
1

DataflowAnalysis 2, Sp06 © BGRyder 1

Dataflow Analysis - 2

• Monotone dataflow frameworks
– Definition
– Convergence
– Safety

• Relation of MOP to MFP
– Constant propagation

• Categorization of dataflow problems

DataflowAnalysis 2, Sp06 © BGRyder 2

Monotone Dataflow
Frameworks

• Formalism for expressing and categorizing data
flow problems (Kildall, POPL’73) <G, L, F, M>
– G, flowgraph <N, E, ρ>
– L, (semi-)lattice with meet Λ

• usually assume L has a 0 and 1 element
• finite chains

– F, function space, ∀ f ∈ F, f: L --> L
• Contains identity function
• Closed under composition ∀ f, g ∈ F, f ° g ∈ F
• Closed under pointwise meet, if h(x) = f(x) Λ g(x) then h ∈ F

– M : E --> F, maps an edge to a corresponding transfer
function that describes data flow effect of traversing that
edge

2

DataflowAnalysis 2, Sp06 © BGRyder 3

Monotone DF Frameworks
• Desirable to have F contain monotone functions so

can used fixed point iteration as solution procedure
for dataflow equations

• Can ensure finite chains by L being of finite height
or a finite lattice

• Often use L as a lattice instead of a semi-lattice
• Kildall’s meet semilattice formulation leads to

some unnatural lattice formulations of problems
– Always starting at a 1 of meet semilattice and taking

meets down to a maximal fixed point (MFP)

DataflowAnalysis 2, Sp06 © BGRyder 4

Reaching Defns
• e.g., REACH meet operation is set union with

partial order is ⊇ superset inclusion
– Why? recall that the 0 element a is such that
a ≤ x= a, ∀ x which means a is a superset of x!

• Defs = {<node,var>}, all defs in program
• Basis lattice is 2Defs

• Cartesian product lattice = (2Defs , 2Defs ..., 2Defs)
• partial order on product is ≤’ = ≤ component-wise
• 1 element (∅,…, ∅)
• 0 element (Defs, Defs, ..., Defs)

3

DataflowAnalysis 2, Sp06 © BGRyder 5

Reaching Defns
∅

def1 def2 def k...

{def1,def2} {def2,def3}

def3

...

.

.

.

.

.

.

.

.

.

Defs

...

meet is ∪
join is ∩

Apply fixed point theorem to find max fixed
point on the cross product of this lattice. But
this all seems “upside down”.

DataflowAnalysis 2, Sp06 © BGRyder 6

Alternative View

• Form natural basis lattice for a join problem
• Find minimum fixed point on this lattice
• Can consider literature discussions of meet

semilattices and then use dual results for the
corresponding natural join semilattices

• Means find max fixed point for AVAIL, VeryBusy
and constant propagation whereas find min fixed
point for REACH, LIVE

4

DataflowAnalysis 2, Sp06 © BGRyder 7

Meet vs Join Semilattice
• Meet semilattice has Λ operation; if finite, has a 0

element,
– e.g., AVAIL with meet ∩ and order ⊆
– Initialization for

• forward df problem is Xρ = 0 element and for node n ≠ρ, Xn = 1
element.

• backward df problem is Xexit= 0, all other nodes n, Xn = 1
• Join semilattice has υ operation; if finite, has 1

element,
– e.g., LIVE with join ∪ and order ⊆
– Initialization for

• forward df problem is Xρ = 0 element and for node n ≠ρ, Xn = 0
element

• backward df problem is Xexit = 0, all other nodes n, Xn = 0

DataflowAnalysis 2, Sp06 © BGRyder 8

Function Properties
• Montonicity

– Defined as x ≤ y ⇒ f(x) ≤ f(y).
– Equivalent formulation of definition

f (x Λ y) ≤ f(x) Λ f(y)
• Distributivity

– If f (x Λ y) = f(x) Λ f(y) then f distributive
– Distributivity implies monotonicity
– Four classical bitvector problems are

distributive

5

DataflowAnalysis 2, Sp06 © BGRyder 9

Monotonicity
x y

x Λ y

f(x) f(y)

f(x) Λ f(y)

f(x Λ y)

f

f: L --> L
x Λ y ≤ x
x Λ y ≤ y
by defn of meet of
x, y; and

f(x) Λ f(y) ≤ f(x)
f(x) Λ f(y) ≤ f(y)
by defn of meet of
f(x), f(y).

f(x Λ y) ≤ f(x)
f(x Λ y) ≤ f(y)
by monotonicity of f

f(x Λ y) ≤ f(x) Λ f(y)
by defn meet of f(x), f(y)

Therefore, x ≤ y ⇒ f(x) ≤ f(y) (1)
implies
f(x Λ y) ≤ f(x) Λ f(y) (2).

