
1

Reference Analysis, Sp06 © BGRyder 1

Reference Analyses
• Review of type-based reference analyses for

call graph construction
• See CS515 posted lecture notes
• Related points-to analyses for C pointers

• Capturing flow in reference analysis
– Variable Type Analysis for Java
– Field-sensitive Anderson points-to analysis for

Java

Reference Analysis, Sp06 © BGRyder 2

Reference Analysis
• OOPLs need type information about objects to

which reference variables can point to resolve
dynamic dispatch

• Often data accesses are indirect to object fields
through a reference, so that the set of objects that
might be accessed depends on which object that
reference can refer at execution time

• Need to pose this as a compile-time program
analysis with representations for reference
variables/fields, objects and classes.

2

Reference Analysis, Sp06 © BGRyder 3

Reference Analysis
• Many reference analyses developed over past 10+

years address problem using different algorithm
and program representation choices that affect
precision and cost
– Class analyses use an abstract object (with or without

fields) to represent all objects of a class
– Points-to analyses use object instantiations, grouped by

some mechanism (e.g., object creation sites)

Reference Analysis, Sp06 © BGRyder 4

Example
static void main(){

B b1 = new B();
A a1 = new A();
f(b1);
g(b1);

}
static void f(A a2){

a2.foo();
}
static void g(B b2){

B b3 = b2;
b3 = new C();
b3.foo();

}

class A {
foo(){..}

}
class B extends A{

foo() {…}
}
class C extends B{

foo() {…}
}
class D extends B{

foo(){…}
}

cf Frank Tip, OOPSLA’00

A

B

C D

3

Reference Analysis, Sp06 © BGRyder 5

Class Hierarchy Analysis
• First method for reference analysis was CHA by

Craig Chamber’s group (UWashington)
– Idea: look at class hierarchy to determine what classes

of object can be pointed to by a reference declared to
be of class A,

• in Java this is the subtree in the inheritance hierarchy rooted
at A, cone (A)

and find out what methods may be called at a virtual
call site

– Makes assumption that whole program is available
– Ignores flow of control
– Uses 1 abstract object per class and 1 abstract

reference per class
J. Dean, D. Grove, C. Chambers, Optimization of OO Programs Using Static
Class Hierarchy, ECOOP’95

Reference Analysis, Sp06 © BGRyder 6

CHA Example
static void main(){

B b1 = new B();
A a1 = new A();
f(b1);
g(b1);

}
static void f(A a2){

a2.foo();
}

static void g(B b2){
B b3 = b2;
b3 = new C();
b3.foo();

}

class A {
foo(){..}

}
class B extends A{

foo() {…}
}
class C extends B{

foo() {…}
}
class D extends B{

foo(){…}
}

cf Frank Tip, OOPSLA’00

Cone(Declared_type(receiver))

A

B

C D

4

Reference Analysis, Sp06 © BGRyder 7

CHA Example - Call Graph
static void main(){

B b1 = new B();
A a1 = new A();
f(b1);
g(b1);

}
static void f(A a2){

a2.foo();
}
static void g(B b2){

B b3 = b2;
b3 = new C();
b3.foo();

}

class A {
foo(){..}

}
class B extends A{

foo() {…}
}
class C extends B{

foo() {…}
}
class D extends B{

foo(){…}
}

main

A.foo() B.foo() C.foo() D.foo()

f(A) g(B)

Call Graph

Reference Analysis, Sp06 © BGRyder 8

Rapid Type Analysis
• Improves on CHA
• Constructs call graph on-the-fly, interleaved with

the analysis
• Only expands calls if has seen an instantiated

object of an appropriate type
– Ignores classes which have not been instantiated as

possible receiver types
• Makes assumption that whole program is available
• Uses 1 abstract object per class and 1 abstract

reference per class
D. Bacon and P. Sweeney, “ Fast Static Analysis of C++
Virtual Function Calls”, OOPSLA’96

5

Reference Analysis, Sp06 © BGRyder 9

RTA Example
static void main(){

B b1 = new B();
A a1 = new A();
f(b1);
g(b1);

}
static void f(A a2){

a2.foo();
}

static void g(B b2){
B b3 = b2;
b3 = new C();
b3.foo();

