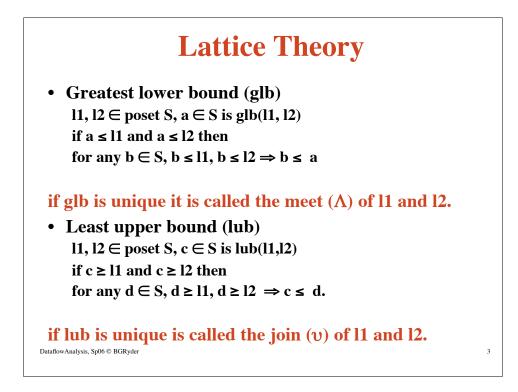
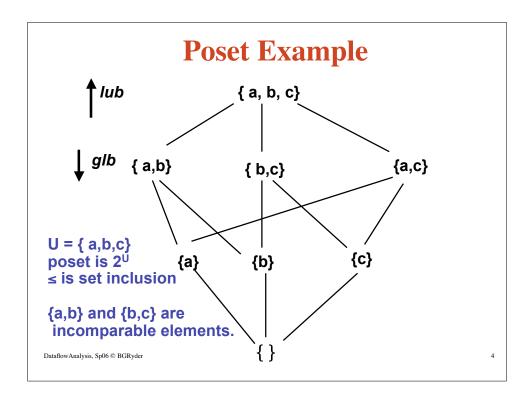
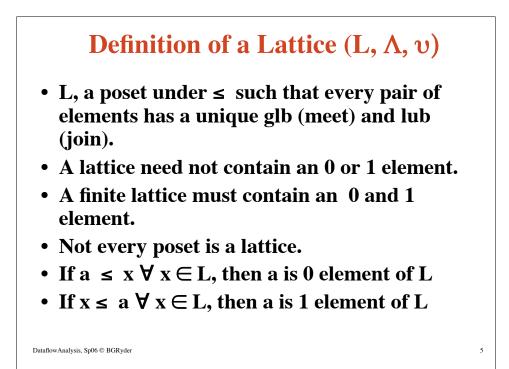
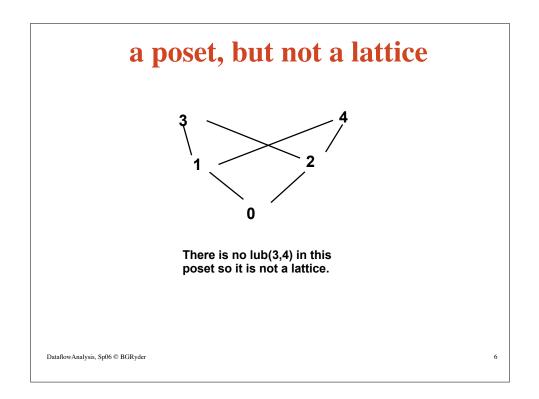


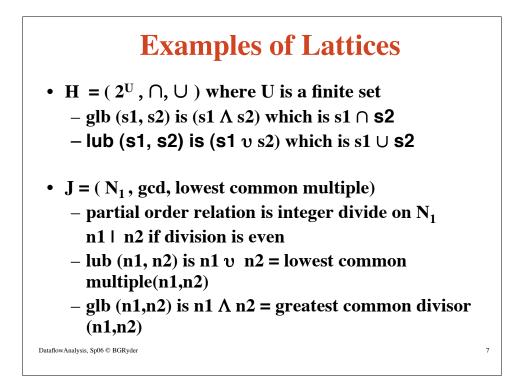
Lattice Theory
 Partial ordering ≤
 Relation between pairs of elements
– Reflexive x ≤ x
- Anti-symmetric $x \le y, y \le x \Rightarrow x = y$
- Transitive $x \le y, y \le z \Rightarrow x \le z$
 Poset (Set S, ≤)
• 0 Element $0 \le x, \forall x \in S$
• 1 Element $1 \ge \forall x \in S$
A poset need not have 0 or 1 element.
DataflowAnalysis, Sp06 © BGRyder 2

