
1

MachineIndepOpt-2, Sp06 © BGRyder 1

Machine Independent Compiler
Optimization -2

• Building and optimizing basic blocks
• Recovering code from expression DAGs
• Control flow graph

– Reducibility properties
• Worklist iterative algorithm for dataflow analysis

– Versions of the algorithm
– Worklist REACH example

• Interval analysis

MachineIndepOpt-2, Sp06 © BGRyder 2

Definitions
• Basic block code sequence that is entered at

the beginning and only exited at the end
• Control flow graph G = (N, E, ρ)

N is { basic blocks}
E is {(x,y)} where execution can flow from
bblock x to bblock y
 ρ is unique entry node of CFG

• Loop strongly connected, single-entry region
in CFG

2

MachineIndepOpt-2, Sp06 © BGRyder 3

Machine Independent
Optimizations

• Anomaly detection
– Undefined variables,

unreachable code, unused
parameters

• Storage sharing
• Common subexpression

elimination
• Copy propagation
• Dead code elimination
• Code motion

• Reduction in strength
• Constant propagation
• Register allocation

optimizationss in red italics can be
Performed locally, within a basic
block, and globally on CFG

MachineIndepOpt-2, Sp06 © BGRyder 4

Basic Block Optimizations
• Local common subexpression elimination

(while building the DAG)
• Dead code elimination
• Copy propagation
• Constant propagation
• Renaming of compiler-generated

temporaries to share storage

3

MachineIndepOpt-2, Sp06 © BGRyder 5

Building Expression DAGs
• Leaves are initial values
• Internal nodes labelled by operators, 2nd

label is list of identifiers whose value is that
node

• Mapping from each identifier to the DAG
node containing its value at exit of the basic
block

• During building uncover local CSEs and
constants, unnecessary temporaries, last defs
and first uses of variables

MachineIndepOpt-2, Sp06 © BGRyder 6

Local Dead Code Elimination

1. a = y + 2
2. z = x + w
3. x = y + 2
4. z = b + c
5. b = y + 2

1’. a = y + 2
2’. x = a
3’. z = b + c
4’. b = a

y 2

+, a, x, b
1 3 5

x,x0 w

+, z, z0

3

2 4

b,b0 c

+, z

5

4

4

MachineIndepOpt-2, Sp06 © BGRyder 7

Local Constant Propagation
1. t1 = 1
2. a = t1
3. t2 = 1 + a
4. k = t2
5. t3 = cvttoreal(k)
6. t4 = 6.2 + t3
7. t3 = t4

1,t1,a

1 2

+, t2, k
3 4

cvttotreal,t3,t3_0
5 7

6.2

+,t4,t3
6 7

D. Gries’ algorithm:
• Process 3 address statements in order
• Check if operand is constant; if so, substitute
• If all operands are constant,

• Do operation and add value to table
associated with L-value

• If all operands not constant, delete any table
entry for this L-value

MachineIndepOpt-2, Sp06 © BGRyder 8

Local Constant Propagation

1,t1,a

1 2

+, t2, k
3 4

5 7
6.2

+,t4,t3
6 7Code constructed from final

DAG will be
1’. a = 1
2’. k = 2
3’. t3 = 8.2
4’. t4 = t3
assuming a,k,t3,t4 are all live
on basic block exit

cvttotreal,t3,t3_0

5

MachineIndepOpt-2, Sp06 © BGRyder 9

Recovering Code from a DAG
• (Assuming that operands point to operators)

topsort traversal of DAG recovers sequence of 3
address statements
– Generate code for a node when its operands are known

• For nodes with lists of live labels y1, y2, …,yk on exit of
the basic block, generate
y1 = a op b, y2 = y1, …, yk = y1

• Nodes without labels correspond to labels that have been
reassigned later in the block; create a new compiler
temporary to hold result value, if necessary

MachineIndepOpt-2, Sp06 © BGRyder 10

Possible Problems
• Troubles with aliasing for accesses into

arrays and through pointers
x = a[k], a[j] = y, z = a[k]
Does the store into a[j] affect the load from a[k]?

