
1

DataflowAnalysis, Sp06 © BGRyder 1

Dataflow Analysis
• Lattice theoretic foundations

– Partial ordering
– Meet, Join, Lattice, Chain

• Round robin fixed point iteration
• Function properties

• Monotonicity
• Distributivity

• Justification for using fixed-point iteration on
dataflow equations

• Meet Over all Paths solution

DataflowAnalysis, Sp06 © BGRyder 2

Lattice Theory
• Partial ordering ≤

– Relation between pairs of elements
– Reflexive x ≤ x
– Anti-symmetric x ≤ y, y ≤ x ⇒ x = y
– Transitive x ≤ y, y ≤ z ⇒ x ≤ z

• Poset (Set S, ≤)
• 0 Element 0 ≤ x, ∀ x ∈ S
• 1 Element 1 ≥ ∀ x ∈ S

A poset need not have 0 or 1 element.

2

DataflowAnalysis, Sp06 © BGRyder 3

Lattice Theory
• Greatest lower bound (glb)

l1, l2 ∈ poset S, a ∈ S is glb(l1, l2)
if a ≤ l1 and a ≤ l2 then
for any b ∈ S, b ≤ l1, b ≤ l2 ⇒ b ≤ a

if glb is unique it is called the meet (Λ) of l1 and l2.
• Least upper bound (lub)

l1, l2 ∈ poset S, c ∈ S is lub(l1,l2)
if c ≥ l1 and c ≥ l2 then
for any d ∈ S, d ≥ l1, d ≥ l2 ⇒ c ≤ d.

if lub is unique is called the join (υ) of l1 and l2.

DataflowAnalysis, Sp06 © BGRyder 4

Poset Example
{ a, b, c}

{ a,b} { b,c} {a,c}

{a} {b} {c}

{ }

lub

glb

U = { a,b,c}
poset is 2U

≤ is set inclusion

{a,b} and {b,c} are
 incomparable elements.

3

DataflowAnalysis, Sp06 © BGRyder 5

Definition of a Lattice (L, Λ, υ)

• L, a poset under ≤ such that every pair of
elements has a unique glb (meet) and lub
(join).

• A lattice need not contain an 0 or 1 element.
• A finite lattice must contain an 0 and 1

element.
• Not every poset is a lattice.
• If a ≤ x ∀ x ∈ L, then a is 0 element of L
• If x ≤ a ∀ x ∈ L, then a is 1 element of L

DataflowAnalysis, Sp06 © BGRyder 6

a poset, but not a lattice

3 4

1 2

0

There is no lub(3,4) in this
poset so it is not a lattice.

4

DataflowAnalysis, Sp06 © BGRyder 7

Examples of Lattices
• H = (2U , ∩, ∪) where U is a finite set

– glb (s1, s2) is (s1 Λ s2) which is s1 ∩ s2
– lub (s1, s2) is (s1 υ s2) which is s1 ∪ s2

• J = (N1 , gcd, lowest common multiple)
– partial order relation is integer divide on N1

n1 | n2 if division is even
– lub (n1, n2) is n1 υ n2 = lowest common

multiple(n1,n2)
– glb (n1,n2) is n1 Λ n2 = greatest common divisor

(n1,n2)

DataflowAnalysis, Sp06 © BGRyder 8

Chain
• A poset C where, for every pair of elements
c1, c2 ∈ C, either c1 ≤ c2 or c2 ≤ c1.

e.g., { } ≤ {a} ≤ {a,b} ≤ {a,b,c}
and from the lattice as shown here,

1 ≤ 2 ≤ 6 ≤ 30
1 ≤ 3 ≤ 15 ≤ 30

30

6 1510

3

1

2 5
Lattices are used in dataflow
analysis to argue the existence
of a solution obtainable through
fixed-point iteration.

5

DataflowAnalysis, Sp06 © BGRyder 9

Round-robin Fixed-point
Iteration

• Iterates through nodes of cfg in specific node
order, which preserves the partial order of the
graph.

• Recall worklist algorithm(per bit) has O(me) work
where |E|=e and m is number of dataflow facts in
the set.

