
1

OOCompilerOpts-3, Sp06 © BGRyder 1

Dynamic Analysis for
FDO of OOPLs

• What is FDO?
• An effective sampling profiling framework
• How to validate experimentally the cost

(overhead incurred) and precision?
• Adaptive optimization with FDO

– Optimizations used
– How to measure performance gain?

Arnold & Ryder, PLDI’01
Arnold, Hind, Ryder, OOPSLA’02

OOCompilerOpts-3, Sp06 © BGRyder 2

Compilation Options
• Compiled method at first use with fixed set of

optimizations (Just In Time or JIT compiler)
• Selective optimization of hot methods through

compilation
• Feedback directed optimization (FDO) for longer-

running applications
• Profiling used to choose what and how to optimize
• Offline profiles used since online profile collection often

degraded performance due to cost of code instrumentation
 Translation incurs runtime overhead
 Allows compiler to make judgments using runtime

information

2

OOCompilerOpts-3, Sp06 © BGRyder 3

Problems with Online FDO
• What is instrumentation?

– e.g., recording object field accesses
• Instrumentation overhead

– Profiling interval must be short, but then may not be
representative

– Need a way to stop instrumented execution
• Dynamic instrumentation

• Our contribution:
General framework for instrumentation sampling

and experiments with it.

OOCompilerOpts-3, Sp06 © BGRyder 4

Our Contribution

Modified
Instrumented

Method

Instrumented
Method

Instrumented
Code

High Overhead Low Overhead

Achieved through our new sampling framework,
independent of architecture or operating system.

3

OOCompilerOpts-3, Sp06 © BGRyder 5

Advantages
In our low overhead sampling framework

– Instrumentation can be run longer for greater accuracy
– Can apply multiple instrumentations at same time without

framework modification;
– Most instrumentation incorporated without modification
– Framework is tunable allowing tradeoffs between overhead

and accuracy (i.e., adjustable sampling rates)
– Deterministic sampling simplifies debugging

OOCompilerOpts-3, Sp06 © BGRyder 6

Our Framework

Checking
Code

Duplicated
(Instrumented)

Code

Low Overhead High Overhead

Modified Instrumented Method

4

OOCompilerOpts-3, Sp06 © BGRyder 7

Checking Code

Duplicated Code
Method entry

 check

check

Modified Instrumented Method
in Full Duplication Framework

OOCompilerOpts-3, Sp06 © BGRyder 8

Potential Disadvantages
• Code space may be doubled

– VM will apply instrumentation selectively
• Only in frequently executing methods

– Other space-saving versions of framework
– Empirical results show space usage is not a problem

• Sampled profile not same as exhaustive profile
– Can’t determine that an event did NOT occur
– Can’t check “for every iteration” assertions

5

OOCompilerOpts-3, Sp06 © BGRyder 9

Full-Duplication Framework
• Key Property

– The number of checks executed in the checking
code is less than or equal to the number of back
edges and method entries executed, independent
of the instrumentation being performed

OOCompilerOpts-3, Sp06 © BGRyder 10

Counter-based Sampling
• Take a sample after executing n checks
• Each check is:

globalCounter --;
If (globalCounter ==0) {

takeSample();
globalCounter = resetValue;

}

• Advantages
– Simple, but effective
– Hardware independent
– Tunable, flexible sampling rate
– Can be used with any VM

6

OOCompilerOpts-3, Sp06 © BGRyder 11

Framework Measurment
• Implemented in IBM’s Jalapeno JVM
• 10 benchmarks

– SPECjvm98(input size 10), Volano, pBob, opt-compiler
– Running times from 1.1-4.8 seconds
– Class file sizes from 10K-1,517K bytes
– Machine 333Mz IBM RS/6000 powerPC 604e with

2096Mb RAM running AIX 4.3
• Instrumented all methods in applications and

libraries

OOCompilerOpts-3, Sp06 © BGRyder 12

Instrumentation

• Call-edge:
– Collect caller, callee, call-site within caller at

method entry
– One counter per call edge

• Field-access:
– One counter per field of each class
– Each putfield, getfield access instrumented

7

OOCompilerOpts-3, Sp06 © BGRyder 13

Exhaustive Instrumentation
Overhead

Checking
Code

Duplicated
(Instrumented)

Code

Low Overhead High Overhead

On average, 88% call-edge and 60% field-access

OOCompilerOpts-3, Sp06 © BGRyder 14

Time Overhead(Full-Dup)

0

2

4

6

8

10

12

c
o
m
p
re
s
s

je
s
s

d
b

ja
v
a
c

m
p
e
g
a
u
d
io

m
tr
t

ja
c
k

o
p
t-
c
o
m
p
il
e
r

p
B
o
b

V
o
la
n
o

a
v
e
ra
g
e

P
e
rc
e
n
t

4.99%

8

OOCompilerOpts-3, Sp06 © BGRyder 15

Compile-time Increase (Full-Dup)