• DAG building algorithm imposes ordering
edges on array accesses to preserve order of
access in generated code
– Can do similar ‘fix’ for variable accesses

through pointers

6

MachineIndepOpt-2, Sp06 © BGRyder 11

DAGs with Array Elements
1. t1 = k * 4
2. x = addr(a)[t1]
3. t2 = j * 4
4. addr(a)[t2] = y
5. t3 = k * 4
6. z = addr(a)[t3]

addr(a) k 4 j y

*,t1,t3
1 5

=[],x
2

*,t2
3

[]=
4

=[],z
6

preserve original order of array accesses
to prevent problems with aliasing

MachineIndepOpt-2, Sp06 © BGRyder 12

DAGs with Array Elements
• During DAG building, whenever store into

an array ([] =), kill all existing array store
nodes so that they will not be given
additional labels (as CSE)
– Can do with one bit (kill/live) and one list of

array defn nodes
• Insert ordering edges between any array

element defn and existing uses of that array,
and between any array element use and any
existing definitions of the same array

7

MachineIndepOpt-2, Sp06 © BGRyder 13

DAGs with Pointer Dereferences
• What rules are sufficient to ensure safety of

generated code?
• As we build the DAG, (in the absence of points-to

information)
– Any indirect store through a pointer must follow any

previous stores or fetches through a pointer
– Any indirect fetch through a pointer must follow any

previous store through pointer
• Q: are these rules sufficient? Why or why not?
• Q: what about reference variables/fields in

OOPLs?

MachineIndepOpt-2, Sp06 © BGRyder 14

Natural Loops
• Single entry node, header, that dominates all

other nodes in the loop
• Invariant: from every node there is one path

back to the header.
• Loop construction:

– Find back edge. Traverse edges in reverse execution
direction until back edge target is reached. All nodes
encountered. all nodes encountered in traversal are in
corresponding natural loop (ASU algm 10.1, p 606)

8

MachineIndepOpt-2, Sp06 © BGRyder 15

Natural Loops
• Loops with different headers are either

– nested, one contained entirely within the other -
an inner loop) , or

• If each pair of nodes, one in loop (n) and one in
loop(k), are reachable from each other, and header(n)
dominates header(k), then loop(k) is nested within
loop(n)

– disjoint
• Loops with the same header are assumed to

be part of the same natural loop

MachineIndepOpt-2, Sp06 © BGRyder 16

Flowgraphs
• Spanning tree of the control flowgraph

– Built using depth-first search
– Nodes numbered in preorder
– Back edge goes from a node to one of its

ancestors in the tree rooted at cfg entry node
– Divides edges into four groups: tree, forward,

cross and back edges
– Note: different spanning trees on an arbitrary

digraph may result in different edges as back
edges

9

MachineIndepOpt-2, Sp06 © BGRyder 17

Properties of Reducible
Flowgraphs

• Can partition their edges into 2 disjoint sets
– Forward edges form an acyclic graph in which each node

is reachable from flowgraph entry, ρ
– Back edges consist only of edges whose targets dominate

their sources.
– The set of back edges of reducible flowgraph is unique.

• Means set of spanning-tree-induced back edges and back edges
are same.

• All loops are single-entry which facilitates code
motion to a preheader node of the loop

• Allows dataflow analysis methods based on graph
decomposition (elimination methods)

MachineIndepOpt-2, Sp06 © BGRyder 18

Example, ASU p 603

1

2 3

4

5 6

7

8

9 10

10

MachineIndepOpt-2, Sp06 © BGRyder 19

Example
1

2 3

4

5 6

7

8

9 10

node 1 dominates node 7
1

2 3

4

5 6 7

8

9 10

Dominator Tree

MachineIndepOpt-2, Sp06 © BGRyder 20

Example
1

2 3

4

5 6

7

8

9 10

1

2 3

4

5 6 7

8

9 10

Dominator Tree

11

MachineIndepOpt-2, Sp06 © BGRyder 21

Example
1

2 3

4

5 6

7

8

9 10

Loops
(10,7): {7,8,10}
(7,4): {4,5,6,7,8,10}
(4,3)(8,3): {3,4,5,6,7,8,10}
(9,1):
{1,2,3,4,5,6,7,8,9,10}

MachineIndepOpt-2, Sp06 © BGRyder 22

Dominators, ASU p 671

• How to find dominators of flowgraph,
G=(N, E, ρ)? use fixed point iteration

(justification later)
D(ρ) = {ρ}
for n∈ N-{ρ} do
{ D(n) = N;}
while changes to any D(n) occur do
{ for n∈ N-{ρ} do

D(n) = {n} ∪ ∩ D(p)
} p ∈ pred(n)