• Postorder on depth-first spanning tree defines
rPostorder which is reverse postorder
– Ancestor-first node ordering, good for forward dataflow

problems
– rPostorder_number =(| N |+1) - postorder_number
– Postorder is good node ordering for backward dataflow

problems

4

DataflowAnalysis, Sp06 © BGRyder 10

rPostorder Example

1 2

3

4 Postorder numbering
of depth-first leftmost
traversal of cfg
rPostorder# is defined as
(n+1)-Postorder#

1

2

3

spanning tree
edge

control flowgraph

4

6

DataflowAnalysis, Sp06 © BGRyder 11

Round-robin Iteration
Form depth-first spanning tree of control flowgraph and derive rPostorder

numbering for nodes
change = true
Initialize REACH(m) = ∅, ∀ m

while (change) do
{ change = false

for (m = 2; m <= n; m++)
{ new = ∪ (Reach(j) ∩ pres(j) ∪ dgen(j))
 j = pred(m)

 if (new != REACH(m))
 then {REACH(m) = new; change = true}

}
}

Round-robin tends to push dataflow facts
as deep as possible on acyclic paths in
the flowgraph on each iteration

DataflowAnalysis, Sp06 © BGRyder 12

Round-robin Iteration
Form depth-first spanning tree of control flowgraph and derive rPostorder

numbering for nodes
change = true
Initialize REACH(m) = ∅, ∀ m)

while (change) do
{ change = false

for (m = 2; m <= n; m++)
{ new = ∪ (Reach(j) ∩ pres(j) ∪ dgen(j))
 j = pred(m)

 if (new != REACH(m))
 then {REACH(m) = new; change = true}

}
}

O(n)
#iters of while * cost each iteration
cost for statement ~ cost of all ops
during lifetime of for

iter#1
iter#2

x=2

iter#3

iter#4

iter#5,
no change

d = 3; d+2 = 5

7

DataflowAnalysis, Sp06 © BGRyder 13

Cost of Loop Operations
Calculate for statement cost over all its iterations:

1. 2(n-1) bit vector operations to calculate each node’s
factor new = ∪ (Reach(j) ∩ pres(j) ∪ dgen(j) and
memoize it;

 2. unions: (#preds(m)-1) for each node m means we do
 (e - n) unions per for statement for all nodes;
3. rest of for is constant number of operations

Each while loop iteration costs (e - n) + (2n-2) ≈ e + n;

Therefore, entire algorithm costs O(de), (≈ O(dn) by
assumption for flowgraphs), bit vector operations where
d+2 for classical bitvector problems.

Note: this dominates O(e) of calculation of rPostorder
numbers and the O(n) of initialization loop.

DataflowAnalysis, Sp06 © BGRyder 14

More Lattice Properties
• Finite length: if every chain in lattice is finite
• Bounded lattice: if lattice contains both 0 and 1 elements
• Distributive lattice: if ∀ x,y,z ∈ S

x υ (y Λ z) = (x υ y) Λ (x υ z)
x Λ (y υ z) = (x Λ y) υ (x Λ z)

• (S,≤) poset, f: S --> S is monotonic iff
 ∀ x, y ∈ S, x ≤ y ⇒ f(x) ≤ f(y)
• Monotonic functions preserve domain ordering in their

range values

x

y f(y)

f(x)f

8

DataflowAnalysis, Sp06 © BGRyder 15

Fixed point theorem -
Why it works?

Intutition--
Given a 0 in lattice and monotonic function f, 0 ≤ f(0).
Apply f again and obtain

0 ≤ f(0) ≤ f(f(0)) = f2 (0)
Continuing,
0 ≤ f(0) ≤ f2 (0) ≤ f3(0) ≤ ... ≤ fk(0)= fk+1(0) for a finite chain

lattice.
This is tantamount to saying lim f k(0) exists and is called the
least fixed point of f,
since f(f k(0)) = f k(0)

k ⇒ ∞

k ⇒ ∞

DataflowAnalysis, Sp06 © BGRyder 16

Fixed Point Theorem
Thm: f: S --> S monotonic function on poset (S, ≤) with a 0

element and finite length. The least fixed point of f is fk (0)
where

i. f0 (x) = x,
ii. fi+1 (x) = f(fi(x)), i ≥ 0,
iii. fk(0) = f(fk(0)) and this is the smallest k for which

this is true.

• For any p such that f(p)=p, fk(0) ≤ p.
• Theorem justifies the iterative algorithm for global data

flow analysis for lattices & functions with right properties
• Dual theorem exists for 1 element and maximal fixed point

for k such that fk(1) = fk+1(1).

