Reference Analysis - 3

* Parameterized object-sensitive analysis
» Milanova and Ryder, ICSM’05
» Comparisons of object-sensitive analysis with 1-
CFA

— Two papers differ in their conclusions
* Liang et.al Paste’05
» Lhotak et.al CC’06

Reference Analysis-3, Sp06 © BGRyder

Parameterized CS Analysis icswos

* Presents a parameterized framework for
context-sensitive analysis

* E.G., Context-sensitive object naming by allocation
site with context or by using abstract class objects for
some allocation sites

* Describes different sorts of context sensitivity reflected
in constraint annotations

Reference Analysis-3, Sp06 © BGRyder

Parameterized CS Analysis icswos

* Empirical investigations
* Compares 2 kinds of object-sensitive analyses on side-effects and
downcast safety problems
* FullObjSens: uses object-sensitive object naming
* ObjSens:

— if #alloc sites for class A> 50, then use abstract Aobj as object
representation, rather than alloc site

— Only analyze calls through this context-sensitively
* Results:
— Running times and memory usage is comparable

— Side-effect analysis determines set of objects modified by each
statement

— Downcast safety analysis determines which downcasts are provably
safe

Reference Analysis-3, Sp06 © BGRyder 3

Milanova & Ryder, ICSM’05 ﬂ l ﬂ l l l

(1) Program Size (2) Analysis Cost (3) Side-effect Analysis (4) Downcast Safety

Program Classes | Methods FieldSens ObjSens FieldSens ObjSens FieldSens | ObjSens
Time | Mem | Time [Mem 1-3 | =10 1-3 | =210

proxy 565 3283 48 | 351 53| 348 || 19% | 75% | 76% | 10% 24% 67%
compress 568 3316 83| 396 | 101 | 40.1 || 23% | 73% | 68% | 23% 24% 71%
db 565 3339 92| 406 | 106 | 425 || 20% | 76% | 66% | 25% 24% 74%
jb 574 3393 60 [367 58| 369 [16% | 80% | 73% | 12% 12% 44%
echo 577 3544 187 | 492 449 662 | 24% | 69% | 63% | 26% 18% 43%
raytrace 582 3451 78 | 422] 108 461 || 23% | 2% | 67% | 24% 23% 71%
mirt 582 3451 94 | 421 113 | 462 || 23% | 2% | 67% | 24% 23% 71%
jtar 618 3583 168 | 503 | 244 | 589 || 19% | 74% | 62% | 25% 17% 44%
Jlex 578 3381 67 | 398 73| 406 || 18% | 79% | 57% | 10% 22% 78%
javacup 581 3564 232 558 | 212 585 14% [83% | 54% | 9% 9% 85%
rabbit 615 3770 91| 462 11.7] 456 || 20% | 76% | 48% | 17% 23% 68%
jack 613 3573 287 548 249 3567 [17% | 80% | 54% | 38% 15% 63%
jlex 608 3692 285 | 635 | 303 | 664 || 18% | 18% | 64% | 13% 4% 62%
jess 715 3973 358 | 594 | 875 | 61.0 || 16% | 9% | 63% | 29% 20% 73%
mpegaudio 608 3531 11.6 | 440 | 104 | 484 | 23% | 78% | 67% | 24% 23% 68%
Jjtree 620 4078 86 | 468 | 32. 64.4 8% | 90% | 32% | 42% 65% 80%
sablecc 864 5151 345 85| 512 753 20% | 77% | 67% | 20% 33% 47%
javac 730 4470 || 100.5 | 110.0 | 168.5 | 129.0 [14% | 83% | 38% | 42% 12% 36%
creature 626 3881 643 | 943 | 1055 | 1248 || 19% | 19% | 55% | 32% 18% 33%
mindterm 686 4420 372 785 | 515 | 905 || 20% | 13% | 57% | 30% 25% 47%
soot 1214 5669 || 139.4 | 117.8 | 1159 | 1179 || 31% | 73% | 46% | 40% 17% 25%
muffin 894 5253 || 120.7 | 133.9 [115.1 | 149.7 || 16% | 80% | 45% | 49% 13% 35%
javace 615 4198 99.6 | 96.6 | 934] 1019 [10% | 89% [29% | 22% 6% 59%
Average 18% | 718% | 57% | 36% 20% 58%

N Table 1. Java programs and analysis results.
€

Empirical Comparisons-paste’0s

D. Liang, M. Pennings, MJ Harrold, “Evaluating the Impact of
Context Sensitivity on Andersen’s Algorithm for Java Programs”, PASTE’05

* Object-sensitive vs 1-CFA with Andersen

* Good comparison examples given of the abstraction
choices in the algorithms

» Context-sensitive object naming
— Uses k-level of calls (context-bounded) or k receiver names (name-
bounded) to differentiate object creation sites in different calling
contexts
* Details
* Builds models for collections and maps
» User-supplied info about reflection
» Compares static solutions to dynamically observed points-to’s