12

MachineIndepOpt-2, Sp06 © BGRyder 23

Dominators
• Algorithm terminates since at every step

some set D(k) becomes smaller; this cannot
occur indefinitely, so loop terminates

• Can code iteration using bitvector
representation for node set and logical and
and or

• Invariant: Node k is parent of node n in the
dominator tree, if node k is the immediate
dominator of n

MachineIndepOpt-2, Sp06 © BGRyder 24

Invariant Code Motion
• Computation is loop invariant if its value

does not change while control stays within
the loop

• How find loop invariant computations?
– Mark invariant all 3 address statements whose operands are

constant or have all reaching definitions from outside the loop
– Mark invariant all 3 address statements not previously marked such

that all operands are constant or all operand reaching definitions are
outside the loop or 1 reaching definition in loop is marked invariant
already. Repeat until no new statements are marked invariant.

• Create loop pre-header node (immediate predecessor of
header) as destination for moved code

13

MachineIndepOpt-2, Sp06 © BGRyder 25

Example
1. m = 3
2. p = 1
3. n = 2

4. if p>10 goto 10.

5. k = m + 2
6. j = 3 * k
7. n = j + n
8. p = p + 1
9. goto 4

10. print j,k

First, need to find
def-use links.
all-defs= {<m,B1> <p,B1>
<n,B1> <k,B3> <j,B3>
<n,B3> <p,B3>}

B1

B2

B3

B4

Reaching defs solution:
Reach(B1)=φ
Reach(B2)=Reach(B3)=
Reach(B4)= all-defs

MachineIndepOpt-2, Sp06 © BGRyder 26

1. m = 3
2. p = 1
3. n = 2

4. if p>10 goto 10.

5. k = m + 2
6. j = 3 * k
7. n = j + n
8. p = p + 1
9. goto 4

10. print j,k

B1

B2

B3

B4

p m, n, p

n, p

j, k

Def-use links Second, look for
invariant code with
no def-use links from
within loop (B2,B3)

p

14

MachineIndepOpt-2, Sp06 © BGRyder 27

B1

B2

B3

B4

p n, p

n, p

j

1. m = 3
2. p = 1
3. n = 2

 4. if p>10 goto 10.

5. k = m + 2

6. j = 3 * k
7. n = j + n
8. p = p + 1
9. goto 4

10. print j,k

m

k

k
B5

stmt 5 moved to preheader B5

k

p

MachineIndepOpt-2, Sp06 © BGRyder 28

B1

B2

B3

B4

p n, p

n, p

1. m = 3
2. p = 1
3. n = 2

 4. if p>10 goto 10.

5. k = m + 2
6. j = 3 * k

7. n = j + n
8. p = p + 1
9. goto 4

10. print j,k

m

j, k
B5

j

p

No more movt possible
as neither n nor p are
invariant in loop.

15

MachineIndepOpt-2, Sp06 © BGRyder 29

Maintaining Dataflow Information
• If we perform code motion, what dataflow

information is invalidated?
– Dominators: can easily insert preheader into this

relation
– Def-use, use-def links: need to update for further

use
• Idea- can use indirect notation for chain

– To update after a move, look at def-use chain of
moved stmt to find which use-def chains must be
updated

MachineIndepOpt-2, Sp06 © BGRyder 30

Updating use-def chains
• Store def-use chain as a linked list of

pointers to defs (e.g., <m,B1>)
• Follow use-def links of moved defn.

– When move x=a*b, lookup def-use(x) and for
each use identified, change old defn block
number to new defn block number

16

MachineIndepOpt-2, Sp06 © BGRyder 31

Worklist Algm for Bitvector DFA
change = true;
initialize Reach(m) = ∅;
while (change) do

{ change = false;
while (∃ j ∍ Reach(j) ≠
∪ (Reach(m) ∩ pres(m) ∪ dgen(m)) do

{ Reach(j) = ∪ (Reach(m) ∩ pres(m) ∪ dgen(m))

 change = true; }
}

m ∈ pred(j)

m ∈ pred(j)

Will justify later why fixed point iteration
is appropriate for this problem; Algorithm
needs to be optimized and should be
deterministic.

MachineIndepOpt-2, Sp06 © BGRyder 32

Implementation
Use bitstring representation for sets: 1 bit position per variable

definition
For each control flowgraph node j,

pres(j)
 has 0 in bit positions corresponding to definitions of

variables which are defined at node j
otherwise 1's.

dgen(j)
has a 1 in each bit position corresponding to a definition

of a variable at node j, downwards-exposed defns
otherwise 0's.

