
1

Reference Analysis-3, Sp06 © BGRyder 1

Reference Analysis - 3

• Parameterized object-sensitive analysis
• Milanova and Ryder, ICSM’05

• Comparisons of object-sensitive analysis with 1-
CFA
– Two papers differ in their conclusions

• Liang et.al Paste’05
• Lhotak et.al CC’06

Reference Analysis-3, Sp06 © BGRyder 2

Parameterized CS Analysis ICSM’05

• Presents a parameterized framework for
context-sensitive analysis

• E.G., Context-sensitive object naming by allocation
site with context or by using abstract class objects for
some allocation sites
• Describes different sorts of context sensitivity reflected

in constraint annotations



2

Reference Analysis-3, Sp06 © BGRyder 3

Parameterized CS Analysis ICSM’05

• Empirical investigations
• Compares 2 kinds of object-sensitive analyses on side-effects and

downcast safety problems
• FullObjSens: uses object-sensitive object naming
• ObjSens:

– if #alloc sites for class A> 50, then use abstract Aobj as object
representation, rather than alloc site

– Only analyze calls through this context-sensitively
• Results:

– Running times and memory usage is comparable
– Side-effect analysis determines set of objects modified by each

statement
– Downcast safety analysis determines which downcasts are provably

safe

Reference Analysis-3, Sp06 © BGRyder 4

Milanova & Ryder, ICSM’05



3

Reference Analysis-3, Sp06 © BGRyder 5

Empirical Comparisons-Paste’05

• Object-sensitive vs 1-CFA with Andersen
• Good comparison examples given of the abstraction

choices in the algorithms
• Context-sensitive object naming

– Uses k-level of calls (context-bounded) or k receiver names (name-
bounded) to differentiate object creation sites in different calling
contexts

• Details
• Builds models for collections and maps
• User-supplied info about reflection
• Compares static solutions to dynamically observed points-to’s

 D. Liang, M. Pennings, MJ Harrold, “Evaluating the Impact of 
Context Sensitivity on Andersen’s Algorithm for Java Programs”, PASTE’05

Reference Analysis-3, Sp06 © BGRyder 6

Empirical Comparisons Paste’05

• Experiments on 12 Java programs with 8-310
classes and 89-2025 methods

• Three studies
• Relative precision of static results to dynamically

measured object receivers at callsites
– Showed that context-sensitive approaches can achieve

significant precision over context-insensitive ones
• Use of context-sensitive naming schemes can lead to

significant gains in precision
– Using context-insensitive object naming with context-

sensitive (call-site) Andersen degrades precision



4

Reference Analysis-3, Sp06 © BGRyder 7

Empirical Comparisons Paste’05

– Precision per allocation site
• Aggregating precision information for all objects at

the same allocation site
– Again gains showed for context-sensitive analysis

• Conclusions
• “Crucial to distinguish the instances allocated at an

allocation site under different contexts in a context-
sensitive analysis” (section 4.4)

Reference Analysis-3, Sp06 © BGRyder 8

Empirical Comparisons CC’06

• Reports on a comparison of 4 different context-sensitive
analyses

• Context-insensitive points-to
• Call-site-string-based points-to
• Receiver-object-based points-to
• Cloning-based points-to (ZCWL, PLDI’04)

– Run on same 16 benchmarks
– Implemented on the same framework (JEDD in Soot)
– Combined with context-sensitive object naming schemes
– Effectiveness measured on devirtualization, redundant cast

removal, call graph size
• Bottom line: object-sensitive analysis shown to be

superior, in terms of scalability and precision

 “Context-sensitive analysis - Is it worth it?”, O. Lhotak, L. Hendren, CC’06



5

Reference Analysis-3, Sp06 © BGRyder 9

Context-sensitive Points-to
Algorithms in Study CC’06

• Informal algorithm is flow- and context-insensitive
• Call-site-string-based uses a string of the k most recent

actual call sites on the runtime stack as the ‘calling
context’

• Receiver object-based (object-sensitive) uses the sequence
of the k most recent receiver objects as the ‘calling
context’

• Cloning-based (with BDDs) actually makes one copy per
method instantiation
– Corresponding to call edges that DO NOT participate in a cycle

in the context-insensitive call graph (ZCWL, PLDI’04)

 “Context-sensitive analysis - Is it worth it?”, O. Lhotak, L. Hendren, CC’06

Reference Analysis-3, Sp06 © BGRyder 10

Questions to answer
1. Which contexts are actually useful to improve analysis

precision?
• How often contexts have identical points-to info?
• How much context can be saved for practical cost?
• Does more context help precision?