}

class A {
foo(){..}

}
class B extends A{

foo() {…}
}
class C extends B{

foo() {…}
}
class D extends B{

foo(){…}
}

cf Frank Tip, OOPSLA’00

A

B

C D

Reference Analysis, Sp06 © BGRyder 10

RTA Example
static void main(){

B b1 = new B();
A a1 = new A();
f(b1);
g(b1);

}
static void f(A a2){

a2.foo();
}
static void g(B b2){

B b3 = b2;
b3 = new C();
b3.foo();

}

class A {
foo(){..}

}
class B extends A{

foo() {…}
}
class C extends B{

foo() {…}
}
class D extends B{

foo(){…}
}

main

A.foo() B.foo() C.foo() D.foo()

f(A) g(B)

Call Graph

6

Reference Analysis, Sp06 © BGRyder 11

Reference Analysis
• The analysis can incorporate information about flow of control in the program

or ignore it
– Flow sensitivity (accounts for statement order)
– Context sensitivity (separates calling contexts)

• Program representation used for analysis can incorporate reachability of
methods as part of the analysis or assume all methods are reachable

• Techniques can be differentiated by their solution formulation (that is, kinds of
relations) and directionality used

– e.g., for assignments
p = q, interpreted as
Pts-to(q) ⊆ Pts-to(p) <Andersen> vs. Pts-to(q) = Pts-to(p) <Steensgaard>

Reference Analysis, Sp06 © BGRyder 12

Type-based vs Flow-based
• Uses only class hierarchy
• Same points-to set for

every reference of a type
• Always insensitive
• Inexpensive
• Okay for call graph

construction but too
imprecise for some other
applications

• Uses reference assignments
• Distinguishes points-to sets

of different references of
same type

• Can be flow-sensitive or
flow-insensitive

• Can be context-sensitive or
context-insensitive

• May be expensive
• Related to points-to

approaches for C
• Okay for side-effect and

dependence calculations

7

Reference Analysis, Sp06 © BGRyder 13

Sensitivity
• Flow sensitivity

• If the problem requires that you consider the sequential order
of statements in the program, then problem is FS (e.g., reaching
defs)

• If the order of processing statements can be arbitrary, then the
problem is FI (e.g., may be referenced)

• Context sensitivity
• If the problem requires that you analyze each method

independently for each of its instantiations, then the problem is
context-sensitive (e.g., a add method for a Collection)

• Otherwise, if you summarize the effects of executing a method
over all its instantiations, then the problem is context-insensitive

Reference Analysis, Sp06 © BGRyder 14

Points-to Analyses for C
• Popular flow- and context-insensitive formulations

of points-to analysis
– Scalable
– Good enough for ensuring safety of some optimizations
– Good for program understanding applications
– Not great for applications needing precise def-use

information (e.g., program slicing, testing)
– General approach is unification or inclusion constraints
– Newer versions kept track of individual struct fields as

pointer targets
• Extended to points-to analyses for OOPL reference

variables

8

Reference Analysis, Sp06 © BGRyder 15

Points-to Analyses for C
• Steensgaard’s algorithm (POPL’96)

– Uses unification constraints so that for pointer
assignments, p = q, algorithm makes Pts-to(p)=Pts-to(q)

• This union operation is done recursively for multiple-level pointers
– Reduces the size of the points-to graph (in terms of both

nodes and edges)
• Almost linear solution time in terms of program size, O(n)
• Uses fast union-find algorithm
• Imprecision stems from merging points-to sets

– One points-to set per pointer variable over entire
program

Reference Analysis, Sp06 © BGRyder 16

Steensgaard - Example
a b c

d e

1 2

1.a = &b
2.b = &c
3.d = &e
4.a = &d

cf M Shapiro and S. Horwitz, “Fast and Accurate
Flow-insensitive Points-to Analysis” POPL’97

a b c

d e

1 2

3

4

a b,d c,ePoints-to sets found

a b c

d e

1 2

3

9

Reference Analysis, Sp06 © BGRyder 17

Steensgaard Solution
Procedure - At a glance

• Find all pointer assignments in program
• Form set of points-to graph nodes from

pointer variables/fields and variables (in the
heap or whose address has been taken)
– Examine each statement, in arbitrary order, and

construct points-to edges
• Merge nodes (and edges) where indicated by

unification constraints
• After linear pass over these assignments,

points-to graph is complete

Reference Analysis, Sp06 © BGRyder 18

Points-to Analysis for C
• Andersen’s analysis

– Uses inclusion constraints so that for pointer
assignments, p = q, algorithm makes

