
1

OOCompilerOpts-1, Sp06 © BGRyder 1

OOPL Optimizations
• Optimizations specific to OOPLs

– Optimizing dynamic dispatch
• Run-time method selection

– Method inlining
– Control flow path splitting
– Method specialization
– Object layout for cache performance
– Synchronization removal

OOCompilerOpts-1, Sp06 © BGRyder 2

Dynamic Dispatch
• Introduced in C++ virtuals
• Virtual method tables (1 per class, every

instance points to its class’s VMT)
– Keeps pointers to code for appropriate method

of each name, for receivers whose runtime type
is a specific class

– Avoids need to store class hierarchy explicitly
for run-time use

• Put pointer to its class’s VMT entry in object when it
is created

– Inherited methods are explicitly represented

2

OOCompilerOpts-1, Sp06 © BGRyder 3

Dynamic Dispatch
– Method call resolution:

• Load receiver’s VMT entry
• Load method address by indexing into that table by selector

number
• Jump to that function

– Need to build additional tables because of
multiple inheritance (more than one method at
same index)

• Cost of resolution measured by Driesen and Holzle
on early C++ programs at median of 5.2% total
execution time (OOPSLA’96)

OOCompilerOpts-1, Sp06 © BGRyder 4

VMT
A
 int x y

B
 int z

A a = new A();//1
B b = new B();//2
a = b;//3

//1

x
y

//2

x
y
z

VMT ptr

g

g
h

VMT ptr

A.g()’s code

B.g()’s code

B.h()’s code

a

b

g()

g(),h()

3

OOCompilerOpts-1, Sp06 © BGRyder 5

VMT

A a = new A();//1
B b = new B();//2
a = b;//3
a.g();//4

//3

x
y

VMT ptr
g

g
h

A.g()’s code

B.g()’s code

B.h()’s code
x

y
z

VMT ptr

Will get method resolution for a.g() call at 4 through B’s
VMT entry, using runtime type of object to which a refers.

b

a

A
 int x y

B
 int z

g()

g(),h()

OOCompilerOpts-1, Sp06 © BGRyder 6

VMT - Multiple Inheritance

e()

A

B C

D

a()

c()
f()

g()

A

B

C

D

DcDreisen, Holzle,
OOPSLA’96

 a()
a()’s code

 a()
a()’s code c()’s code f()’s code g()’s code

c() f()

 a()
a()’s code c()’s code f()’s code

c() f()

a()
a()’s code e()’s code

e()

a()
a()’s code e()’s code

e()

g()

4

OOCompilerOpts-1, Sp06 © BGRyder 7

Method Inlining
• Idea: avoid overhead of context switching

and expose more code to possible
optimization
– Can inline call sites statically shown by analysis

to be monomorphic
– Using guards, can inline call sites with small

number of frequent callees and large frequency
of occurrence

– Usually inline small methods to avoid too much
code size growth

• Avoid in presence of recursion

OOCompilerOpts-1, Sp06 © BGRyder 8

Method Inlining
• Strategies developed are heuristic

– If inline, often expose opportunities for
optimizations in code

– If inline, may increase register pressure and
cause too much code growth

• Need to balance estimated gain in
performance versus code growth and
potential slowdown due to runtime checks

5

OOCompilerOpts-1, Sp06 © BGRyder 9

 Method Selection
• Early optimizations of VFT schemes - how to

do lookup quickly?
– Use observed profiling information about calls to

predict most likely methods called
– Encode method call as guarded inlining

if (shape instanceof Circle)//inline code for Circle.area()
else if (shape instanceof Square) //inline code for Square.area()
else shape.area();//regular dynamic dispatch

• Also can encode as runtime method selection
if (shape instanceof Circle)//call Circle.draw()
else if (shape instanceof Square)//call Square.draw()
else shape.draw();//regular dynamic dispatch

OOCompilerOpts-1, Sp06 © BGRyder 10

Guarded Inlining

• Aigner and Holzle: C++ source-to-source compiler
changed virtual method calls to guarded inlined
method calls (asked the C++ compiler to inline
methods)
– Decisions:

• Most frequent class represents 40% of receivers at call site
• Optimize call sites that do over 0.1% of calls in run;

– Results: profiling feedback more successful than CHA-
based analysis, but gains varied over benchmarks

Aigner and Holzle, “Eliminating Virtual
Function Calls in C++ Programs”, ECOOP96

6

OOCompilerOpts-1, Sp06 © BGRyder 11

Guarded Inlining
• Possible problems

– Must worry about cost versus benefits
• Can increase cost of dynamic dispatch for classes not

in the tests
• Can decrease overall cost of dynamic dispatch if the

tested classes occur frequently enough and if further
optimizations are possible in the inlined code

– Vortex choices
• Do guarded inlining if there are a small (<=3)

number of candidate classes and all methods can be
inlined Craig Chambers, Jeffrey Dean, David Grove, “Whole-program

Optimization of Object-oriented Languages, TR-96-06-02,
DCSE, Univ. Washington, June 1996 ;
J. Dean, G. DeFouw, D. Groave, V. Litvinov, C. Chambers,
“Vortex: An Optimizing Compiler for OO Languages”,
OOPSLA’96.

