
1

Reference Analysis, Sp06 © BGRyder 1

Reference Analyses
• Review of type-based reference analyses for

call graph construction
• See CS515 posted lecture notes
• Related points-to analyses for C pointers

• Capturing flow in reference analysis
– Variable Type Analysis for Java
– Field-sensitive Anderson points-to analysis for

Java
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Reference Analysis
• OOPLs need type information about objects to

which reference variables can point to resolve
dynamic dispatch

• Often data accesses are indirect to object fields
through a reference, so that the set of objects that
might be accessed depends on which object that
reference can refer at execution time

• Need to pose this as a compile-time program
analysis with representations for reference
variables/fields, objects and classes.
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Reference Analysis
• Many reference analyses developed over past 10+

years address problem using different algorithm
and program representation choices that affect
precision and cost
– Class analyses use an abstract object (with or without

fields) to represent all objects of a class
– Points-to analyses use object instantiations, grouped by

some mechanism (e.g., object creation sites)
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Example
static void main(){

B b1 = new B();
A a1 = new A();
f(b1);
g(b1);

}
static void f(A a2){

a2.foo();
}
static void g(B b2){

B b3 = b2;
b3 = new C();
b3.foo();

}

class A {
foo(){..}

}
class B extends A{

foo() {…}
}
class C extends B{

foo() {…}
}
class D extends B{

foo(){…}
}

cf Frank Tip, OOPSLA’00

A

B

C    D
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Class Hierarchy Analysis
• First  method for reference analysis was CHA by

Craig Chamber’s group (UWashington)
– Idea: look at class hierarchy to determine what classes

of object can be pointed to by a reference declared to
be of class A,

• in Java this is the subtree in the inheritance hierarchy rooted
at A,  cone (A)

and find out what methods may be called at a virtual
call site

– Makes assumption that whole program is available
– Ignores flow of control
– Uses 1 abstract object per class and 1 abstract

reference per class
J. Dean, D. Grove, C. Chambers, Optimization of OO Programs Using Static
Class Hierarchy, ECOOP’95
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CHA Example
static void main(){

B b1 = new B();
A a1 = new A();
f(b1);
g(b1);

}
static void f(A a2){

a2.foo();
}

static void g(B b2){
B b3 = b2;
b3 = new C();
b3.foo();

}

class A {
foo(){..}

}
class B extends A{

foo() {…}
}
class C extends B{

foo() {…}
}
class D extends B{

foo(){…}
}

cf Frank Tip, OOPSLA’00

Cone(Declared_type(receiver))

A

B

C    D
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CHA Example - Call Graph
static void main(){

B b1 = new B();
A a1 = new A();
f(b1);
g(b1);

}
static void f(A a2){

a2.foo();
}
static void g(B b2){

B b3 = b2;
b3 = new C();
b3.foo();

}

class A {
foo(){..}

}
class B extends A{

foo() {…}
}
class C extends B{

foo() {…}
}
class D extends B{

foo(){…}
}

main

A.foo()   B.foo()   C.foo()   D.foo()

f(A)              g(B)

Call Graph
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Rapid Type Analysis
• Improves on CHA
• Constructs call graph on-the-fly, interleaved with

the analysis
• Only expands calls if has seen an instantiated

object of an appropriate type
– Ignores classes which have not been instantiated as

possible receiver types
• Makes assumption that whole program is available
• Uses 1 abstract object per class and 1 abstract

reference per class
D. Bacon and P. Sweeney,  “ Fast Static Analysis of C++
Virtual Function Calls”, OOPSLA’96
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RTA Example
static void main(){

B b1 = new B();
A a1 = new A();
f(b1);
g(b1);

}
static void f(A a2){

a2.foo();
}

static void g(B b2){
B b3 = b2;
b3 = new C();
b3.foo();

}

class A {
foo(){..}

}
class B extends A{

foo() {…}
}
class C extends B{

foo() {…}
}
class D extends B{

foo(){…}
}

cf Frank Tip, OOPSLA’00

A

B

C    D
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RTA Example
static void main(){

B b1 = new B();
A a1 = new A();
f(b1);
g(b1);

}
static void f(A a2){

a2.foo();
}
static void g(B b2){

B b3 = b2;
b3 = new C();
b3.foo();

}

class A {
foo(){..}

}
class B extends A{

foo() {…}
}
class C extends B{

foo() {…}
}
class D extends B{

foo(){…}
}

main

A.foo()   B.foo()   C.foo()   D.foo()

f(A)              g(B)