2. Why can BBDs do so well in representing large numbers
of contexts?

• How poorly would non-BDD representations do for context-
sensitive analyses?

3. How well do the algorithms do on client problems?
• Call graph construction, devirtualization, unnecessary cast

elimination

 “Context-sensitive analysis - Is it worth it?”, O. Lhotak, L. Hendren, CC’06



6

Reference Analysis-3, Sp06 © BGRyder 11

Findings - #Contexts

 “Context-sensitive analysis - Is it worth it?”, O. Lhotak, L. Hendren, CC’06

Reference Analysis-3, Sp06 © BGRyder 12

Findings - #Equiv Contexts
• Given <m1,c1> and <m1,c2>, if every local reference has

same points-to set in these 2 contexts, they are equivalent
• Found many equivalent abstract contexts in the data
• In general, there are more equiv classes of contexts with

ObjSens than with CallSite abstractions
– Expect better precision from this

• In both ObjSens and CallSite, increasing k increases the
#equiv classes only slightly while increasing the absolute
#contexts significantly (little precision improvement for a
large cost)

• #contexts of ZCWL is very small because of the merges
on the large SCCs in the benchmark initial call graphs;
effectively ZCWL models much of the call graph context-
insensitively

 “Context-sensitive analysis - Is it worth it?”, O. Lhotak, L. Hendren, CC’06



7

Reference Analysis-3, Sp06 © BGRyder 13

Findings - #Equiv Contexts

 “Context-sensitive analysis - Is it worth it?”, O. Lhotak, L. Hendren, CC’06

Reference Analysis-3, Sp06 © BGRyder 14

#Distinct Points-to Sets

• Found fairly equivalent numbers of distinct
points-to sets across all algorithms with all
levels of context.

• Means the problem for a non-BDD solution
procedure for context-sensitive analysis is not
points-to set size, but rather how to efficiently
store contexts.

 “Context-sensitive analysis - Is it worth it?”, O. Lhotak, L. Hendren, CC’06



8

Reference Analysis-3, Sp06 © BGRyder 15

Call Graph Construction

• Idea: construct context-sensitive call graphs, project away
their contexts and then compare results (otherwise, cannot
compare different context abstractions)

1. Measure set of reachable methods from program entries
2. Measure set of call site possible targets

• Results
• Little difference in #1 between ObjSens and CallSite
• Little difference in number of call graph edges eminating from

application methods
• Better devirtualization with ObjSens than with CallSite

 “Context-sensitive analysis - Is it worth it?”, O. Lhotak, L. Hendren, CC’06

Reference Analysis-3, Sp06 © BGRyder 16

#Polymorphic Call Sites

 “Context-sensitive analysis - Is it worth it?”, O. Lhotak, L. Hendren, CC’06



9

Reference Analysis-3, Sp06 © BGRyder 17

Cast Safety
• When can we use points-to analysis to eliminate

unnecessary casts?
• ObjSens is often significantly more precise than CallSite
• Precision is further improved with context-sensitive object

naming as shown in polyglot below

 “Context-sensitive analysis - Is it worth it?”, O. Lhotak, L. Hendren, CC’06

Reference Analysis-3, Sp06 © BGRyder 18

Conclusions CC’06

• Interesting empirical study of effectiveness of different
context-sensitive algorithms

• Object-sensitive contexts seem more effective than call-site
contexts in precision and scalability

• Context-sensitive object naming (with ObjSens contexts)
help precision when containers and maps are involved

• Claim that a non-BDD implementation of 1-ObjSens
analysis should be possible

• Claim that such an implementation with context-sensitive
object naming would require new improvements in data
structures and algorithms to be practical


