
1

Reference Analysis-2, Sp06 © BGRyder 1

Reference Analysis - 2
• More flow-insensitive, context-insensitive

points-to analyses
• How to deal with dynamic class loading and

reflection in static points-to analysis?
• Kinds of context-sensitivity

– k-CFA versus object sensitivity (examples)
• Object-sensitive points-to for Java
• Dimensions of precision in static analysis

Reference Analysis-2, Sp06 © BGRyder 2

More FI-CI Points-to Analyses
• Liang et. al, Paste’01

• Empirical comparison of flow- and context-insensitive
analyses with different choices for representations

– Steensgaard- and Andersen-based analyses for Java
– Static call graph (CHA, RTA) with on-the-fly
– Experiments with instance fields and abstract class fields

» Per object per field points-to set
» Per class per field points-to set (1 abstract object)

– Use stubs for library methods
• Found Andersen (inclusion) analyses significantly

more precise than Steensgaard (unification) on call
graph construction and escape analysis

D. Liang, M. Pennings, M.J. Harrold, “Extending and Evaluating Flow-
insensitive and Context-insensitive Points-to Analysis for Java”, PASTE’01

2

Reference Analysis-2, Sp06 © BGRyder 3

More FI-CI Points-to Analyses
• Whaley and Lam, SAS’02

• Used flow-sensitive analysis within methods, but
context-insensitive overall in a variant of field-sensitive
Andersen for Java

– Results are interesting, but inconclusive on virtual call
resolution and escape analysis clients

Reference Analysis-2, Sp06 © BGRyder 4

Handling Dynamic Class
Loading

• All static points-to analyses require the whole
program (including libraries or models of them)

• Dynamic class loading, reflection, native libraries
present problems

• Effects at runtime must be correctly modeled at compile-time or
the analysis will be unsafe

• New algorithm incrementally accounts for classes
loaded and performs analysis updates online at
runtime

• Generates constraints at runtime and propagates them when a
client needs valid points-to results

M.Hirzel, A. Diwan, M. Hind, “Pointer Analysis in the
Presence of Dynamic Class Loading”, ECOOP 2004

3

Reference Analysis-2, Sp06 © BGRyder 5

Hirzel et.al Algorithm
• Andersen’s analysis with field-sensitive object

representation, objects represented by their
creation sites, and static call graph (CHA)

• Two stages (can be iterated when get new constraints)
• Constraint generation
• Constraint propagation with type filtering (producing points-to

sets through fixed-point iteration)

• Use CHA call graph (generated online) to get call
edges

• Process constraints from an edge only after have seen both source
and target

Reference Analysis-2, Sp06 © BGRyder 6

Hirzel et.al Algorithm
• Uses deferred evaluation to handle unresolved

references
– From native code, reflection, JIT compilation of a method, type

resolution, class loading, VM startup

• Handle reflection through instrumenting the JVM
to add constraints dynamically

– Need to re-propagate at runtime as new constraints are added
– Use JVM to catch reflection and add appropriate constraints when

it occurs
– Native code with returned heap value assumed to return any

allocated object
– Initial prototype assumed that any exception throw could hit any

catch

4

Reference Analysis-2, Sp06 © BGRyder 7

Hirzel et.al Algorithm
• Showed efficacy through use in new connectivity-

based GC algorithm
– Used Jikes RVM 2.2.1 on Specjvm98 benchmarks with good results;

claimed need long-running programs for the incremental
computation cost to be amortized.

• Validation:
– Need to make sure points-to solution is updated before do

a GC.
– Then GC verifies the points-to solution by making sure

the dynamically observed points-to’s are in the solution.

Reference Analysis-2, Sp06 © BGRyder 8

Imprecision of
Context-insensitive Analysis

• Does not distinguish contexts for instance methods
and constructors
– States of distinct objects are merged

• Common OOPL features and idioms result in
imprecision
– Encapsulation

• Set() method conflates all instances with same field
– Inheritance

• Initialized fields in superclass constructor conflates points-to sets
of subclass objects created

– Containers, maps and iterators
• Same creation site results in apparent unioning of all contents

5

Reference Analysis-2, Sp06 © BGRyder 9

Example: Imprecision
class Y extends X { … }

class A {
 X f;
 void m(X q) {

this.f=q ; }
}

A a = new A() ;
a.m(new X()) ;
A aa = new A() ;
aa.m(new Y()) ;

o2o1a

thisA.m q

o3 aa o4f

f

f

f

Reference Analysis-2, Sp06 © BGRyder 10

Context Sensitivity
• Keeping calling contexts distinct during the

analysis
• Classically two approaches (Sharir, Pneuli 1981)