Call Graph
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Reference Analysis
• The analysis can incorporate information about flow of control in the program

or ignore it
– Flow sensitivity (accounts for statement order)
– Context sensitivity (separates calling contexts)

• Program representation used for analysis can incorporate reachability of
methods as part of the analysis or assume all methods are reachable

• Techniques can be differentiated by their solution formulation (that is, kinds of
relations) and directionality used

– e.g., for assignments
p  = q, interpreted as
Pts-to(q) ⊆ Pts-to(p) <Andersen>  vs. Pts-to(q) = Pts-to(p) <Steensgaard>
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Type-based vs Flow-based
• Uses only class hierarchy
• Same points-to set for

every reference of a type
• Always insensitive
• Inexpensive
• Okay for call graph

construction but too
imprecise for some other
applications

• Uses reference assignments
• Distinguishes points-to sets

of different references of
same type

• Can be flow-sensitive or
flow-insensitive

• Can be context-sensitive or
context-insensitive

• May be expensive
• Related to points-to

approaches for C
• Okay for side-effect and

dependence calculations
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Sensitivity
• Flow sensitivity

• If the problem requires that you consider the sequential order
of statements in the program, then problem is FS (e.g., reaching
defs)

• If the order of processing statements can be arbitrary, then the
problem is FI (e.g., may be referenced)

• Context sensitivity
• If the problem requires that you analyze each method

independently for each of its instantiations, then the problem is
context-sensitive (e.g., a add method for a Collection)

• Otherwise, if you summarize the effects of executing a method
over all its instantiations, then the problem is context-insensitive
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Points-to Analyses for C
• Popular flow- and context-insensitive formulations

of points-to analysis
– Scalable
– Good enough for ensuring safety of some optimizations
– Good for program understanding applications
– Not great for applications needing precise def-use

information (e.g., program slicing, testing)
– General approach is unification or inclusion constraints
– Newer versions kept track of individual struct fields as

pointer targets
• Extended to points-to analyses for OOPL reference

variables
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Points-to Analyses for C
• Steensgaard’s algorithm (POPL’96)

– Uses unification constraints so that for pointer
assignments, p = q, algorithm makes Pts-to(p)=Pts-to(q)

• This union operation is done recursively for multiple-level pointers
– Reduces the size of the points-to graph (in terms of both

nodes and edges)
• Almost linear solution time in terms of program size, O(n)
• Uses fast union-find algorithm
• Imprecision stems from merging points-to sets

– One points-to set per pointer variable over entire
program

Reference Analysis, Sp06 © BGRyder 16

Steensgaard - Example
a b c

d e

1 2

1.a = &b
2.b = &c
3.d = &e 
4.a = &d

cf M Shapiro and S. Horwitz, “Fast and Accurate
Flow-insensitive Points-to Analysis” POPL’97

a b c

d e

1 2

3

4

a b,d c,ePoints-to sets found

a b c

d e

1 2

3
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Steensgaard Solution
Procedure - At a glance

• Find all pointer assignments in program
• Form set of points-to graph nodes from

pointer variables/fields and variables (in the
heap or whose address has been taken)
– Examine each statement, in arbitrary order, and

construct points-to edges
• Merge nodes (and edges) where indicated by

unification constraints
• After linear pass over these assignments,

points-to graph is complete
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Points-to Analysis for C
• Andersen’s analysis

– Uses inclusion constraints so that for pointer
assignments, p = q, algorithm makes

             Pts-to(q) ⊆ Pts-to(p)
– Points-to graph is larger than Steensgaard’s and more

precise
– Worst case cubic complexity in program size, O(n3 ), to

construct the points-to graph
– One points-to set per pointer variable over entire

program
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Andersen - Example

a b c

d e

1 21.a = &b
2.b = &c
3.d = &e
4.a = &d 
5.d = &f
6.g = d
7.g = *a

34

f

g 6
5

6

7

a b c
d e

1 2

3 4
Steensgaard
solution
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Field-sensitive Points-to
Analysis

• Andersen-style points-to analysis
– On-the-fly call graph construction
– Flow- and context-insensitive
– Keep track of reference fields of abstract objects
– Creation site abstraction of objects
– Calculate points-to sets of each reference variable and field

• Algorithms:
• Rountev, Milanova, Ryder, OOPSLA’01, (annotated inclusion

constraints)
• Lhotak, Hendren, CC’03 (Soot’s Spark package)
• Sundaresan et. Al, OOPSLA’00 (VTA - an approximation)
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Andersen’s Solution Procedure
- At a glance

