Prolog II

- Unification
- Informally
- Formal description
- Problems in compilation
- Factorial
- Example of generate and test
- Cut (!)

Trees

- Can use Prolog terms to represent trees $2 * 3$ can be times (2,3)

- Then can design recursive Prolog clauses to "walk" the tree, gathering terms.
- Example, generating code from an abstract syntax tree for an arithmetic expression

Example

treewalk(W,[W]) :- integer (W).
treewalk(times (X,Y),Walk) :- treewalk(X,W1),
treewalk(Y,W2), append (W1, [*], A1) ,
append (A1,W2,Walk).
treewalk(plus(X,Y), Walk):- treewalk(X,W1),
treewalk(Y,W2), append (W1, [+],A1),
append (A1,W2,Walk).
append ([],A,A).
append ([A|B],C,[A|D]):- append(B,C,D).

Generating Code from AST

A Prolog data structure: plus (times (2, 3), 4)) representation for 2*3+4

This Prolog query produces code from the tree represented as a Prolog data structure (a term):
?-treewalk(plus (times (2, 3), 4), X)). $X=[2, *, 3,+, 4]$
Note code generated here is a correct inorder traversal but will not generate correct expressions from the input because it ignores operator precedence.

How treewalk.pl works?

- Second argument is always the code which corresponds to the AST which is the first argument.
- Base case finds leaf nodes which are integer constants with Prolog built-in
treewalk(W, [W]) :- integer (W).
- Tree exploration generates an inorder traversal of the nodes
- Plus and times clauses work the same

How treewalk.pl works?

- First, explore left subtree and get its code bound to W1 (left operand)

```
treewalk(times(X,Y),Walk) :-
``` treewalk(X,W1), ...
- Second, explore right subtree and get its code bound to W2 (right operand)
... treewalk(Y,W2),...
- Third, insert proper operator for this node ... append (W1,[*], A1), ...
- Fourth, append rest of expression
... append (A1,W2,Walk).

\section*{Unification Examples}
```

unify $(X, Y):-X=Y$.
| ? - unify(a, $X$ ).
$X=a$;
no
| ? - unify(a, $x)$, unify $(X, y)$.
$X=Y=a$;
no
| ? - unify $(a, x)$, unify $(b, Y), u n i f y(X, Y)$.
no
| ?- unify $(X, Y)$.
$X=Y=\_24$;
no

```

\section*{Unification Examples}
unify \((X, Y):-X=Y\).
| ? - unify \((x, Y)\), unify \((X, a)\).
\(X=Y=a\)
| ? - unify (X, dummy (a)).
\(X=\operatorname{dummy}(a)\)
| ? - unify(X,dummy (a)), unify(X,Y).
\(X=Y=\operatorname{dummy}(a)\)
| ? - unify (X, dummy (Y)).
\(X=\operatorname{dummy}(Y)\),
\(Y=\) _ 45 ;
no

\section*{Unification, Informally}
- Intuitively, unification between 2 Prolog terms tries to associate values with the variables so that the resulting trees, representing the terms, are isomorphic (including matching labels)
- To use a Prolog rule, we must unify the head of the rule with the subgoal to be proved, "matching" term by term

\section*{Unification, Informally}
- Given a subgoal <functor>(<term>\{, <term>\}) how to unify it with a clause head?
- Rule and subgoal have same name
- Any uninstantiated variable matches any term
- If term is also an uninstantiated variable, this means if either takes on a value, they both do
- Integer and symbolic constants match themselves, only
- A structured term matches another term iff
- Has same relation name
- Has same number of components (that is, terms within parentheses) and corresponding components match
- Lists unify by matching element by element

\section*{Unification}
- Unification looks for the most general (or least restrictive) value to assign
- A substitution (\(\sigma\)) is a finite map from variables to terms in the language append ([A|B], \(Y,[A \mid Z])\) :-?- append \(([a, b],[c], W) \quad\) Rule head
query \(\mathbf{\sigma}: \mathbf{A} \rightarrow \mathbf{a}, \mathbf{B} \rightarrow[\mathbf{b}], \mathbf{Y} \rightarrow[\mathbf{c}], \mathbf{W} \rightarrow[\mathbf{a} \mid \mathbf{Z}]\)
- A term \(\mathbf{U}\) is an instance of another term \(T\), if there is a substitution \(\sigma\) such that \(U=T \sigma\).

\section*{Unification}
- Two terms S,T unify if they have a common instance \(U\); that is,
\[
\mathbf{S} \sigma_{1}=\mathbf{T} \sigma_{2}=\mathbf{U}
\]
- Note: if variable \(X\) is contained in both \(S\) and \(T\), then \(\sigma_{1}\) and \(\sigma_{2}\) both must have the same substitution for \(X\).
- If two terms unify, they can be made identical under some substitution

\section*{Unification}

There may be more than one substitution to unify two terms
times (\(\mathrm{Z}, \mathrm{times}(\mathrm{Y}, 7)\)) and times (4,W)
\(\sigma_{1}: \mathbf{Z}=4, \mathrm{Y}=\) plus \((3,5)\),
\(\mathrm{W}=\) times (plus \((3,5), 7\))
\(\sigma_{2}: ~ Z=4, W=t i m e s(Y, 7)\)
Which substitution is simpler or less restrictive on the values of the variables? \(\sigma_{2}\)