– Call string - distinguish analysis result by
(truncated) call stack on which it is obtained

• e.g., k-CFA
– Functional - distinguish analysis result by

(partial) program state at call
• e.g., receiver identity, argument types

M. Sharir, A. Pneuli, “Two Approaches to Interprocedural
Dataflow Analysis”. Ch 7 in Program Flow Analysis,
Edited by S. Muchnick, N. Jones, Prentice-Hall 1981

6

Reference Analysis-2, Sp06 © BGRyder 11

1-CFA Analysis
• Calling context is tail of call string (1-CFA

is last call site)
static void main(){

 B b1 = new B();//OB
 A a1 = new A();//OA
 A a2,a3;

C1: a2 = f(b1);
C2: a2.foo();
C3: a3 = f(a1);
C4: a3.foo();
}
public static A f(A a4){return a4;}

b1 oB

a1 oA

at C2, main calls B.foo()
at C4, main calls A.foo()

a2

a4C1
C3

a3

Points-to Graph

Reference Analysis-2, Sp06 © BGRyder 12

1-CFA Characteristics
• Call-string approach to context sensitivity
• Only analyzes methods reachable from main()
• Keeps track of individual reference variables and

fields
• Groups objects by their creation site
• Incorporates reference value flow in assignments

and method calls
• Differentiates points-to relations for different

calling contexts

7

Reference Analysis-2, Sp06 © BGRyder 13

Object-sensitive Points-to Analysis
• Object sensitivity

– Functional context sensitivity for flow-insensitive points-to
analysis of OO languages

• Object-sensitive Andersen’s analysis
– Object sensitivity also applicable to other analyses

• Parameterization framework
– Cost vs. precision tradeoff

• Empirical evaluation
– Vs. field-sensitive context-sensitive analysis

Milanova, A. Rountev, B. G. Ryder,
“Practical Points-to Analyses for Java”, ISSTA’02;
“Parameterized Object Sensitivity for Points-to Analysis
for Java”, TOSEM, Jan 2005

Reference Analysis-2, Sp06 © BGRyder 14

Object-sensitive Analysis

• Instance methods and constructors
analyzed for different contexts

• Receiver objects used as calling context
• Multiple copies of local reference variables

this.f=q thisA.m.f=q o1 o1

o1

8

Reference Analysis-2, Sp06 © BGRyder 15

Example: Object-sensitive
Analysis

class A {
 X f;
 void m(X q) {

this.f=q ; }
}

A a = new A() ;
a.m(new X()) ;
A aa = new A() ;
aa.m(new Y()) ;

o2
f

o1a

thisA.m
o1 qA.m

o1
thisA.m.f=q o1 o1

o1

 this.f=q ;

o3 aa o4

o3thisA.m
o3qA.m

thisA.m.f=q o3 o3

f

Reference Analysis-2, Sp06 © BGRyder 16

Implementation

• Implemented one instance of
parameterization framework
– this, formals and return variables

(effectively) replicated
– Optimized constraint-based analysis using

previous technique
– Comparison with field-sensitive (context-

insensitive) analysis

9

Reference Analysis-2, Sp06 © BGRyder 17

Empirical Results
• 23 Java programs: 14 – 677 user classes

– Added the necessary library classes
– Machine: 360 MHz, 512Mb, SUN Ultra-60

• Object-sensitive vs. field-sensitive points-to
• Found comparable cost with better precision

• Modification side-effect analysis
• Virtual call resolution

Reference Analysis-2, Sp06 © BGRyder 18

Analysis Time

10

Reference Analysis-2, Sp06 © BGRyder 19

Side-effect Analysis:
Modified Objects Per Statement

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 5 6 7 8 9 10 11 12 13 14

One Two or three Four to nine More than nine

jb jess sablecc raytrace Average

O
B

J
E

C
T

 S
E

N
S

IT
IV

E

O
O

P
S

L
A

’0
1

Reference Analysis-2, Sp06 © BGRyder 20

Improvement in Resolved Calls

0

10

20

30

40

50

60

p
ro
x
y

c
o
m
p
re
s
s

d
b

jb e
c
h
o

ra
y
tra
c
e

m
trt

jta
r

jle
x

ja
v
a
c
u
p

ra
b
b
it

ja
c
k

jfle
x

je
s
s

m
p
e
g
a
u
d
io

jjtre
e

s
a
b
le
c
c

ja
v
a
c

c
re
a
tu
re

m
in
d
te
rm

s
o
o
t

m
u
ffin

ja
v
a
c
c

A
v
g

P
e
rc
e
n
t

11

Reference Analysis-2, Sp06 © BGRyder 21

More Experiments
– Explored variants of object-sensitive analysis on faster

implementation
• Keep context-sensitive info for this, formals (+/-)return param
• Used context-sensitive object naming (remember call on which object

was created)
• Compared to 1-CFA and context-insensitive analysis

– Obtained better precision than Andersen at approx same cost (for %
stmts with #modified objs per assignment, on average)