 Pts-to(q) ⊆ Pts-to(p)
– Points-to graph is larger than Steensgaard’s and more

precise
– Worst case cubic complexity in program size, O(n3), to

construct the points-to graph
– One points-to set per pointer variable over entire

program

10

Reference Analysis, Sp06 © BGRyder 19

Andersen - Example

a b c

d e

1 21.a = &b
2.b = &c
3.d = &e
4.a = &d
5.d = &f
6.g = d
7.g = *a

34

f

g 6
5

6

7

a b c
d e

1 2

3 4
Steensgaard
solution

Reference Analysis, Sp06 © BGRyder 20

Field-sensitive Points-to
Analysis

• Andersen-style points-to analysis
– On-the-fly call graph construction
– Flow- and context-insensitive
– Keep track of reference fields of abstract objects
– Creation site abstraction of objects
– Calculate points-to sets of each reference variable and field

• Algorithms:
• Rountev, Milanova, Ryder, OOPSLA’01, (annotated inclusion

constraints)
• Lhotak, Hendren, CC’03 (Soot’s Spark package)
• Sundaresan et. Al, OOPSLA’00 (VTA - an approximation)

11

Reference Analysis, Sp06 © BGRyder 21

Andersen’s Solution Procedure
- At a glance

• Find all pointer assignments in program
• Form set of points-to graph nodes from pointer

variables/fields and variables on the heap or whose
address is taken
– Examine each statement, in arbitrary order, and

construct points-to edges
• Need to create more edges when see p = q assignments so that

all outgoing points-to edges from q are copied to be outgoing
from p (i.e. processing inclusion constraints)

• If new outgoing edges are added to q during the algorithm, they
must be also copied to p

Reference Analysis, Sp06 © BGRyder 22

VTA - Variable Type Analysis
• Analysis included in the McGill SOOT system
• How works? follows type propagation from a new site through

plausible chains of assignments to reference variables
• Builds a type propagation graph, using a CHA call graph

– Nodes are reference vars/fields/parameters
– Edges represent reference to reference assignments
– Initializes types for some reference nodes with type from an associated

object creation site
– Propagates types along directed edges

• Effectively, this is a points-to analyses using inclusion relations and
abstract objects with fields, that traces flow through reference
assignments

cf. V.Sundaresan, et. al, “Practical Virtual Method
Call Resolution for Java”, OOPSLA’00

12

Reference Analysis, Sp06 © BGRyder 23

VTA
• Goal: to analyze program in only 1 iteration over the graph
• Uses a separate representative program-wide for each named

reference
• Propagates one abstract object per class to represent all created

objects of that class
• Is a flow-insensitive, context-insensitive analysis

//B extends A
A a1, a2, a3; B b3;
a2 = new A();
a1 = a2;
a3 = a1;
a3 = b3;
b3 = (B)a3;

cf. Sundaresan et. al

a1 a2 a3

b3

{A}

Initial graph and types

Reference Analysis, Sp06 © BGRyder 24

VTA Example

//B extends A
A a1, a2, a3; B b3;
a2 = new A();
a1 = a2;
a3 = a1;
a3 = b3;
b3 = (B)a3;

a1 a2 a3

b3

{A}

scc collapsed

{A}

{A}

Empirical results report removal of 10-65% methods,
17-65% edges of CHA call graph; helps especially in
library code; Considerably better than RTA over
CHA in resolving calls (over entire application)

Q: For what client analyses is VTA appropriate?