17

MachineIndepOpt-2, Sp06 © BGRyder 33

Algorithm
/* initially all reaching sets are empty */
for m := 1 to n do Reach(m) := 0B;
W := {1,2,...,n} /*put every cfg node on worklist*/
while W ≠ ∅ do
{ Remove k from W;

new = ∪ { Reach(m) ∩ pres(m) ∪ dgen(m) } ;

if new ≠ Reach(k) then
{ Reach(k) := new;
 for j ∈ succ(k) do
 add j to W, if is not already there;
}

}

m ∈ pred(k)

MachineIndepOpt-2, Sp06 © BGRyder 34

Detailed Algorithm
W = empty /* initialize worklist */
for (i = 1; i < n+1; i++) /* i varies over nodes */
 for (j = 1; j <m+1; j++) /* j varies over defs */
{ if (k ∈ pred(i) with j ∈ dgen(k))

 then {set j bit to 1 in REACH(i);
 add (j, i) to W}
else {set j bit to 0 in REACH(i)}

endif;
}
while (W not empty) do
{ Remove (j,i) from W

if j ∈ pres(i) then
{for (k ∈ succ(i))

if (j bit in REACH(k) == 0)
then {set j bit to 1 in REACH(k);
 add (j,k) to W}

endif;
}

endif;
}

This version of algorithm accomplishes 1
iteration in the initialization loop, by
passing dgen sets to successors. Second
while loop performs worklist propagation.
Can order entries on worklist for better
performance.

18

MachineIndepOpt-2, Sp06 © BGRyder 35

Example, Bitvector Calculation
Definitions and
basic blocks all
given unique ids

i = 0
k = 0

 i < n

mod(i,3) = 0?

k := k -1 k := k + 1

i := i + 1

exit

i1, k1

k4 k5

i6

1

2

3

4 5

6

MachineIndepOpt-2, Sp06 © BGRyder 36

Initialization
i = 0
k = 0

 i < n

mod(i,3) = 0?

k := k -1 k := k + 1

i := i + 1

exit

i1, k1

k4 k5

i6

1

2

3

4 5

6

pres 00000 11111 11111 11000 11000 00111
dgen 10100 00000 00000 00010 00001 00001

 1 2 3 4 5 6

Bits: i1 i6 k1 k4 k5

19

MachineIndepOpt-2, Sp06 © BGRyder 37

 After initialization loop
i = 0
k = 0

 i < n

mod(i,3) = 0?

k := k -1 k := k + 1

i := i + 1

exit

i1, k1

k4 k5

i6

1

2

3

4 5

6

00000

10101

00000

00000 00000

00110

MachineIndepOpt-2, Sp06 © BGRyder 38

Trace of propagation loop
Worklist W = {(i1,2),(k1,2), (i6,2), (k4,6), (k5,6)}
Choose (i1,2) from W; pres(2)==11111, so REACH(3) = 10000

and we add (i1,3) to W.
Then choose (k1,2) off W and set REACH(3) = 10100 and we

add (k1,3) to W.
Then choose (i6,2) off W and set REACH(3) = 10101 and add

(i6,3) to W. Now
 W= {(k4,6), (k5,6), (i1,3),(k1,3), (i6,3)}
Iteration continues until worklist is empty.

20

MachineIndepOpt-2, Sp06 © BGRyder 39

After steps in previous slide

i = 0
k = 0

 i < n

mod(i,3) = 0?

k := k -1 k := k + 1

i := i + 1

exit

i1, k1

k4 k5

i6

1

2

3

4 5

6

00000

10101

10101

00000 00000

00110

MachineIndepOpt-2, Sp06 © BGRyder 40

Solution

i = 0
k = 0

 i < n

mod(i,3) = 0?

k := k -1 k := k + 1

i := i + 1

exit

i1, k1

k4 k5

i6

1

2

3

4 5

6

00000

11111

11111

11111 11111

11111

21

MachineIndepOpt-2, Sp06 © BGRyder 41

Elimination Methods -
Interval Analysis

 1

2

3

6

4 5

Gaussian-elimination-like solution
procedure for classical df problems.
1. Solve dataflow problems within
regions of cfg, obtaining df eqns
for each node in terms of the loop
entry node. Effectively collapse loops
into their header node as solve.
2. Back substitute value for loop
entry node into all equations to
obtain solution at node
Effectively, expand loops as substitute.