>=10obj
4-9objs
1-3objs

28%72%78%
18% 5% 4%
54%23%18%
ObjSens1-CFAAnd

Milanova et.al, TOSEM 1/05

Reference Analysis-2, Sp06 © BGRyder 22

Comparison of 1-CFA w
Object-sensitive

• Two algorithms are incomparable
– (see following examples)
– Some evidence suggests that ObjSens is more

practical (Lhotak & Hendren, CC’06)

• Newer implementations use BDDs for scalability
• Context-sensitive object naming found to be useful

(Lhotak & Hendren, CC’06)

12

Reference Analysis-2, Sp06 © BGRyder 23

Object-Sensitive Points-to EG
public class A
{ X xx;
 A (X xa){ this.xx=xa;}
}
public class B extends A
{ B (X xb){C3: super(xb);}
 public X f() {return this.xx;}

static void main(){
 X x1,x2;

C1: B b1 = new B(new Y());//oB1
C2: B b2 = new B(new Z());//oB2

X

Y Zg()

g()

g()

A

B
f()

oB2

oB1b1

oZ

xx

xx

oY xbB1

thisB1
xaB1

thisB2
xbB2

xaB2
b2

Reference Analysis-2, Sp06 © BGRyder 24

Object-sensitive Points-to EG
public class A
{ X xx;
 A (X xa){ this.xx=xa;}
}
public class B extends A
{ B (X xb){C3: super(xb);}
 public X f() {return this.xx;}
 static void main(){
 X x1,x2;
 C1: B b1 = new B(new Y());//oB1
 C2: B b2 = new B(new Z());//oB2
 x1=b1.f();
C4: x1.g();
 x2=b2.f();
C5: x2.g();
}

oB2

oB1b1

oZ

xx

xx
b2

oY

X

Y Zg()

g()

g()

A

B
f()

thisf.B1

x1

thisf.B2
x2

13

Reference Analysis-2, Sp06 © BGRyder 25

Object-sensitive Points-to EG
public class A
{ X xx;
 A (X xa){ this.xx=xa;}
}
public class B extends A
{ B (X xb){C3: super(xb);}
 public X f() {return this.xx;}
 static void main(){
 X x1,x2;
 C1: B b1 = new B(new Y());//oB1
 C2: B b2 = new B(new Z());//oB2
 x1=b1.f();
C4: x1.g();
 x2=b2.f();
C5: x2.g();
}

X

Y Zg()

g()

g()

A

B
f()

ObjSens finds
C4 calls Y.g() and
C5 calls Z.g()

Reference Analysis-2, Sp06 © BGRyder 26

1-CFA on Object-sensitive EG
public class A
{ X xx;
 A (X xa){ this.xx=xa;}
}
public class B extends A
{ B (X xb){C3: super(xb);}
 public X f() {return this.xx;}

static void main(){
 X x1,x2;
C1: B b1 = new B(new Y());//oB1
C2: B b2 = new B(new Z());//oB2

X

Y Zg()

g()

g()

A

B
f()

oB2

oB1b1

oZ

oY xbC1

xbC2b2

thisC1

thisC2

thisC3 xaC3

xx

xx

xx
xx

14

Reference Analysis-2, Sp06 © BGRyder 27

1-CFA on Object-sensitive EG
public class A
{ X xx;
 A (X xa){ this.xx=xa;}
}
public class B extends A
{ B (X xb){C3: super(xb);}
 public X f() {return this.xx;}
 static void main(){
 X x1,x2;
 C1: B b1 = new B(new Y());//oB1
 C2: B b2 = new B(new Z());//oB2
 x1=b1.f();
C4: x1.g();
 x2=b2.f();
C5: x2.g();
}

X

Y Zg()

g()

g()

A

B
f()

oB2

oB1b1

oZ

oY

b2

x1
x2

xx

xx

xx
xx

Reference Analysis-2, Sp06 © BGRyder 28

1-CFA on Object-sensitive EG
public class A
{ X xx;
 A (X xa){ this.xx=xa;}
}
public class B extends A
{ B (X xb){c3: super(xb);}
 public X f() {return this.xx;}
 static void main(){
 X x1,x2;
 C1: B b1 = new B(new Y());//oB1
 C2: B b2 = new B(new Z());//oB2
 x1=b1.f();
C4: x1.g();
 x2=b2.f();
C5: x2.g();
}

X

Y Zg()

g()

g()

A

B
f()

1-CFA finds
C4 calls Y.g(), Z.g() and
C5 calls Y.g(), Z.g()

ObjSens is better than 1-CFA here!