13

Reference Analysis, Sp06 © BGRyder 25

Field-sensitive Points-to
Analysis (FieldSens)

• Flow-insensitive, context-insensitive extension of
Andersen’s analysis for C
– Have to handle dynamic dispatch, fields, and libraries

• Can use a precomputed callgraph or can compute
an on-the-fly callgraph from the points-to relations
being calculated

• Distinguishes object fields
• Originally formulated as a constraint solution

problem -- admits a dataflow formulation too
Rountev, A. Milnova, B. Ryder, “Points-to Analysis for Java

Using Annotated Constraints”, OOPSLA’00;
Lahotak and Hendren, “Scaling Java Points-to Analysis using

SPARK”, CC’03

Reference Analysis, Sp06 © BGRyder 26

Points-to Analysis in Action

class A { void m(X p) {..} }

class B extends A {
 X f;
 void m(X q) { this.f=q; }
}

B b = new B();
X x = new X();
A a = b;
a.m(x);

q

b o1

a

thisB.m f

x o2

A.m() not analyzed because
it’s unreachable.

14

Reference Analysis, Sp06 © BGRyder 27

Rules of Algorithm
• 4 types of reference assignment statements

– Each has points-to effects
• Allocation: p=new X()

– Adds oX to Pts(p)
• Copy: p = q

– Pts(p) ⊇ Pts(q) (i.e., If o ∈Pts(q), then o ∈Pts(p))
• Field store: p.f = q

– If o∈Pts(p) and r ∈Pts(q), then r ∈ Pts(o.f)
• Field load: p = q.g

– If o ∈ Pts(q) and oo ∈ Pts(o.g) then oo ∈ Pts(p)

• Algorithm described as construction of a points-to
graph
– Nodes: reference variables and fields
– Edges: ref ---> object or field labelled: obj--->obj

Reference Analysis, Sp06 © BGRyder 28

FieldSens Algorithm
Initially

– Make a list of all reference assignments excluding
allocations

– Process allocations first and create the
corresponding points-to relations

– Create a worklist intialized with all the reference
variables and fields

• As the algorithm proceeds, any reference variable (or
object field) whose points-to set has changed will be put
on the worklist

15

Reference Analysis, Sp06 © BGRyder 29

FieldSens Algorithm, cont
Repeat until the worklist is empty

– Remove a variable from the worklist and iterate
through the statements (involving this variable)

• Calculate points-to relations implied by the
assignment statement; if this changes the points-to
set of a variable or object field, add it to the worklist
(Note: if p points to o and o.f’s points-to set is
changed, <p.f= >, then we record o.f as a variable
whose points-to set has changed.)

Reference Analysis, Sp06 © BGRyder 30

Differences with Algm for C
• Fields cannot be ignored

– Field-sensitive versus field-based
• No explicit address operator & in Java
• Reachability of code

• On-the-fly call graph construction versus use of a static approx
call graph

• Possibly multiple entries to call graph (e.g., static initializers,
thread start methods, finalizers, etc)

• Need to know entire set of classes that will ever be
loaded during execution

• Because of reflection
• Large Java libraries vs. smaller C libraries

• Can use strong typing to filter out spurious points-
to relations

16

Reference Analysis, Sp06 © BGRyder 31

Field-sensitive Points-to Analysis w
Inclusion Constraints

• Based on Andersen’s points-to analysis
• Define and solve a system of annotated set-

inclusion constraints - different from dataflow
formuation
– Handles virtual calls by simulation of run-time method

lookup
– Models the fields of objects
– Extended BANE (UC Berkeley) constraint solver

• Analyzes only possibly executed code
– Ignores unreachable code from libraries

Rountev, A. Milnova, B. Ryder, “Points-to
Analysis for Java Using Annotated Constraints”
OOPSLA’00

Reference Analysis, Sp06 © BGRyder 32

Annotated Constraints
• Form: L ⊆ a R

– L and R denote set expressions
– Annotation a: additional information (e.g.,

object fields)
• Kinds of set expressions L and R

– Set variables: represent points-to sets
– ref terms: represent objects
– Other kinds of expressions

17

Reference Analysis, Sp06 © BGRyder 33

Set variables and ref terms
• Set variables represent points-to sets

– For each reference variable p: VP
– For each object o: Vo

• Object o is denoted by term ref(o,Vo)

ref(o2,Vo2
) ⊆ f Vo1

 o1 o2
f

ref(o,Vo) ⊆ VP p o

Reference Analysis, Sp06 © BGRyder 34

Example: Accessing Fields
p = new A();

q = new B();

p.f = q;

p o1

o2q

f

ref(o1,VO1
) ⊆ Vp

ref(o2,VO2
) ⊆ Vq

Vp ⊆ proj(ref,W)