\section*{Most General Unifier}
- We say \(\gamma\) is the most general unifier (mgu) of two terms, \(T\) and \(W\), iff for all other unifiers \(\sigma\) of \(T\) and \(W\), T \(\sigma\) is an instance of T \(\gamma\); therefore, \(\sigma\) can be obtained by a substitution \(\delta\) applied to \(\gamma, \sigma=\gamma \bullet \delta\) ?- member (\(A, B\)) returns \(\left.A=_123, B=[A \mid]_{-}\right]\) when it could return \(A=-123, B=[A, b]\) or \(A=123, B=[A, c, d]\) etc. Note, the 2nd and 3rd \(B\) values are obtainable from the mgu by additional substitutions

\section*{Occurs Check}
- There are problems with the unification done in some Prolog compilers, which result in an unbounded unification being attempted. Called an occurs check
\(-[\mathbf{a}, \mathbf{b} \mid \mathbf{Z}]=[\mathbf{X} \mid \mathbf{Z}] \mathbf{X} \rightarrow \mathbf{a}, \mathbf{Z} \rightarrow[\mathbf{b}, \mathbf{Z}]\)

\section*{Occurs Check}
- If try to evaluate value of \(\mathbf{Z}\), compiler will return \(z=[b, b, b, \ldots\) a value that results in an infinite loop in the Prolog interpreter
- Unification should check that it doesn't unify a variable with a term containing that same variable
- Occurs check was left out of Prolog by Colmerauer because of efficiency (to avoid the run-time cost
- Current Prolog compilers have it
- Example of safety yielding to efficiency (O(n) instead of \(O\left(n^{2}\right)\) on list concatenation)

Occurs Check occursCheck.pl
Useful recursive type to build, a not-fullyevaluated list
?-append ([],E,[a,b|E])
need to unify with append ([] , A, A)
resulting in \(A \rightarrow E\) and \(A \rightarrow[a, b \mid E]\)

desired result

Prolog-II, BGR, Fall05

final type graph

Can't be built without occurs check

\section*{Generate and Test Paradigm}
- Use of cut (!) to change evaluation order of Prolog clauses.
- Already saw cut in definition of \(\backslash+\)
- A typical programming style in Prolog is generate and test
- Can write clauses to generate values and test if they satisfy the desired condition
- Factorial example
- N Queens example

\section*{Factorial}
- Function to calculate \(X\) factorial if \(X\) is bound to an integer value
```

factorial (0,1).
factorial(X,Y) :- W is X-1,
factorial(W,Z),
Y is Z*X.

```

If \(X\) is not bound to an integer value, then first subgoal (is clause) is undefined.
- A top-down calculation: \(n\) ! is (\(\mathbf{n - 1}\))!*n

\section*{Factorial}
- Add a guard to 2nd rule:
factorial (0,1).
factorial (X,Y) :- integer(X), W is X-1,
factorial(W,Z), Y is Z * X.
This builds \(f(n)\) from \(f(n-1)\), stepping down to \(f(0)\). If we query this new 2nd clause with factorial (\(\mathrm{Y}, 6\)), it will not match, but it will not abort, either.

\section*{Factorial}
- How about a bottom-up definition?
\(f(0,1)\).
\(\mathrm{f}(\mathrm{X}, \mathrm{Y}):-\mathrm{f}(\mathrm{W}, \mathrm{Z}), \mathrm{X}\) is \(\mathrm{W}+1, \mathrm{Y}\) is \(\mathrm{Z} *(\mathrm{~W}+1)\).
Here we calculate \(f(3, Y)\) by building it up from \(\mathbf{f}(\mathbf{0}, \mathbf{1}), \mathbf{f}(\mathbf{1}, \mathbf{1}), \mathbf{f}(\mathbf{2}, \mathbf{2}), \mathbf{f}(\mathbf{3}, \mathbf{6})\).
- This new definition works for \(f(\mathbf{3 , Y})\) and \(f(X, 6)\) but what about \(f(\mathbf{X , 5})\) ? It will infinitely loop on this query. We need a way to control the backtracking mechanism, so it stops computation once a factorial value greater than 5 is returned.

\section*{Cut}
- Cut (!)
- Commits system to all choices made since the parent goal was invoked
- If the parent predicate is re-entered by a backtracking computation, it cannot be resatisfied. Instead a previous predicate must be resatisfied.
eat_lunch(joe, X):-available(X), cheap(X),!, sick(joe, X).
use eat_lunch predicate in another computation: ...eat_lunch (joe, Y) , \({ }^{\prime . .}\)
If backtrack into eat_lunch, cantt retry available(\(\mathbf{X}\)) or cheap(\(\mathbf{X}\)), and can't try another rule for eat_lunch(joe,Y).

\section*{Factorial, finally}
```

fact(0,1).
fact(X,Y):-fact(W,Z),X is W+1,Y is Z*(W+1).
f2(X,Y):-integer(Y),fact(W,Z),Z>=Y,!,Z=Y,
W=x.
f2(X,Y):-integer(X),var(Y),fact(X,Y),!.
f2(X,Y):-fact(X,Y).

```

Look at cases:
f2(int,var) - uses 2 nd \(\mathbf{f} 2\) rule for generation
f2(var or int, int) - uses 1 st f2 rule to check (int,int) or generate (var, int)
f2(var,var) - uses \(\mathbf{3 r d} \mathbf{f} \mathbf{2}\) rule to generate factorial pairs```