OOCompilerOpts-1, Sp06 © BGRyder 12

Guarded Inlining
• How to accomplish?

– Single class membership tests
– VMT (virtual method table) pointer in C++
x = obj.m(); becomes id_x = obj.class_id;

 if (id == D) … elseif (id == E)…else ….;
– Test types in bottom-up order wrt class hierarchy
– On each branch of the if-then-else, inline a method, and

further optimize using known type of receiver
• Problems:

• Large hierarchies make testing impractical (especially if many
classes use same function)

• Sensitivity to program changes (extended classes have to be
instantiated in old test code)

cost: 5 instructs

7

OOCompilerOpts-1, Sp06 © BGRyder 13

Subclass Testing
• Cone tests (subclass relation check)

– Single inheritance
• x has y as ancestor in tree iff x.l >= y.l && x.h<=y.h

where l is preorder# and h is postorder#
– Multiple inheritance

• Want to know inheritsFrom(obj,B) function
• N classes numbered 0 to (N-1)
• Build NxN bit matrix X, X[k,j] = true if class k is

subclass of class j

cost: 6 instructs

cost: 5-6 instructs
NxN bits of space

OOCompilerOpts-1, Sp06 © BGRyder 14

Inlining in JikesVM
• Speculative inlining with guards

– Done in response to CHA or profiling
– Guard with class/method test
– May avoid test with pre-existence

void foo(A a){ … a.m();…)

if object referred to by a can be shown to have been
created prior to when foo is invoked, then it is valid
when executing the inlined code.

8

OOCompilerOpts-1, Sp06 © BGRyder 15

Path Splitting
• Idea: to avoid redundant tests and increase

extent of code for which types of some
objects are known

• To avoid redundant type tests, split control flow
path between merge following one occurrence of a
class test and the next occurrence of same class
test
– Duplicates code

• Vortex does this lazily
• Feedback-directed splitting in adaptive Jikes VM

OOCompilerOpts-1, Sp06 © BGRyder 16

Example
x1.class == Rectangle?

t1:=x1.len;
t2:=x1.wid;

x1.class==Circle?

t3:=x1.radius
t4:=t3*t3*pi

x2:=area(x1);

...

x1.class == Rectangle?

x5:=x1; x1.class==Circle?
t5:= x1.center; x3:=bb(x1);

9

OOCompilerOpts-1, Sp06 © BGRyder 17

Example
x1.class == Rectangle?

t1:=x1.len;
t2:=x1.wid;
x5:=x1;

x1.class==Circle?

t3:=x1.radius
t4:=t3*t3*pi;
t5:= x1.center;

x2:=area(x1);
x3:=bb(x1);

...

Vortex does not
split past loop
entry or exit, for
simplicity

know type of x1 at
compile-time here

OOCompilerOpts-1, Sp06 © BGRyder 18

Method Specialization
• Using known type information at compile-time to

translate a customized version of code assuming
that information (e.g., receiver type)

• Factoring shared code into base classes which
contain virtual calls to specialized behavior to
subclasses hurts run-time performance
– Compiler must undo effects of factorization

• Vortex: profile-guided selective specialization
– Idea: given weighted call graph derived from profile

data, eliminate heavily traveled, dynamically
dispatched calls by specializing to particular patterns in
their parameters

10

OOCompilerOpts-1, Sp06 © BGRyder 19

Method Specialization
• Drawbacks

– Overspecialization - multiple specialized versions may
be too much alike

– Under-specialization - methods may only be specialized
on receiver type

• Pass-through call sites use formals of caller as
arguments to callee, specializable call sites
– f(A a,B b,C c){…a.s(c)….} can specialize s() for

set of known static types of a and c

OOCompilerOpts-1, Sp06 © BGRyder 20

Vortex Specialization Algm
• At a pass-through edge, determine most general

class set tuple for pass-through formals that allows
static binding of call to the callee method

• Must combine class set tuples from different call
sites in same method, if want to use the same
specialized code at them
– Have info on specific class sets for args from profiling

data, but not on their occurrence in specific
combinations

– Vortex: try all plausible combinations and be careful
about code blowup (didn’t occur in practice)

11

OOCompilerOpts-1, Sp06 © BGRyder 21

Questions asked in Vortex
• How is set of classes which enable specialization of

pass-through arc calculated?
• How should specializations for multiple call sites to

same method be combined?
• If a method f is specialized, how can we avoid

converting statically bound calls to f into dynamically
bound calls?

• When is an arc important to specialize?