9

DataflowAnalysis, Sp06 © BGRyder 17

Application to DFA on CFG
• Cartesian cross product of posets is a poset

– if (S, ≤) is a poset, then (S x S x ... x S, ≤’) is a poset
whose partial ordering is component-wise ≤

W=(W1,W2,…,Wn) ≤’Y=(Y1,Y2,…,Yn) iff
W1 ≤ Y1 and W2 ≤ Y2, …, and Wn ≤ Yn

• Cartesian cross product of lattices is a lattice (with
an induced partial ordering)

• Monotone function on cross product lattice can be
built from monotone functions on each component
lattice F(Y1, Y2,..., Yn) = (g1 (Y1, Y2,...,Yn),..., gn(Y1, Y2,...,Yn))

where gI : (L,L, ..., L) --> L and ≤’ is component-wise ≤ from L

DataflowAnalysis, Sp06 © BGRyder 18

Example - Available Exprs
• lattice is 2Exprs where Exprs is set of all binary

expressions in program
• Partial order is ⊆ (subset inclusion) so meet is ∩
• < Exprs,Exprs,...,Exprs> is 1 element
• < ∅, ∅,..., ∅) is 0 element
• From the data flow equations for AVAIL, we know

that if a set of dataflow facts X is true on entry to a
flowgraph node n, then f(X) is true on each exit
edge of n where

f(X) = epres(n) ∩ X ∪ egen(n)
f is called the transfer function for AVAIL

10

DataflowAnalysis, Sp06 © BGRyder 19

Example, Available Exprs
• Cross product lattice is

– (2Exprs , 2Exprs ,..., 2Exprs) with n components where n is
number of nodes in the cfg and ≤’ is ≤ component-wise

• Avail equation at a node can be expressed thusly,
Avail(j) = ∩ { Avail(m) ∩ epres(m) ∪ egen(m) }

– AVAIL (j) is the solution at entry of node j and
f(AVAIL(j)) is solution at exit of node j,

gj = ∩ f(gm), m ∈ Pred(j)
– One step of the worklist algorithm maps a potential

solution for AVAIL at a node of the cfg to another
potential solution for that node

m ∈ Pred(j)

DataflowAnalysis, Sp06 © BGRyder 20

Example, Available Exprs
• Can you show gi monotone?

gi : (2Exprs , 2Exprs ,..., 2Exprs) --> 2Exprs

• Then this induces the monotonicity of F,
F = (g1,..., gn)

• Application of dual of fixed point theorem
here to find the maximal fixed point. Iterate
down from the 1 element.
– Initialize ρ to ∅, all other cfg nodes to Exprs.

11

DataflowAnalysis, Sp06 © BGRyder 21

Sketch of Validity Proof of
Iterative Algorithm for DFA

• Let Redef (Y1
i…Yn

i) be result after i steps of the
worklist algorithm (per node) for DFA.
Redef(Y1

i…Yn
i) = (Y1

i…Yk-1
i, gk (Y1

i…Yn
i),Yk+1 ,…Yn)

• In the next iteration (i+1st),only 1 component of
Y= (Y1

i…Yn
i) changes and this component is

chosen non-deterministically.
• Recall we have a function defined on the

flowgraph: F(Y1,…,Yn) = (g1 (Y1,…,Yn),..., gn(Y1,…,Yn))
where gj : (L,L, ..., L) --> L is defined by the
dataflow problem

DataflowAnalysis, Sp06 © BGRyder 22

Sketch of Proof, cont.
• Assume minimal fixed point of F is Fm(0).
• Must show iterative algorithm halts at a fixed point

of Redef function, Redefmin, and that this fixed
point is meaningful to the data flow problem under
solution, namely Redefmin = Fm(0).

• First, show iterates of Redef form a chain.
0 ≤’ Y1 ≤’ Y2 ≤’ Y3 ≤’ ... ≤’ Yk

Therefore, Redefmin = Redefk(0) for some smallest k,
by finiteness of chains on the lattice.

12

DataflowAnalysis, Sp06 © BGRyder 23

Sketch of Proof, cont.
Second, let Fm(0) be the minimum fixed point of the data

flow function F on the cross product lattice. Show
Fm(0) ≤’ Redefmin.
Fm(0) ≤’ Redefmin because Redefmin is also a fixed point of F,

but not necessarily its minimal fixed point.
Third, show Redefmin ≤’ Fm(0) in two steps

(1) Redefk(0) ≤’ Fk(0) for all k and
(2) Redefmin = Redefk(0) for large enough k,
so for k≥k’ large enough, Redefmin ≤’ Fk’(0) ≤’ Fm(0)
by defn of minimum fixed pt

Therefore, Redefmin= Fm(0) and the fixed point
iterative procedure does find the minimal fixed point
on the lattice

DataflowAnalysis, Sp06 © BGRyder 24

Meet Over all Paths solution

• Maximal data flow information desired is obtained
by traversing ALL PATHS from ρ to n.

• Consider Xn = Λ fQ(0), for Q a path in the
flowgraph, Q = e1,e 2,...ek so that

 Xn = Λ f ek ° f ek-1 ° ... ° f e2 ° f e1(0)

MOP is best summary of data flow facts possible to
compute at compile-time.

ρ

e1

e2
...

ek

Xn

Q = ek … e1

Q: what is relation between MFP and MOP?

