL’02, p 131

Replaced all vars by pointers;

Use explicit memory derferencing

for all value accesses

! means explicit derereference,

% stands for pointer addition

!"n-standard Types5 # BGR, Fall05

9

Some CCured Inference Rules
Expressions:

|-e1: int, |-e2: int |-e:t’, t’<= t

|-e1 op e2: int (arith) |- (t)e: t (upcast)

|-e1: t ref SEQ, |-e2:int |- e: t ref SAFE

|-e1 % e2: t ref SEQ |- !e : t (ptr deref)

(ptr arith;needs runtime check on bounds)

|- e1 : WILD, e2: int |- e: WILD

|- e1 % e2: WILD |- !e: WILD

t<= int, int <=t ref SEQ, int <=WILD,

t ref SEQ <= t ref SAFE (with array bounds check)

POPL’02, p 132

!"n-standard Types5 # BGR, Fall05

10

Soundness of Type System

• Whole-program type inference

– Pointer arithmetic implies SEQ or WILD

– Bad casting implies WILD

– Try to find as many SAFE and SEQ ptrs as possible

• An untyped and typed pointer can never point to

same memory location (as aliases)

– Or there would be a way for an untyped pointer to

corrupt the memory pointed to by the typed pointer

• Cannot have untyped pointer point to a typed

pointer

!"n-standard Types5 # BGR, Fall05

11

PLDI’03 Extensions

• Added mechanism to categorize casts as upcasts or

downcasts to support physical subtyping (RTTI --

runtime type info pointer type added)
• Added information to check downcasts

• Allows handling of OO mechanisms such as dynamic dispatch,

subtyping polymorphism, checked downcasts

• Programmer-specified checking at library

boundaries

• New separate pointer representation (metadata not

interleaved with program data)

!"n-standard Types5 # BGR, Fall05

12

Type checks

• Fat pointer representation

– rep (t * SEQ) = struct (Rep(t) * p, * b, * e) where b is

base and e is end of area that pointer ranges over

– Runtime range check becomes

 x.b <= x.p <= x.e-sizeof(t)

– WILD pointers have bounds within memory area itself;

• Runtime type tag checking as in Lisp

• Writes need to update WILD pointer type tags

– Writes need to verify that a stack pointer is not being

written into the heap to prevent dangling pointers

!"n-standard Types5 # BGR, Fall05

13

Casts
PLDI’03

•Circle is physical subtype of Figure

•Blue(upcast) and yellow(downcast) casts are both ‘bad’ (POPL’02)

•Empirical data reports 63% casts were between identical types,

leaving 37% of which 93% safe upcasts and 6% downcasts;

less than 1% were neither of these.

!"n-standard Types5 # BGR, Fall05

14

Casts and Physical Subtyping

• Physical subtyping
– If an aggregate t’ is laid out in memory exactly as a prefix of the

layout of the aggregate t, then t is a physical subtype of t’

• SAFE, SEQ pointers can be upcast in physical
subtypes, with some qualifications

• Downcasts between physical subtypes handled
through new pointer type RTTI that is run-time
checked
– Need to save physical type info in new data structure

– Need to encode current run-time type as part of pointer
representation

!"n-standard Types5 # BGR, Fall05

15

C Libraries - Pragmas

• Programmer created wrapper specification for

external functions with arguments containing

pointers
– About 100 standard library function wrappers included

#pragma ccuredWrapperOf("strchr_wrapper", "strchr")

char* strchr_wrapper(char* str, int chr) {

__verify_nul(str); // check for NUL termination

// call underlying function, stripping metadata

char *result = strchr(__ptrof(str), chr);

// build a wide CCured ptr for the return value

return __mkptr(result, str);

}

!"n-standard Types5 # BGR, Fall05

16

C Libraries - Metadata

• Split metadata from actual data about pointers
using separate parallel structures

– Need user specification and aid user in finding all places
annotation is necessary

– SPLIT pointers cannot point to NOSPLIT types for
library compatibility; NOSPLIT pointers can point to
SPLIT types

• All data operations are split into data and metadata
operations

• Limitations: library can change data structure that
require changes to the metadata

– Requires validation by Ccured on return

!"n-standard Types5 # BGR, Fall05

17

PLDI’03 Data

!"n-standard Types5 # BGR, Fall05

18

More PLDI’03 Data

!"n-standard Types5 # BGR, Fall05

19

Summary

• CCured is a viable approach to avoiding

errors in C systems code using type

inferencing

• Works semi-automatically with user

annotation of external fcns and some casts

necessary for efficiency

• Split metadata representation seems useful