DataflowAnalysis 2, Sp06 © BGRyder 10

Monotonicity, cont.
Show f(x Λ y) ≤ f(x) Λ f(y) (2) implies x ≤ y ⇒ f(x) ≤ f(y) (1)
Then we know these two definitions of monotonicity are equivalent.

Assume x ≤ y. Then x Λ y = x by defn of meet.

f(x Λ y) = f(x) ≤ f(x) Λ f(y) which is given.

Then f(x) Λ (f(x) Λ f(y)) = f(x) by defn of meet.

But (f(x) Λ f(x)) Λ f(y) = f(x) Λ f(y) = f(x) by associativity of meet

Therefore, f(x) ≤ f(y) by defn of meet.

So (2) implies (1).

Therefore, these definitions of monotonicity are equivalent.

6

DataflowAnalysis 2, Sp06 © BGRyder 11

Function Properties

• Relation of function space properties to
fixed point iterative algorithms for DFA

• Distributivity means you can take meets in
the domain and then apply f OR you can
apply f and then take meets in the range --
you calculate the same answer for these
functions

x1

x2
x3

f(X)

X
f(x1 Λ x2 Λ x3) = f(x1) Λ f(x2) Λ f(x3)

f(X)

DataflowAnalysis 2, Sp06 © BGRyder 12

MOP vs MFP
• For distributive functions define the DF problem, to

obtain data flow solution at node n, can gather
information on paths (e.g., P1, P2) simultaneously
without loss of precision.
– e.g., fP1(0), fP2(0) needn’t be calculated explicitly

• However, Kam and Ullman showed that this is not
true for all monotone functions; Kam, Ullman, 1976,1977

• Therefore, MFP only approximates MOP for
general monotone functions that are not
distributive.

7

DataflowAnalysis 2, Sp06 © BGRyder 13

Safety of Dataflow Solution
• Safe solution underestimates the actual dataflow

solution; x ≤ MOP is an approximate solution
• Acceptable solution is one that contains a fixed

point of the function, y ≥ z where z is any fixed
point.

• If they exist, MOP is largest safe solution and MFP
is smallest acceptable solution.

• Between MFP and MOP
are interesting solutions.

1 element
.
.
MOP
.
.
MFP
.
.

Safe
Acceptable

DataflowAnalysis 2, Sp06 © BGRyder 14

Safe Solutions
• AVAIL is meet semilattice; it is safe to err by

saying an expression is NOT AVAILABLE when it
might be. This inhibits cse transformations.
Therefore, safe solutions are smaller than MOP
here.

• REACH is join semilattice; it is safe to err by
saying a definition reaches when it DOES NOT
REACH. This inhibits dead code elimination
transformations. Therefore, safe solutions are
larger than MOP here.

8

DataflowAnalysis 2, Sp06 © BGRyder 15

Reaching Defns - view 1
∅

def1 def k

Defs

.

.

.

1 element

MOP

MFP

safe solutions are
larger sets of defns
than MOP

.

.

.

.

.

.

Meet semilattice formulation

DataflowAnalysis 2, Sp06 © BGRyder 16

Reaching Defns - view 2

Minimum Fixed Point

MOP

0 element

.

.

.
.
.
.

safe solutions overestimate
the MOP with larger sets of defns.

Join semilattice formulation

9

DataflowAnalysis 2, Sp06 © BGRyder 17

Nodes vs Edges Formulations
On Edges (MOP formulation) for Reaching Defs

Effect of path <j,n,m> is

M(n,m) ° M(j,n) (X) = fn Λ fj (X) where X ⊆ Defs

Dataflow information at node m is
M(n,m) ° M(j,n) (X) Λ M(n,m) ° M(k,n) (Z) =

fn ° fj (X) Λ fn ° fk (Z) = fn (fj (X)) Λ fn (fk (Z)) =

fn (fj (X) Λ fk (Z)) by distributivity of f;

Therefore by nodes (df equations) and by edges
(MOP-like) formulations are equivalent here

j k

n

m

X

Y

Z

DataflowAnalysis 2, Sp06 © BGRyder 18

Kam and Ullman Results
• On monotone data flow framework, iterative

algorithms converges to MFP of dataflow equations
• A monotone problem that is not distributive for

which MOP≠MFP is constant propagation
• MFP ≤ MOP always
• There is no way by using subroutines to apply

functions to lattice elements and take meets, one can
produce an algorithm to obtain MOP solution for
an arbitrary instance of a monotone framework.
MOP is undecidable (use a substring identification
problem (MPCP) to prove this)

10

DataflowAnalysis 2, Sp06 © BGRyder 19

Constant Propagation
• Flowgraph nodes contain A:=B op C where
A,B,C are vars and op ∈ {+ - / *} or A := integer
constant

• Basis lattice is sets of {<var, integer value>} pairs
with partial order of subset inclusion and meet ∩

• Monotone flow functions will be:
fA:= B op C (X) = Y, where Y differs from X only in terms of a

<A,_> pair.
• if <B,b>, <C,c> ∈ X, then add <A, b op c> and remove any

other tuples <A,_> to form Y
• otherwise remove <A,_> from X to form Y

fA := r (X) = Y, where Y is formed from X with <A,r> added
and all previous <A,_> removed.

