
1

OOCompilerOpts-2, , Sp06 © BGRyder
1

OO Optimizing Compilers

• Vortex - Craig Chamber’s research compiler
for Cecil, C++, Java, Modula-3 (~1995-2000)

• Jikes RVM - IBM research compiler for
adaptive compilation of Java, based on
Jalapeno VM (~1999-2004)

OOCompilerOpts-2, , Sp06 © BGRyder
2

Vortex Compiler
• Early experimental OO compiler built by Craig Chambers

and his students for his Cecil PL
– Goal: to reduce runtime performance costs of OO style through

static analysis based and dynamic profiling guided techniques
– Compiles multiple front-ends into C or SPARC code

• Did deep exploration of how to gather effective profiling
information (off-line)
– Profile-guided optimizations

• Inlining; Receiver class prediction; Method specialization
• Granularity of data collection

• How much calling context to save?
• How many method calls to fold together?
• Balance efficiency of data gathering (cost) versus utility of data

gathered (profitability)

2

OOCompilerOpts-2, , Sp06 © BGRyder
3

Off-line Profiling
• Vortex gathers profiling information off-line, in

separate training runs of program and uses it in
optimization

• Alternative: SELF and JikesRVM do dynamic
compilation, gathering profiling information as the
program runs and recompiling using this
information for hot methods

• Problem: enabled optimizations over subsequent executions have
to save enough to cover the cost of profiling

OOCompilerOpts-2, , Sp06 © BGRyder
4

Grouping Profiles
• Each collected profile distribution is associated

with set of method calls
– Message summary - groups all calls to same method
– Call-site-specific (1-CCP)

• k-Call Chain Profile delimits k dynamically enclosing call sites
– Collect histogram for each possible receiver class
– Shows if a few classes dominate (i.e., peaked profiles)
– Shows which classes are most common
– Prefer peaked profiles to find some methods are more

frequently called than others
– Want profiles stable across inputs and program versions

3

OOCompilerOpts-2, , Sp06 © BGRyder
5

Empirical Findings

• Vortex trials on C++ and Cecil programs
– 71% of C++ messages (72% Cecil) were sent to

most common receiver class
– in C++, 36%(Cecil 50%) dynamic dispatches

occurred at call sites with single receiver class!
• Q: would that be true today?

OOCompilerOpts-2, , Sp06 © BGRyder
6

Profile Stability over Inputs
• Two metrics studied on profiles derived from

different inputs to same programs
– FirstSame: same most common receiver class
– OrderSame: 2 distributions are same only if they are

comprised of same classes in same frequency order
– in C++,

• for FirstSame, 99% match for method summary and 79% match for 1-
call-site-specific

• for OrderSame, 28% match for method summary and 45% match for
1-call-site-specific

4

OOCompilerOpts-2, , Sp06 © BGRyder
7

Stability over Program
Versions

• Gathered profiles across different versions of
Vortex using 6 month version control history
after compiler was stable
– FirstSame metric found distributions stable

• Fewer than 5% method summaries changed over entire 6 month
period; not until after 2 months, did more than 10% of call-site-
specific profiles change

• Claim: this validates utility of profiles for
optimization of future versions of a program

OOCompilerOpts-2, , Sp06 © BGRyder
8

Vortex Findings
• Benchmarks included C++, Modula-3, Java

programs
• Plus versions of the C++ programs with all methods

marked virtual

• Optimizations tested
• Use g++ with -O2
• Compiled w/o OO optimizations
• Inlining. Splitting, exhaustive class testing based on

static info
• Inlining, splitting, profile-guided receiver class

prediction

Dean et.al, OOPSLA’96

5

OOCompilerOpts-2, , Sp06 © BGRyder
9

Vortex Findings
Dean et.al, OOPSLA’96

Q: what would be the results
 be on modern C++ programs?

OOCompilerOpts-2, , Sp06 © BGRyder
10

Dynamic Compilation
• Dynamic compilation in Smalltalk compiler in mid-1980’s

– Compiled bytecodes to machine code on demand
– Execution times halved compared to interpreted execution

• Idea used in SELF compiler in early 1990’s
– Focused on optimization of dynamic dispatch

• “In interactive dynamic compilation system, optimizing less
may improve overall efficiency, if doing so reduces compile
time more than it increases execution time” (Holzle/Ungar
Toplas1996)

6

OOCompilerOpts-2, , Sp06 © BGRyder
11

Dynamic Compilation
• Idea: only optimize performance-critical

sections of code
– Reduces compilation delays and time cost

• Adaptive optimization: discover and
optimize hot spots in the code
– Idea: use online profile info to optimize methods

• IBM’s Jikes RVM for Java explored many of
the ideas initially presented in SELF
compilers and is refining the methodology of
adaptive optimization

OOCompilerOpts-2, , Sp06 © BGRyder
12

Jikes RVM
• Research compiler developed by IBM that is now

open source (Oct 2001)
• Key properties:

• Does no interpretation; only compiles to native code
• Written almost completely in Java including the run-time system
• Goal to explore adaptive compiling using on-line profiling
• Not a full JVM because doesn’t have all libraries
• Designed to run Java programs investigating VM issues
• Runs on AIX/PowerPC, Linux/IA-32, Unix/ PowerPC (limited

functionality)

7

OOCompilerOpts-2, , Sp06 © BGRyder
13

Jikes RVM - Structure

selected slides from JikesRVM tutorial at OOPSLA’02,
by Mike Hind and David Grove

OOCompilerOpts-2, , Sp06 © BGRyder
14

Jikes RVM - Optimizations
• Optimization levels

– level 0- branch opts, constant propagation, dead
code elimination, register allocation, instruction
scheduling, etc.

– level 1- pre-existence and speculative inlining,
static splitting, cse, load elimination, flow-
insensitive const/copy/type propagation, etc.

– level 2- loop normalization and unrolling, scalar
SSA, dataflow analysis, global CSE, etc.

• Speculative (guarded) inlining using CHA or
profiling info

8

OOCompilerOpts-2, , Sp06 © BGRyder
15

Adaptive Compilation System

Idea: online system exploits observed properties of current run

OOCompilerOpts-2, , Sp06 © BGRyder
16

Adaptive - best of 20 runs
Specs (size 100)

9

OOCompilerOpts-2, , Sp06 © BGRyder
17

Adaptive System with FDO

Method samping done originally in baseline translation; Sample
results are decayed; Rules determine which methods to inline (based
on edge frequencies and code growth size heuristics)

OOCompilerOpts-2, , Sp06 © BGRyder
18

FDO - best of 20 runs
(size 100)