Reference Analysis-3, Sp06 © BGRyder 5

Empirical Comparisons paste’0s

« Experiments on 12 Java programs with 8-310
classes and 89-2025 methods

* Three studies
* Relative precision of static results to dynamically
measured object receivers at callsites

— Showed that context-sensitive approaches can achieve
significant precision over context-insensitive ones

 Use of context-sensitive naming schemes can lead to
significant gains in precision
— Using context-insensitive object naming with context-
sensitive (call-site) Andersen degrades precision

Reference Analysis-3, Sp06 © BGRyder

Empirical Comparisons paste’0s

— Precision per allocation site

» Aggregating precision information for all objects at
the same allocation site
— Again gains showed for context-sensitive analysis

* Conclusions

* “Crucial to distinguish the instances allocated at an
allocation site under different contexts in a context-
sensitive analysis” (section 4.4)

Reference Analysis-3, Sp06 © BGRyder

Empirical Comparisons cc’os

* Reports on a comparison of 4 different context-sensitive
analyses
» Context-insensitive points-to
+ Call-site-string-based points-to
* Receiver-object-based points-to
* Cloning-based points-to (ZCWL, PLDI’04)
Run on same 16 benchmarks
— Implemented on the same framework (JEDD in Soot)
Combined with context-sensitive object naming schemes
Effectiveness measured on devirtualization, redundant cast
removal, call graph size
* Bottom line: object-sensitive analysis shown to be
superior, in terms of scalability and precision

“Context-sensitive analysis - Is it worth it?”, O. Lhotak, L. Hendren, CC’06

Reference Analysis-3, Sp06 © BGRyder

Context-sensitive Points-to
Algorithms in Study cc’oe

* Informal algorithm is flow- and context-insensitive

* Call-site-string-based uses a string of the k most recent
actual call sites on the runtime stack as the ‘calling
context’

* Receiver object-based (object-sensitive) uses the sequence
of the k£ most recent receiver objects as the ‘calling
context’

* Cloning-based (with BDDs) actually makes one copy per
method instantiation

— Corresponding to call edges that DO NOT participate in a cycle
in the context-insensitive call graph (ZCWL, PLDI’04)

“Context-sensitive analysis - Is it worth it?”, O. Lhotak, L. Hendren, CC’06

Reference Analysis-3, Sp06 © BGRyder

Questions to answer

1. Which contexts are actually useful to improve analysis
precision?
* How often contexts have identical points-to info?
* How much context can be saved for practical cost?
* Does more context help precision?
2. Why can BBDs do so well in representing large numbers
of contexts?
* How poorly would non-BDD representations do for context-
sensitive analyses?
3. How well do the algorithms do on client problems?

. Call graph construction, devirtualization, unnecessary cast
elimination

“Context-sensitive analysis - Is it worth it?”, O. Lhotak, L. Hendren, CC’06

Reference Analysis-3, Sp06 © BGRyder

Findings - #Contexts

object-sensitive call site

Benchmark | insens. 1 2 3 1H 1 2 1H ZCWL
compress 2596 | 137 113 1517 13465 237 65| 20107
db 2613 | 137 115 1555 134|65 236 65| 7.9x10¢
jack 2869 | 13.8 156 1872 13268 220 68| 2.7 x 107
javac 3780 | 15.8 297 13289 156 |84 244 84

jess 3216 | 190 305 5394 18667 207 67| 6.1x10°
mpegaudio 2793 | 130 107 1419 12763 221 63| 44x10°
mirt 2733 [133 108 1447 13166 226 66| 1.2x10°
soot-c 4837 | 11.1 168 4010 109 |82 198 82

sablecc-j 5608 | 10.8 116 1792 105 |55 126 55

polyglot 5616 | 11.7 149 2011 112|71 144 71 10130
antir 3897 [150 309 8110 147]96 191 96| 48x10°
bloat 5237 | 143 291 140 |89 159 89| 3.0x10°
chart 7069 | 22.3 500 219|170 335

jython 4401 | 188 384 18367 162 67| 21x101
pmd 7219 | 134 283 5607 129 |66 239 66

ps 3874 | 133 271 24967 131[90 224 90| 2.0x108

Table II: Total number of abstract contexts

“Context-sensitive analysis - Is it worth it?”, O. Lhotak, L. Hendren, CC’06

Reference Analysis-3, Sp06 © BGRyder

Findings - #Equiv Contexts

* Given <ml,c1> and <m1,c2>, if every local reference has
same points-to set in these 2 contexts, they are equivalent

* Found many equivalent abstract contexts in the data

* In general, there are more equiv classes of contexts with
ObjSens than with CallSite abstractions

— Expect better precision from this

* In both ObjSens and CallSite, increasing k increases the
#equiv classes only slightly while increasing the absolute
#contexts significantly (little precision improvement for a
large cost)