DataflowAnalysis 2, Sp06 © BGRyder 20

Constant Propagation
1

a:=2
b:=1

a:=1
b:=2

c:=a+b

2 3

4x y
MOP formulation
f4 (x) = f4({<a,2> <b,1>}) = {<c,3> <a,2> <b,1>}

f4 (y) = f4({<a,1> <b,2>}) = {<c,3> <a,1> <b,2>}

f4 (x) Λ f4 (y) = f4 (x) ∩ f4 (y) = {<c,3>}

These are different answers!!
So the f’s are not distributive functions.

Dataflow equations formulation
x = {<a,2> <b,1> }
y = {<a,1> <b,2>}
x Λ y = x ∩ y = ∅
therefore, f4 (x Λ y) = ∅ as well

11

DataflowAnalysis 2, Sp06 © BGRyder 21

Heuristic Fix

• Setup df eqns at exit of nodes
W = f4 ({<a,2> <b,1>}) = {<c,3> <a,2> <b,1>}

Z = f4 ({<a,1> <b,2>}) = {<c,3> <a,1> <b,2>}

Constants on exit of node 4 =
W Λ Z = {<c,3>}

This only shows one can get better
approximations to MOP, but this trick
of solving on exit of nodes, doesn’t always
work.

1

a:=2
b:=1

a:=1
b:=2

c:=a+b

2 3

4

W
Z

DataflowAnalysis 2, Sp06 © BGRyder 22

Iteration and Convergence
Properties

• Monotonicity and distributivity guarantee the
existence of a fixed point solution and affect
its precision when solved by fixed point
iteration

• Orthogonal function properties govern the
speed of convergence of the iteration

12

DataflowAnalysis 2, Sp06 © BGRyder 23

Convergence Properties

K-boundedness
Monotone function space is k-bounded if

 ∀ f ∈ F, fk = i Λ f Λ f2 Λ ...Λ fk-1

 where i is the identity function and this
function is evaluated pointwise on the lattice.

• 2-bounded is termed fast (Graham-Wegman 1981)

X

f

DataflowAnalysis 2, Sp06 © BGRyder 24

k-boundedness

• Intuitively, if f describes dataflow effect
of once around the cyclic path, then

x Λ f(x) Λ f(f(x)) Λ ...
is the effect of a loop where the number of
iterations is a priori indeterminate.
• For fast functions f2 ≥ i Λ f. This means
 f2(x) ≥ i(x) Λ f(x) = x Λ f(x)
Therefore, x Λ f(x) Λ f2(x) = x Λ f(x)
so you needn’t apply f twice to find out
the dataflow effect of executing the loop.

13

DataflowAnalysis 2, Sp06 © BGRyder 25

Convergence Properties
K-bounded: all contributions to MFP

solution occur prior to Kth iteration
Fast: 1 pass around a cycle is enough to

summarize its contribution to the
dataflow solution (e.g., reflexive
transitive closure is fast but not
rapid)

Rapid: contribution of a cycle is
independent of value at entry node;
1 pass around the cycle is enough.
All classical bitvector problems are
rapid

Sometimes, effect of a cycle must be
approximated in order to have an
effective solution procedure.

rapid

fast == 2
bounded

 K -bounded

DataflowAnalysis 2, Sp06 © BGRyder 26

Categorizing DF Problems
• REACH, AVAIL, LIVE, VERYBusy are all

distributive and rapid
• Reflexive, transitive closure (assign to a vertex v,

the set of all transitive edges ending in v) is
distributive and fast, but not rapid

• Bound Set (calculates formals linked through a
chain of calls) is distributive, k-bounded for a
particular instance where k depends on the length
of call chains and permutation orders of
parameters in recursive calls (related to aliasing in
Fortran)

14

DataflowAnalysis 2, Sp06 © BGRyder 27

Categorizing DF Problems

• Constant propagation is monotone and not
distributive, but fast

• Interprocedural Must-define is monotone
but not distributive

• Interprocedural May-modify and
Interprocedural Must-preserve are
distributive

• Pointer aliasing, formulated on an
approximation lattice (Weihl, 1981), is
monotone