OOCompilerOpts-1, Sp06 © BGRyder 22

Vortex Specialization Algm
• May change a statically bound call to the

unspecialized method to a dynamic test to
choose between specialized versions OR can
leave original (unspecialized) translation as
target of statically bound call

• Cascading specializations - tries to
recursively specialize caller to match the
specialized callee
– Has effect of hoisting dynamic dispatch to lower

frequency parts of call graph

12

OOCompilerOpts-1, Sp06 © BGRyder 23

Vortex Specialization Algm
• Chosen cost/benefit threshold: 1000

invocations for specializable call
• Drawbacks

– Doesn’t consider code growth
– Treats all dynamic dispatches as same benefit
– NO global view on code growth as perform the

optimization

OOCompilerOpts-1, Sp06 © BGRyder 24

Object Layout for Locality
• Idea: want good cache performance so

profile usage of object fields; rearrange
object storage so frequently used fields
occupy same cache line, where possible
– Avoids cache misses
– Affects data layout in storage
– Uses profiling to measure field usage

13

OOCompilerOpts-1, Sp06 © BGRyder 25

Cache Optimization
• Structure splitting - viable optimization for Java

– Improve cache performance of objects comparable to
or larger than a cache block

– Idea:
• Profile use of fields of objects to identify some as hot

(frequently used) vs cold (seldom used);
• Automatically split class to associate cold fields of an object

with another class only accessed indirectly
• Change all existing references to the new structure

– For larger objects that span multiple cache blocks,
reorder fields by temporal affinity of use

– Performance improvements of 18-28%, with 22-66% of
improvement coming from class splitting

T. Chilimbi, B. Davidson, J.R. Larus,
“Cache-conscious Structure Defn”, PLDI’99

OOCompilerOpts-1, Sp06 © BGRyder 26

Benchmarks
• Java benchmarks used

T. Chilimbi, B. Davidson, J.R. Larus,
“Cache-conscious Structure Defn”, PLDI’99

14

OOCompilerOpts-1, Sp06 © BGRyder 27

Experimental Procedure
• Analyzed and instrumented bytecode to

collect field info (type, size) from application
• Execute instrumented code to obtain field

access frequencies and numbers/kinds of
objects created

• Split classes, choosing based on static +
dynamic data

• Java bytecode recompiled to reflect splitting
decisions (use Vortex to obtain native code)

OOCompilerOpts-1, Sp06 © BGRyder 28

Setup
T. Chilimbi, B. Davidson, J.R. Larus,
“Cache-conscious Structure Defn”, PLDI’99

15

OOCompilerOpts-1, Sp06 © BGRyder 29

Sizes of Live Java Objects

Observations: sizes of live objects after a GC averaged
over execution; note smaller size than 64byte cache block

Chilimbi et al, PLDI’99

OOCompilerOpts-1, Sp06 © BGRyder 30

Details
• Tradeoffs

– Pack more hot class instances into cache block
• Cost of additional reference from hot to cold

portion; Code growth; More objects in memory
overall; Extra indirection for each cold field access

• Heuristics to choose classes
• Only split live classes with total field accesses

exceeding a threshold: A_k ≥ LS / (100*C)
– A_k: #fields accesses in class k; LS: total # field accesses;

C: total number of classes with at least one field access
Plus larger than 8 bytes with 3 or more fields.

16

OOCompilerOpts-1, Sp06 © BGRyder 31

Details
• Heuristics to choose fields

• Cold fields accessed no more than A_k/(2*F_k) times where
F_k is # fields in class k

• To split requires at least 8 bytes cold
• Use heuristics to avoid overly aggressive splitting

• Split class transformation
• Hot classes and their accesses are same

– Additional new field per object refers to new cold class
– Need to alter constructors to create new cold class instance and

assign it to the new field
• Cold field counterpart class created with public fields, inherits

from Object, only method is constructor
• Change accesses to cold fields to indirect accesses through new

field

OOCompilerOpts-1, Sp06 © BGRyder 32

Findings
• Measured class splitting potential with 2

inputs per benchmark
• 17-46% of all accessed classes are candidates with

26-100% having field access profiles that justify
splitting

– Claim the splitting algorithm is insensitive to input data
used to profile (measured between the 2 inputs)

• Split classes account for 45-64% total number of
program field accesses

– Temperature differentials high (77-99%) indicating strong
differences between hot and cold field accesses

– Modest additional memory needs (13-74KB)

17

OOCompilerOpts-1, Sp06 © BGRyder 33

Optimization Results

Chilimbi et al, PLDI’99

OOCompilerOpts-1, Sp06 © BGRyder 34

Synchronization Removal
• Java library methods are often synchronized

for use in multi-threaded applications
• If program is single-threaded or threads do

not share data, then unnecessary
– Use escape analysis to find objects which escape

the thread that creates them
• If none found, then no need for synchronization