0

10

20

30

40

50

60

c
o
m

p
r
e
s
s

je
s
s

d
b

ja
v
a
c

m
p
e
g
a
u
d
io

m
t
r
t

ja
c
k

o
p
t
-c

o
m

p
il
e
r

p
B
o
b

V
o
la
n
o

a
v
e
r
a
g
e

P
e
r
c
e
n
t
a
g
e 34%

OOCompilerOpts-3, Sp06 © BGRyder 16

Sampling Cost (Full Dup)

 29%10

5%100,000

5%10,000

6%1,000

 10%100

182%1

Field-access
Accuracy

Call-edge
Accuracy

Overhead
(Full-Dup)

Sample
Interval

9

OOCompilerOpts-3, Sp06 © BGRyder 17

Measuring Precision
• Run sampling framework to record call edges
• Run perfect profile recording every call
• Compare percentage of sample collected

attributed to a particular call edge to
corresponding percentage in the perfect
profile.

OOCompilerOpts-3, Sp06 © BGRyder 18

Measuring Accuracy
• Overlap is minimum of these two percentages
• Overlap percentage is sum of overlaps for all edges

(Feller 98)

– Any sample will be less than or equal to 100%
– A sample identical to perfect profile has 100% overlap
– If sampling overestimates the percentage for some call

site then it must underestimate the percentage for
another call site

10

OOCompilerOpts-3, Sp06 © BGRyder 19

Sample & Perfect Profiles (Javac)

0

1

2

3

4

5

6

7

8

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Call site ID

P
e

rc
e

n
ta

g
e

Perfect Profile Sampled Profile

Javac
 93.8% overlap

OOCompilerOpts-3, Sp06 © BGRyder 20

Sampling Cost + Accuracy
(Full Dup)

100%99% 29%10

83%71%5%100,000

94%82%5%10,000

97%94%6%1,000

99%98% 10%100

100%100%182%1

Field-access
Accuracy

Call-edge
Accuracy

Overhead
(Full-Dup)

Sample
Interval

11

OOCompilerOpts-3, Sp06 © BGRyder 21

FDO Adaptive Optimization
• In Jalapeno,

– Compile application and run
– Identify “hot” methods and insert instrumentation
– Collect sampling instrumentation
– Recompile the “hot” methods with feedback-directed

optimizations using sampling information
– Optionally resume sampling as long as may want to

recompile

OOCompilerOpts-3, Sp06 © BGRyder 22

Online FDO Experiments
• Embed full duplication framework in Jikes Research

VM for adaptive optimization trials
– Insert instrumentation at highest optimization level (O2)

so see optimization effects in profile
– Instrumentation is intraprocedural edge counters
– Optimizations used

• Splitting

• Code positioning (to increase code locality)

• Loop unrolling

• Adaptive inlining

12

OOCompilerOpts-3, Sp06 © BGRyder 23

Online Profiling Strategy

Unopt JIT Opts

Hot
Profile(1) Hot

Profile(2)

Instru.
Sampling Profile-guided Opts

Sufficient
instrumentation
collected

Re-evaluation
(phase shift)

Arnold, et al
OOPSLA”02

Arrows represent recompilation steps in the 2-phased profiling

OOCompilerOpts-3, Sp06 © BGRyder 24

Splitting
• Splitting is tail duplication of code to

eliminate merges that cause dataflow info to
be lost

10 1000

505 505

10 1000

5
5

500
500

13

OOCompilerOpts-3, Sp06 © BGRyder 25

How to measure performance?
• Factors

– Overhead of instrumentation
– Effectiveness of FDO’s
– Underlying adaptive optimization system

• Measure steady-state performance of
SpecJvm98 codes
– Requires running benchmarks in harness

multiple times (to total time of 4 minutes on size
100)

OOCompilerOpts-3, Sp06 © BGRyder 26

Peak Performance Gains

4.3
7.1

4.8

1.1 .9

5.8

16.9

8.0

FDO vs Adaptive VM
 w/o online profiling

Arnold, et al
OOPSLA”02

14

OOCompilerOpts-3, Sp06 © BGRyder 27

SPECjbb2000 Arnold, et al
OOPSLA”02

OOCompilerOpts-3, Sp06 © BGRyder 28

Comparison

Mtrt - successful FDO Javac, unsuccessful FDO

Arnold, et al
OOPSLA”02

15

OOCompilerOpts-3, Sp06 © BGRyder 29

Specjvm98

Arnold, et al
OOPSLA”02

FDO compilation stats