15

Reference Analysis-2, Sp06 © BGRyder 29

1-CFA Example
static void main(){
 D d1 = new D();
 if (…)C1: (d1.f(new B())).g();
 else C2: (d1.f(new C())).g();
}
public class D
{ public A f(A a1){return a1;}
}

d1 oD

A

B DC
g() g() f(A)

oBthisD.f/C1
a1

thisD.f/C2 oC

retD.f

C1
C2

Reference Analysis-2, Sp06 © BGRyder 30

1-CFA Example

retD.f
d1 oD

1-CFA distinguishes the
two calling contexts of D.f
at C1 and C2;
At C1, B.g() called;
At C2, C.g() called;

oBthisD.f/C1
a1

thisD.f/C2 oC

C1

C2

static void main(){
 D d1 = new D();
 if (…)C1: (d1.f(new B())).g();
 else C2: (d1.f(new C())).g();
}
public class D
{ public A f(A a1){return a1;}
}

16

Reference Analysis-2, Sp06 © BGRyder 31

Object-sensitive on 1-CFA EG

d1 oD

oC

oBthis
oD

static void main(){
 D d1 = new D();
 if (…)C1: (d1.f(new B())).g();
 else C2: (d1.f(new C())).g();
}
public class D
{ public A f(A a1){return a1;}
}

A

B DC
g() g() f(A)

a1oDret oD

Reference Analysis-2, Sp06 © BGRyder 32

Object-sensitive on 1-CFA EG

d1 oD

oC

oBthis
oD

static void main(){
 D d1 = new D();
 if (…)C1: (d1.f(new B())).g();
 else C2: (d1.f(new C())).g();
}
public class D
{ public A f(A a1){return a1;}
}

a1oDret oD

ObjSens groups the two
calling contexts of D.f
with the same receiver
at C1 and C2;
Both B.g(),C.g() are
called at C1 and C2;

17

Reference Analysis-2, Sp06 © BGRyder 33

Previous Related Work
• Context-sensitive reference analyses

• Palsberg and Schwartzbach OOPSLA’91
• Oxhoj, Palsberg, Schwartzbach ECOOP’92
• Plevyak and Chien OOPSLA’94
• Agesen ECOOP’95
• Chatterjee, Ryder, Landi POPL’99
• Ruf PLDI’00
• Grove and Chambers TOPLAS’01

• Most judged too expensive to be practical

Reference Analysis-2, Sp06 © BGRyder 34

Algorithm Design Choices
• Representations

– Static call graph versus on-the-fly construction
– Abstract class object, representative of set of object instantiations,

context-sensitive object naming
• Fields or no fields or field-based

– Abstract reference (by class), or reference representatives per
method, or references program-wide by name

• Directionality (interpretation of reference assignments)
– Symmetric (Unification)
– Directional (Inclusion)

• Accounting for flow of control
– Flow sensitivity
– Context sensitivity

Ryder, Barbara G., “Dimensions of Precision in Reference
Analysis of Object-oriented Programming Languages”,
invited paper in the Proceedings of the Twelfth International
Conference on Compiler Construction, Warsaw, Poland,
April 2003, pp 126-137.

18

Reference Analysis-2, Sp06 © BGRyder 35

Examples
• Representations

– Static call graph VTA versus on-the-fly construction RTA
– Abstract class object XTA, representative of set of object

instantiations field-sensitive, context-sensitive object naming
• Fields: field-sensitive or no fields or field-based Spark 0-CFA

– Abstract reference (by class) RTA, or reference representatives per
method XTA, or references program-wide by name VTA, field-
sensitive, 1-CFA

• Directionality
– Symmetric (Unification) Hendren’00(variant of VTA), Liang et. al

Paste’01
– Directional (Inclusion) field-sensitive, object-sensitive, k-CFA

• Accounting for flow of control
– Flow sensitivity, Chatterjee POPL99
– Context sensitivity, object-sensitive, 1-CFA

Reference Analysis-2, Sp06 © BGRyder 36

Open Issues
• Reflection
• Dynamic class loading
• Java native methods
• Exceptions
• Incomplete programs
• Which benchmarks are best?

