Dataflow Analysis - 2

- Monotone dataflow frameworks
 - Definition
 - Convergence
 - Safety
- Relation of MOP to MFP
 - Constant propagation
- Categorization of dataflow problems

DataflowAnalysis 2, Sp06 © BGRyder

Monotone Dataflow Frameworks

- Formalism for expressing and categorizing data flow problems (Kildall, POPL'73) <G, L, F, M>
 - G, flowgraph <N, E, ρ>
 - L, (semi-)lattice with meet Λ
 - usually assume L has a 0 and 1 element
 - finite chains
 - F, function space, $\forall f \in F, f: L \rightarrow L$
 - Contains identity function
 - Closed under composition $\forall f, g \in F, f^{\circ} g \in F$
 - Closed under pointwise meet, if $h(x) = f(x) \wedge g(x)$ then $h \in F$
 - M : E --> F, maps an edge to a corresponding transfer function that describes data flow effect of traversing that edge

DataflowAnalysis 2, Sp06 © BGRyder

2

DataflowAnalysis 2, Sp06 © BGRyder

Monotonicity, cont.

Show $f(x \land y) \le f(x) \land f(y)$ (2) implies $x \le y \Rightarrow f(x) \le f(y)$ (1) Then we know these two definitions of monotonicity are equivalent.

Assume $x \le y$. Then $x \land y = x$ by defn of meet.

 $f(x \wedge y) = f(x) \le f(x) \wedge f(y)$ which is given.

Then $f(x) \Lambda (f(x) \Lambda f(y)) = f(x)$ by definition of meet.

But $(f(x) \wedge f(x)) \wedge f(y) = f(x) \wedge f(y) = f(x)$ by associativity of meet

Therefore, $f(x) \le f(y)$ by definition of meet.

So (2) implies (1).

Therefore, these definitions of monotonicity are equivalent.

DataflowAnalysis 2, Sp06 © BGRyder

10