• Find all pointer assignments in program
• Form set of points-to graph nodes from pointer

variables/fields and variables on the heap or whose
address is taken
– Examine each statement, in arbitrary order, and

construct points-to edges
• Need to create more edges when see p = q  assignments so that

all outgoing points-to edges from q are copied to be outgoing
from p (i.e. processing inclusion constraints)

• If new outgoing edges are added to q during the algorithm, they
must be also copied to p
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VTA - Variable Type Analysis
• Analysis included in the McGill SOOT system
• How works? follows type propagation from a new site through

plausible chains of assignments to reference variables
• Builds a type propagation graph, using a CHA call graph

– Nodes are reference vars/fields/parameters
– Edges represent reference to reference assignments
– Initializes types for some reference nodes with type from an associated

object creation site
– Propagates types along directed edges

• Effectively, this is a points-to analyses using inclusion relations and
abstract objects with fields, that traces flow through reference
assignments

cf. V.Sundaresan, et. al, “Practical Virtual Method
Call Resolution for Java”, OOPSLA’00
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VTA
• Goal: to analyze program in only 1 iteration over the graph
• Uses a separate representative program-wide for each named

reference
• Propagates one abstract object per class to represent all created

objects of that class
• Is a flow-insensitive, context-insensitive analysis

//B extends A
A a1, a2, a3; B b3;
a2 = new A();
a1 = a2;
a3 = a1;
a3 = b3;
b3 = (B)a3;

cf. Sundaresan et. al

a1       a2        a3

b3

{A}

Initial graph and types
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VTA Example

//B extends A
A a1, a2, a3; B b3;
a2 = new A();
a1 = a2;
a3 = a1;
a3 = b3;
b3 = (B)a3;

a1       a2        a3

b3

{A}

scc collapsed

{A}

{A}

Empirical results report removal of 10-65% methods,
17-65% edges of CHA call graph; helps especially in 
library code; Considerably better than RTA over 
CHA in resolving calls (over entire application)

Q: For what client analyses is VTA appropriate? 
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Field-sensitive Points-to
Analysis (FieldSens)

• Flow-insensitive, context-insensitive extension of
Andersen’s analysis for C
– Have to handle dynamic dispatch, fields, and libraries

• Can use a precomputed callgraph or can compute
an on-the-fly callgraph from the points-to relations
being calculated

• Distinguishes object fields
• Originally formulated as a constraint solution

problem -- admits a dataflow formulation too
Rountev, A. Milnova, B. Ryder, “Points-to Analysis for Java

Using Annotated Constraints”, OOPSLA’00;
Lahotak and Hendren, “Scaling Java Points-to Analysis using

SPARK”, CC’03
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Points-to Analysis in Action

class A { void m(X p) {..} }

class B extends A {
     X f;
     void m(X q) {  this.f=q; }
}

B b = new B();
X x = new X();
A a = b;
a.m(x);

q

b o1

a

thisB.m f

x o2

A.m() not analyzed because 
it’s unreachable.
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Rules of Algorithm
• 4 types of reference assignment statements

– Each has points-to effects
• Allocation:  p=new X()

– Adds oX to Pts(p)
• Copy: p = q

– Pts(p) ⊇ Pts(q)  (i.e., If o ∈Pts(q), then o ∈Pts(p))
• Field store:   p.f = q

– If o∈Pts(p) and r ∈Pts(q), then r ∈ Pts(o.f)
• Field load:  p = q.g

– If o ∈ Pts(q) and oo ∈ Pts(o.g) then oo ∈ Pts(p)

• Algorithm described as construction of a points-to
graph
– Nodes: reference variables and fields
– Edges: ref ---> object or field labelled: obj--->obj
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FieldSens Algorithm
Initially

– Make a list of all reference assignments excluding
allocations

– Process allocations first and create the
corresponding points-to relations

– Create a worklist intialized with all the reference
variables and fields

• As the algorithm proceeds, any reference variable (or
object field) whose points-to set has changed will be put
on the worklist
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FieldSens Algorithm, cont
Repeat until the worklist is empty

– Remove a variable from the worklist and iterate
through the statements (involving this variable)

• Calculate points-to relations implied by the
assignment statement;  if this changes the points-to
set of a variable or object field, add it to the worklist
(Note: if p points to o and o.f’s points-to set is
changed, <p.f= >, then we record o.f as a variable
whose points-to set has changed.)
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Differences with Algm for C
• Fields cannot be ignored