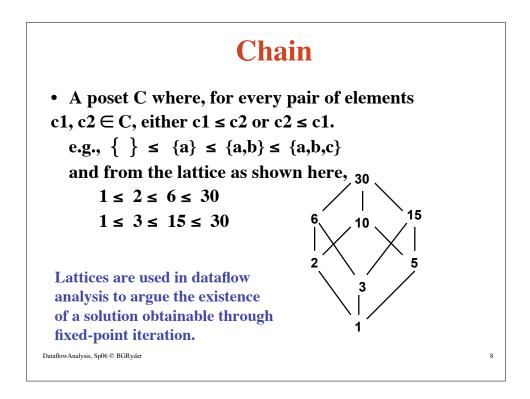






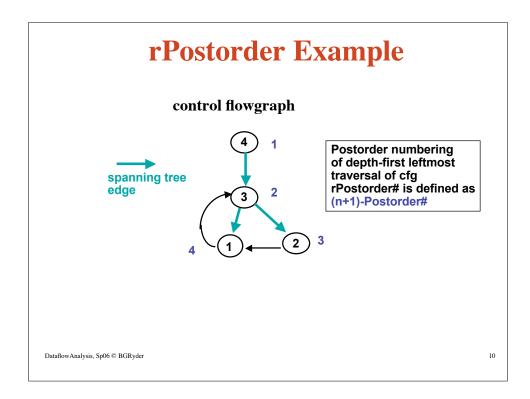


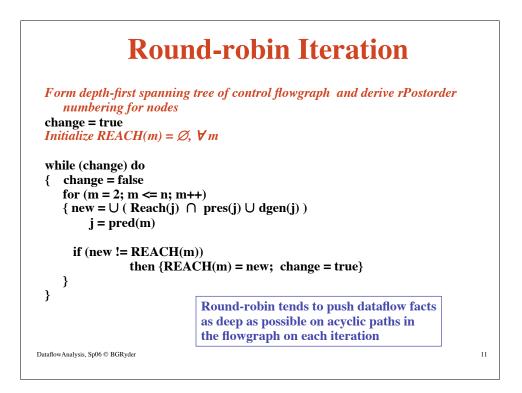


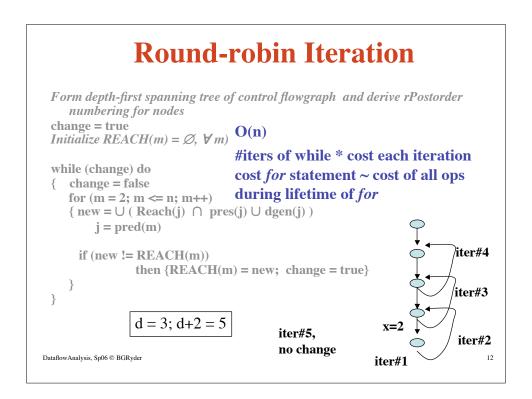


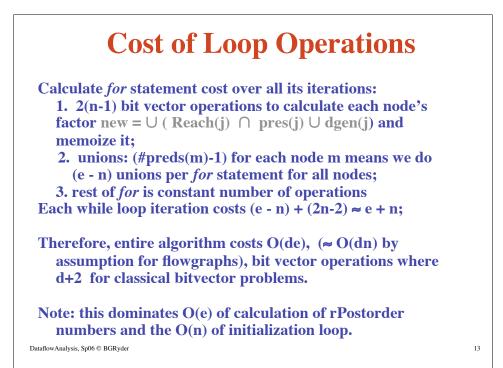
Round-robin Fixed-point Iteration

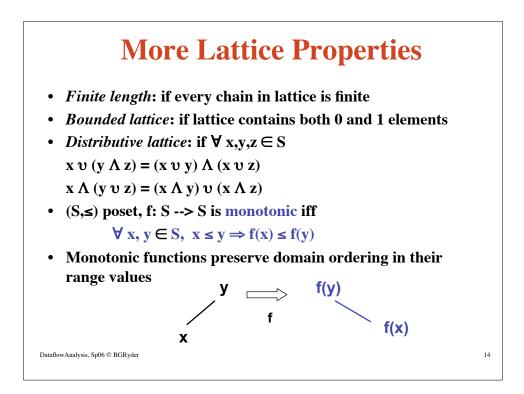
- Iterates through nodes of cfg in specific node order, which preserves the partial order of the graph.
- Recall worklist algorithm(per bit) has O(me) work where |E|=e and m is number of dataflow facts in the set.
- Postorder on depth-first spanning tree defines rPostorder which is *reverse postorder*
 - Ancestor-first node ordering, good for forward dataflow problems
 - rPostorder_number =(| N |+1) postorder_number
- Postorder is good node ordering for backward dataflow DataflowAnalysis, Sp06 @ BGRyder problems











Fixed point theorem -Why it works?

Intutition--

Given a 0 in lattice and monotonic function f, $0 \le f(0)$. Apply f again and obtain $0 \le f(0) \le f(f(0)) = f^2(0)$ Continuing, $0 \le f(0) \le f^2(0) \le f^3(0) \le \dots \le f^k(0) = f^{k+1}(0)$ for a finite chain lattice. This is tantamount to saying $\lim_{k \to \infty} f^k(0)$ exists and is called the *least fixed point* of f, since $f(f^k(0)) = f^k(0)$