» #contexts of ZCWL is very small because of the merges
on the large SCCs in the benchmark initial call graphs;
effectively ZCWL models much of the call graph context-

insensitively

“Context-sensitive analysis - Is it worth it?”, O. Lhotak, L. Hendren, CC’06
Reference Analysis-3, Sp06 © BGRyder

Findings - #Equiv Contexts

object-sensitive call site

Benchmark | insens. 1 2 3 1H 1 2 1H | ZCWL
compress 2597 | 84 99 113 12124 39 49 33
do 2614 85 99 114 12124 39 50 33
jack 2870 | 86 102 116 11924 39 50 34
javac 3781|104 177 338 14327 53 54

jess 3217 | 89 106 120 139|226 42 50 39
mpegaudio 27941 81 94 108 11524 38 48 33
mtrt 27391 83 97 111 11825 40 49 34
soot-c 4838 | 7.1 137 184 98|26 42 48
sablecc-j 5609 69 84 96 95|23 36 39

polyglot 5617 | 79 94 108 10224 37 47 33
antlr 3808 | 94 121 138 13225 41 52 43
bloat 5238 | 102 446 129128 49 52 6.7
chart 7070 | 100 174 182127 438

Jython 4402 | 99 559 156 |25 43 46 4.0
pmd 72201 76 146 170 11024 42 42

ps 3875 87 99 110 12026 40 52 44

Table III: Number of equivalence classes of abstract contexts

“Context-sensitive analysis - Is it worth it?”, O. Lhotak, L. Hendren, CC’06

Reference Analysis-3, Sp06 © BGRyder

#Distinct Points-to Sets

* Found fairly equivalent numbers of distinct
points-to sets across all algorithms with all
levels of context.

* Means the problem for a non-BDD solution
procedure for context-sensitive analysis is not
points-to set size, but rather how to efficiently
store contexts.

“Context-sensitive analysis - Is it worth it?”, O. Lhotak, L. Hendren, CC’06

Reference Analysis-3, Sp06 © BGRyder

Call Graph Construction

* Idea: construct context-sensitive call graphs, project away
their contexts and then compare results (otherwise, cannot
compare different context abstractions)

1. Measure set of reachable methods from program entries
2. Measure set of call site possible targets

* Results
« Little difference in #1 between ObjSens and CallSite

« Little difference in number of call graph edges eminating from
application methods

* Better devirtualization with ObjSens than with CallSite

“Context-sensitive analysis - Is it worth it?”, O. Lhotak, L. Hendren, CC’06

Reference Analysis-3, Sp06 © BGRyder

#Polymorphic Call Sites

object-sensitive call site

Benchmark | insens. 1 2 3 1H 1 2 1H
compress 3 3 3 3 3 3 3 3
do 5 4 4 4 4 5 4 5
jack 25 23 23 23 22 24 23 24
javac 737 720 720 720 720 720 720 720
jess 45 45 45 45 45 45 45 45
mpegaudio 27 24 24 24 24 24 24 24
mitrt 9 7 7 7 7 8 8 8
soot-c 983 | 913 913 913 913 | 938 913 938
sablecc-] 450 | 325 325 325 301 380 325 380
polyglot 741|592 502 502 [S85]| 592 592 592
antlr 843 | 843 843 843 " 43| 843 843 843
bloat 1079 | 962 962 961 962 962 962
chart 254 | 235 235 214 235 235

Jython 347 | 347 347 346 347 347 347
pmd 1224|1193 1193 1193 [I163|| 1205 1205 1205
ps 304 | 303 303 303 [300]] 303 303 303

Table VII: Total number of potentially polymorphic call sites in benchmark (non-library) code

“Context-sensitive analysis - Is it worth it?”, O. Lhotak, L. Hendren, CC’06
Reference Analysis-3, Sp06 © BGRyder

Cast Safety

* When can we use points-to analysis to eliminate
unnecessary casts?

* ObjSens is often significantly more precise than CallSite

* Precision is further improved with context-sensitive object
naming as shown in polyglot below

object-sensitive call site
Benchmark | insens. 1 2 3 1H 1 2 1H | ZCWL
soot-c 955 932 932 932 878 | 932 932 932
sablecc-j 375 | 369 369 369 331| 370 370 370
polyglot 3539 | 3307 3306 3306 1017 | 3526 3443 3526 3318
antlr 2051 275 275 275 237 276 215 276 276

Table VIII: Number of casts potentially failing at run time

“Context-sensitive analysis - Is it worth it?”, O. Lhotak, L. Hendren, CC’06

Reference Analysis-3, Sp06 © BGRyder

Conclusions cc’o6

* Interesting empirical study of effectiveness of different
context-sensitive algorithms

* Object-sensitive contexts seem more effective than call-site
contexts in precision and scalability

* Context-sensitive object naming (with ObjSens contexts)
help precision when containers and maps are involved

* Claim that a non-BDD implementation of 1-ObjSens
analysis should be possible

* Claim that such an implementation with context-sensitive
object naming would require new improvements in data
structures and algorithms to be practical

Reference Analysis-3, Sp06 © BGRyder