– Field-sensitive versus field-based
• No explicit address operator  & in Java
• Reachability of code

• On-the-fly call graph construction versus use of a static approx
call graph

• Possibly multiple entries to call graph (e.g., static initializers,
thread start methods, finalizers, etc)

• Need to know entire set of classes that will ever be
loaded during execution

• Because of reflection
• Large Java libraries vs. smaller C libraries

• Can use strong typing to filter out spurious points-
to relations
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Field-sensitive Points-to Analysis w
Inclusion Constraints

• Based on Andersen’s points-to analysis
• Define and solve a system of annotated set-

inclusion constraints - different from dataflow
formuation
– Handles virtual calls by simulation of run-time method

lookup
– Models the fields of objects
– Extended BANE (UC Berkeley) constraint solver

• Analyzes only possibly executed code
– Ignores unreachable code from libraries

Rountev, A. Milnova, B. Ryder, “Points-to
Analysis for Java Using Annotated Constraints”
OOPSLA’00
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Annotated Constraints
• Form:  L ⊆ a R

– L and R denote set expressions
– Annotation a: additional information (e.g.,

object fields)
• Kinds of set expressions L and R

– Set variables: represent points-to sets
– ref terms: represent objects
– Other kinds of expressions
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Set variables and ref terms
• Set variables represent points-to sets

– For each reference variable p: VP
– For each object o: Vo

• Object o is denoted by term ref(o,Vo)

ref(o2,Vo2
)  ⊆ f  Vo1

 o1 o2
f

ref(o,Vo)  ⊆  VP p o
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Example: Accessing Fields
p = new A();

q = new B();

p.f = q;  

p o1

o2q

f

ref(o1,VO1
)  ⊆  Vp

ref(o2,VO2
)  ⊆  Vq

Vp  ⊆  proj(ref,W)

Vq  ⊆ f  W

 

Constraint generation

Think of W as representing
Vo1 and Vo3 when p points to o1, o3
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Example: Solving Constraints
ref(o1,VO1

)  ⊆  Vp

ref(o2,VO2
)  ⊆  Vq

Vp  ⊆  proj(ref,W)

Vq  ⊆ f  W
W ⊆  VO1

Vq  ⊆ f VO1

ref(o2,VO2
)  ⊆ f   VO1

 o1.f points to  o2

Constraint resolution
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Example: Virtual Calls

p.m(x); VP  ⊆ m   lam(Vx)

ref(o,VO)  ⊆  VPreceiver object o

Vx  ⊆  Vz

ref(o,VO)  ⊆ Vthis(A.m)

Actual method
called,  A.m(z)

Constraint generation from actual call:

Constraint resolution:
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Experiments
• 23 Java programs: 14 – 677 user classes

– Added the necessary library classes (JDK 1.1)
– Machine: 360 MHz, 512Mb SUN Ultra-60

• Cost measured in time and memory
• Precision (wrt usage in client analyses and transformations)

– Object read-write information
– Call graph construction
– Synchronization removal and stack allocation
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Analysis Time
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Resolution of Virtual Call Sites
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Thread-local new sites
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Points-to Analysis in Spark
 Lhotak and Hendren, “Scaling Java Points-to  Analysis Using Spark”, CC’03

• Framework for points-to analyses in Soot
– Intermediate representation uses def-use chains to achieve SSA-like

precision
– Allows selection of static versus on-the-fly cal lgraph construction
– Allows selection of field-sensitive versus field-based  analysis
– Uses declared types of references (and fields) to filter points-to

propagation
– Collapses cycles of references in points-to assignment graph (as they

all have the same points-to set); uses union-find algorithm
– Compared various set implementations for efficiency
– Uses native code simulation framework
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Spark Experiments
• Best algorithms found

• On-the-fly types, on-the-fly call graph, field-sensitive
– For clients needing the best precision

• On-the-fly types, CHA call graph, field-sensitive
– Faster than #1, but more edges in callgraph

• On-the-fly types, CHA call graph, field-based
– Fastest analysis, but least precise
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Spark Findings
Deref sites for 0
means p.f seen
in CHA call 
graph could 
not be reached

Call site of 0 means
unreachable; call site
of 1 means direct call

Lhotak & Hendren
 CC’03
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Spark Best Algorithms

#Jimple stmts Precision means #deref sites 
with Pts-to set of size 0 or 1

Lhotak & Hendren
 CC’03