DataflowAnalysis, Sp06 © BGRyder

Fixed Point Theorem

Thm: f: S --> S monotonic function on poset (S, ≤) with a 0 element and finite length. The *least fixed point* of f is f^k(0) where

i. $f^{0}(x) = x$,

ii. $f^{i+1}(x) = f(f^{i}(x)), i \ge 0$,

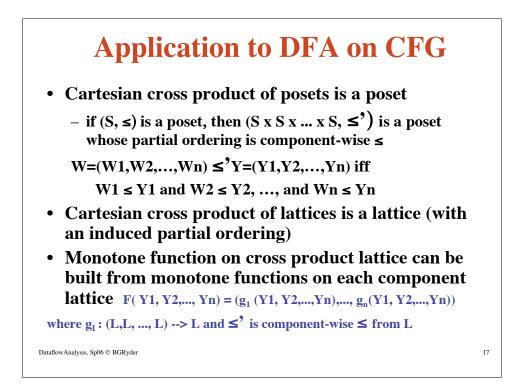
iii. $f^k(0)$ = $f(f^k(0))$ and this is the smallest k for which this is true.

- For any p such that $f(p)=p, f^k(0) \le p$.
- Theorem justifies the iterative algorithm for global data flow analysis for lattices & functions with right properties
- Dual theorem exists for 1 element and *maximal fixed point* for k such that $f^{k}(1) = f^{k+1}(1)$.

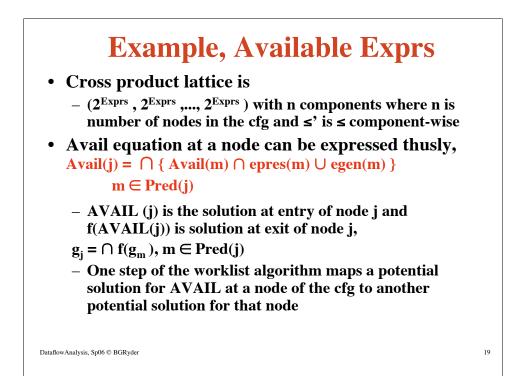
DataflowAnalysis, Sp06 © BGRyder

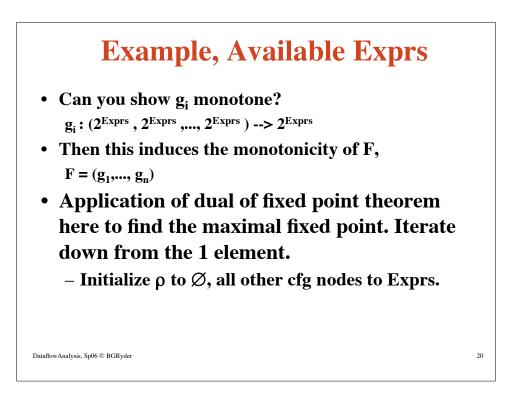
15

16



Example - Available Exprs	
 lattice is 2^{Exprs} where Exprs is set of all binary expressions in program 	
• Partial order is \subseteq (subset inclusion) so meet is \cap	
 < Exprs,Exprs,,Exprs> is 1 element 	
• $< \emptyset, \emptyset,, \emptyset$) is 0 element	
• From the data flow equations for AVAIL, we know that if a set of dataflow facts X is true on entry to a flowgraph node n, then f(X) is true on each exit edge of n where	
$f(X) = epres(n) \cap X \cup egen(n)$	
f is called the <i>transfer function</i> for AVAIL	
DataflowAnalysis, Sp06 © BGRyder	18

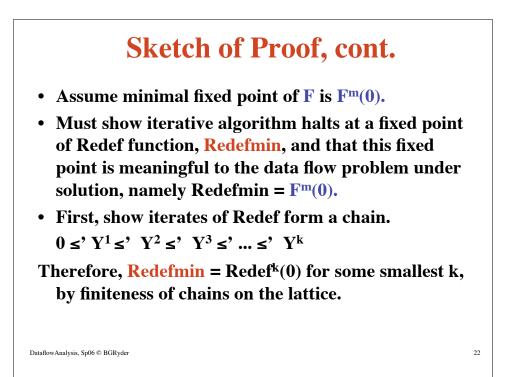




Sketch of Validity Proof of Iterative Algorithm for DFA

- Let Redef (Y₁ⁱ...Y_nⁱ) be result after i steps of the worklist algorithm (per node) for DFA. Redef(Y₁ⁱ...Y_nⁱ) = (Y₁ⁱ...Y_{k-1}ⁱ, g_k(Y₁ⁱ...Y_nⁱ), Y_{k+1},...Y_n)
- In the next iteration (i+1st), only 1 component of $Y = (Y_1^{i}...Y_n^{i})$ changes and this component is chosen non-deterministically.
- Recall we have a function defined on the flowgraph: $F(Y_1,...,Y_n) = (g_1(Y_1,...,Y_n),...,g_n(Y_1,...,Y_n))$ where $g_j : (L,L, ..., L) \rightarrow L$ is defined by the dataflow problem

DataflowAnalysis, Sp06 © BGRyder



21