Vq ⊆ f W

Constraint generation

Think of W as representing
Vo1 and Vo3 when p points to o1, o3

18

Reference Analysis, Sp06 © BGRyder 35

Example: Solving Constraints
ref(o1,VO1

) ⊆ Vp

ref(o2,VO2
) ⊆ Vq

Vp ⊆ proj(ref,W)

Vq ⊆ f W
W ⊆ VO1

Vq ⊆ f VO1

ref(o2,VO2
) ⊆ f VO1

 o1.f points to o2

Constraint resolution

Reference Analysis, Sp06 © BGRyder 36

Example: Virtual Calls

p.m(x); VP ⊆ m lam(Vx)

ref(o,VO) ⊆ VPreceiver object o

Vx ⊆ Vz

ref(o,VO) ⊆ Vthis(A.m)

Actual method
called, A.m(z)

Constraint generation from actual call:

Constraint resolution:

19

Reference Analysis, Sp06 © BGRyder 37

Experiments
• 23 Java programs: 14 – 677 user classes

– Added the necessary library classes (JDK 1.1)
– Machine: 360 MHz, 512Mb SUN Ultra-60

• Cost measured in time and memory
• Precision (wrt usage in client analyses and transformations)

– Object read-write information
– Call graph construction
– Synchronization removal and stack allocation

Reference Analysis, Sp06 © BGRyder 38

Analysis Time

0

50

100

150

200

250

300

350

400

p
ro
x
y

c
o
m
p
re
s
s

d
b jb

e
c
h
o

ra
y
tr
a
c
e

m
tr
t

jt
a
r

jl
e
x

ja
v
a
c
u
p

ra
b
b
it

ja
c
k

jf
le
x

je
s
s

m
p
e
g
a
u
d
io

jj
tr
e
e

s
a
b
le
c
c

ja
v
a
c

c
re
a
tu
re

m
in
d
te
rm

s
o
o
t

m
u
ff
in

ja
v
a
c
c

S
e
c
o
n
d
s

20

Reference Analysis, Sp06 © BGRyder 39

Resolution of Virtual Call Sites

0

10

20

30

40

50

60

70

80

90

pr
ox
y d

b

ec
ho

m
tr
t

jle
x

ra
bb
it

jf
le
x

m
pe
ga
ud
io

sa
bl
ec
c

cr
ea
tu
re

so
ot

ja
va
cc

%
 R

e
s

o
lv

e
d

 C
a

ll
 S

it
e

s

Points-to RTA

Reference Analysis, Sp06 © BGRyder 40

Thread-local new sites

0%

10%

20%

30%

40%

50%

60%

70%

%
 T

h
r
e
a
d

-l
o

c
a
l
S

it
e
s

21

Reference Analysis, Sp06 © BGRyder 41

Points-to Analysis in Spark
 Lhotak and Hendren, “Scaling Java Points-to Analysis Using Spark”, CC’03

• Framework for points-to analyses in Soot
– Intermediate representation uses def-use chains to achieve SSA-like

precision
– Allows selection of static versus on-the-fly cal lgraph construction
– Allows selection of field-sensitive versus field-based analysis
– Uses declared types of references (and fields) to filter points-to

propagation
– Collapses cycles of references in points-to assignment graph (as they

all have the same points-to set); uses union-find algorithm
– Compared various set implementations for efficiency
– Uses native code simulation framework

Reference Analysis, Sp06 © BGRyder 42

Spark Experiments
• Best algorithms found

• On-the-fly types, on-the-fly call graph, field-sensitive
– For clients needing the best precision

• On-the-fly types, CHA call graph, field-sensitive
– Faster than #1, but more edges in callgraph

• On-the-fly types, CHA call graph, field-based
– Fastest analysis, but least precise

22

Reference Analysis, Sp06 © BGRyder 43

Spark Findings
Deref sites for 0
means p.f seen
in CHA call
graph could
not be reached

Call site of 0 means
unreachable; call site
of 1 means direct call

Lhotak & Hendren
 CC’03

Reference Analysis, Sp06 © BGRyder 44

Spark Best Algorithms

#Jimple stmts Precision means #deref sites
with Pts-to set of size 0 or 1

Lhotak & Hendren
 CC’03

